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Multiparticle entanglement with quantum logic networks: Application to cold trapped ions

Marek Šašura1 and Vladimı´r Bužek1,2
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We show how to construct a multiqubit control gate on a quantum register of an arbitrary sizeN. This gate
performs a single-qubit operation on a specific qubit conditioned by the state of otherN21 qubits. We provide
an algorithm how to build up an array of networks consisting of single-qubit rotations and multiqubit control-
NOT ~CNOT! gates for the synthesis of an arbitrary entangled quantum state ofN qubits. We illustrate the
algorithm on a system of cold trapped ions. This example illuminates the efficiency of the direct implemen-
tation of the multiqubitCNOT gate compared to its decomposition into a network of two-qubitCNOT gates.
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I. INTRODUCTION

Entanglement is probably the most intriguing aspect
quantum theory@1#. It attracts due attention not only for it
epistemological importance@2# but also as an essential re
source for quantum information processing. In particu
quantum computation@4,5#, quantum teleportation@6#, quan-
tum dense coding@7#, certain types of quantum key distribu
tions@8#, and quantum secret sharing protocols@9# are rooted
in the existence of quantum entanglement.

Recently, a lot of progress has been achieved in the
vestigation of various properties and the possible applica
of quantum entanglement. Nevertheless, many questions
still open. In particular is the problem of multiparticle e
tanglement@10#. Specifically, in contrast to classical correl
tions, quantum entanglement cannot be freely shared am
many objects@11,12#. It has been shown recently@13,14# that
in a finite system ofN qubits with N(N21)/2 entangled
pairs the maximal possible concurrence~a specific measure
of entanglement@12,15#! is equal to 2/N. This value of the
bipartite concurrence is achieved when theN qubits are pre-
pared in a totally symmetric stateuJ&, such that all excep
one qubit are in the stateu1&, i.e.,

uJ&5
1

AN
(
j 51

N

u0& j u1&N215
1

AN
~ u011 . . . 1&1u101 . . . 1&

1u110 . . . 1&1¯1u111 . . . 0&). ~1.1!

In order to study the multiparticle quantum entanglemen
more detail, we have to find ways how to prepare~synthe-
size! states of the form given by Eq.~1.1! in various physical
systems.

In this paper we will study in detail howN qubits can be
prepared in entangled states of the form~1.1!. We assume
that the qubits are encoded in internal ionic states as o
nally proposed in the model of the quantum processor
Cirac and Zoller@16#. Our paper is organized as follows
Section II is devoted to the description of quantum log
gates and networks. Here we present multiqubit contro
gates. We show how these gates can be expressed in ter
single-qubit and two-qubit gates, but we argue that for pr
tical purposes it is more appropriate to utilize direc
1050-2947/2001/64~1!/012305~10!/$20.00 64 0123
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multiple-qubit gates rather than decompose them into
ementary single- and two-qubit gates.

In Sec. III we present a logical network with the help
which symmetric states of the form~1.1! can be synthesized
Section IV is devoted to a general problem of synthesis o
pure state of an arbitraryN qubit state. We present a simp
network in which an arbitraryN qubit state can be created. I
Sec. V we apply this algorithm to a specific problem ofN
cold trapped ions. Following the original idea of Cirac a
Zoller we show how the states of interest can be created
Sec. VI we discuss the experimental realization of the p
posed scheme on cold trapped ions and we also briefly
dress the efficiency of using multiqubit control-NOT gates
rather than a network of two-qubit control-NOT gates.

II. QUANTUM LOGIC GATES AND NETWORKS

Let us start with a brief description of those objects th
we will use later in the paper. We will follow the notatio
used in Refs.@3,4#. The qubit ~quantum bit! is a quantum
two-level system in which logical Boolean states 0 and 1
represented by a pair of normalized and mutually orthogo
quantum states labeled asu0& and u1&. These two states form
a computational basis and any other pure state of the q
can be written as a coherent superpositionuc&5au0&
1bu1& with complex amplitudesa and b, such thatuau2
1ubu251. We may represent a state of a qubit as a point
the Bloch sphere with the parametrizationa5cosq/2 and
b5eiw sinq/2. In quantum or atomic optics the qubit is o
ten represented by a two-level atom~ion! with two selected
internal levels denoted asug& and ue&. The quantum register
of sizeN is a collection ofN qubits. Thequantum logic gate
is a quantum device that performs a unitary operation
selected~target! qubits conditioned by states of control qu
bits during a given interval of time. A gate acting on a sing
qubit is termed as a single-qubit gate; gates acting on m
qubits are referred to as multiqubit gates. Thequantum logic
network is a quantum device consisting of several quant
logic gates synchronized in time.

A. Single-qubit rotation

A single-qubit gate corresponds to a unitary operatorW
represented in the computational basis$u0&, u1&% by the matrix
©2001 The American Physical Society05-1
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W5S W00 W01

W10 W11
D . ~2.1!

A special case of a single-qubit gate is a single-qubit rota
O @see Fig. 1~a!#. Its parametrization depends on the cho
of coordinates on the Bloch sphere. We will define it in t
matrix form in the basis$u0&, u1&% as follows:

O~u,f!5S R00 R01

R10 R11
D 5S cos~u/2! eif sin~u/2!

2e2 if sin~u/2! cos~u/2!
D ,

~2.2!

whereu refers to the rotation andf to the relative phase shif
of the statesu0& and u1& in the corresponding Hilbert space

B. Two-qubit and multiqubit control- NOT gates

A two-qubit control-NOT ~CNOT! gate acts on two quan
tum bits denoted as the control and the target qubit, res
tively @see Fig. 1~b!#. If the control qubit (m1) is in the state
u1&, the state of the target qubit (m2) is flipped. Otherwise,
the gate acts trivially, i.e., as a unity operator1. We may
characterize this gate with the help of the truth table

u0&m1
u0&m2

→u0&m1
u0&m2

,

u0&m1
u1&m2

→u0&m1
u1&m2

,

~2.3!

u1&m1
u0&m2

→u1&m1
u1&m2

,

u1&m1
u1&m2

→u1&m1
u0&m2

.

A multiqubit control-NOT ~CNOT! gate is defined analogi
cally @see Fig. 1~c!#. The only difference is the number o
control qubits. In other words, a multiqubit (control)q-NOT

gate acts onq11 qubits withq control qubits (m1 ,...,mq)
and themq11 qubit is target. If all control qubits are in th
stateu1&, then the state of the target qubit is flipped. Oth
wise, the gate action is trivial. The truth table of the mu
qubit (control)q-NOT gate acting onm1 ,...,mq11 qubits
reads as follows:

FIG. 1. A schematic representation of~a! a single-qubit rotation
defined by the relation~2.2!, ~b! a two-qubitCNOT gate defined by
the transformation~2.3!, and ~c! a multiqubit (control)q-NOT gate
defined by the transformation~2.4!.
01230
n

c-

-

uCno&u0&mq11
→uCno&u0&mq11

, uCno&Þ)
j 51

q

^ u1&mj
,

uCno&u1&mq11
→uCno&u1&mq11

,

~2.4!

uCyes&u0&mq11
→uCyes&u1&mq11

, uCyes&5)
j 51

q

^ u1&mj
,

uCyes&u1&mq11
→uCyes&u0&mq11

.

C. Multiqubit control- R gates

A multiqubit (control)q-R gate acts onq11 qubits. The
m1 ,...,mq qubits represent the control part of the gate wh
the mq11 qubit represents the target@Fig. 2#. This gate per-
forms a single-qubit rotation on the target qubit if all contr
qubits are in the stateu1&. Otherwise, it acts trivially. Speak
ing precisely, if all control qubits (m1 ,...,mq) are in the state
u1&, then the operationR5R1

†sR2
†sR2R1 is applied ~from

right to left! on themq11 ~target! qubit. In the basis of the
target qubit$u0&mq11

,u1&mq11
% we can introduce the matrice

R5S cosu ei2f sinu

2e2 i2f sinu cosu D , s5S 0 1

1 0D ,

R15S 0 eif

2e2 if 0 D , R1
†5S 0 2eif

e2 if 0 D ,

R25S cos~u/2! sin~u/2!

2sin~u/2! cos~u/2!
D ,

R2
†5S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D , ~2.5!

where R15O(p,f), R1
†5O†(p,f), R25O(u,0), andR2

†

5O(u,0). The operationO(u,f) is defined by the relation
~2.2!. The matrix s denotes theNOT operation. If not all
control qubits are in the stateu1&, then the gate performs o

FIG. 2. A scheme of a multiqubit (control)q-NOT gate acting on
q11 qubits withq control qubits (m1 ,...,mq). Themq11th qubit is
the target. The operatorsR, R1 , R2 , R2

† , andR1
† are defined by Eq.

~2.5! and the gate is determined by the transformation~2.6!. The
gate corresponding to Eq.~2.7! is represented by the same netwo
except the single-qubit rotationsR1 andR1

† .
5-2
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MULTIPARTICLE ENTANGLEMENT WITH QUANTUM . . . PHYSICAL REVIEW A 64 012305
the target qubit the operation15R1
†1R2

†1R2R1 , where1 is the
unity operator. We may write the truth table of the multiqu
(control)q-R gate as follows:

uCno&u0&mq11
→uCno&u0&mq11

,

uCno&u1&mq11
→uCno&u1&mq11

,

~2.6!
uCyes&u0&mq11

→uCyes&~cosuu0&mq11
2e2 i2f sinuu1&mq11

),

uCyes&u1&mq11
→uCyes&~ei2f sinuu0&mq11

1cosuu1&mq11
),

whereuCno& and uCyes& are defined in Eq.~2.4!.
If the preparation of a particular class of quantum sta

does not require the introduction of a relative phase shiff
between the basis statesu0& and u1&, then a reduced quantum
logic network is sufficient. In particular, the operationR
5sR2

†sR2 on the target qubit (mq11) conditioned by the
state of control qubits (m1 ,...,mq) can be realized accordin
to the following truth table:

uCno&u0&mq11
→uCno&u0&mq11

,

uCno&u1&mq11
→uCno&u1&mq11

,

~2.7!
uCyes&u0&mq11

→uCyes&~cosuu0&mq11
2sinuu1&mq11

),

uCyes&u1&mq11
→uCyes&~sinuu0&mq11

1cosuu1&mq11
).

The results given above for the multiqubit control-R gates
are compatible with the scheme proposed in Ref.@17#, where
a decomposition of multiqubitCNOT gates into a network o
two-qubit CNOT gates has been presented. However, this
composition may require many elementary operations
seems to be more appropriate for some practical implem
tations of quantum computing~for example, computing with
cold trapped ions@16#! to implement directly multiqubit
CNOT gates.

III. QUANTUM LOGIC NETWORKS FOR THE STATE
SYNTHESIS

In this section we present quantum logic networks for
synthesis of specific types of coherent superpositions of m
tiqubit quantum states. Later we will use this result for co
struction of an algorithm for a generation of an arbitrary pu
quantum state ofN qubits.

We will consider a quantum register of sizeN, i.e., N
qubits. Let us denote

u1&N5)
j 51

N

^ u1&mj
, u1&N21u0&mk

5S )
j 51
j Þk

N

^ u1&mj D ^ u0&mk
.

~3.1!

Firstly, let us consider a simple network consisting o
multiqubit control-R gate having (N21) control qubits
(c1 ,...,cN21) and a single target qubit (t1) @see Fig. 3#. Let
01230
t

s

e-
It
n-

e
l-
-
e

us assume that all qubits have been initially prepared in
stateu1&, i.e., the whole system is in the stateu1&N and the
gate realizes the operation

u1&N→R01u1&N21u0& t1
1R11u1&N, ~3.2!

whereR01 andR11 are defined by the relation~2.5!.
Secondly, let us consider a network with (N22) control

qubits (c1 ,...,cN22) and two target qubits (t1 ,t2) @see Fig.
4#. The network acts on the initial stateu1&N as follows~each
arrow in the figure corresponds to an action of a gate in
sequence!:

u1&N→R01u1&N21u0& t1
1R11u1&N

→R01u1&N22u0& t1
u0& t2

1R11u1&N21u0& t2

→R01u1&N22u0& t1
u0& t2

1R11u1&N. ~3.3!

Further, we design a network with (N23) control qubits
(c1 ,...,cN23) and three target qubits (t1 ,t2 ,t3) @see Fig. 5#.
This network acts as follows:

u1&N→R01u1&N21u0& t1
1R11u1&N

→R01u1&N22u0& t1
u0& t2

1R11u1&N21u0& t2

→R01u1&N23u0& t1
u0& t2

u0& t3
1R11u1&N22u0& t2

u0& t3

→R01u1&N23u0& t1
u0& t2

u0& t3
1R11u1&N21u0& t3

→R01u1&N23u0& t1
u0& t2

u0& t3
1R11u1&N. ~3.4!

FIG. 3. The network that realizes the transformation given
Eq. ~3.2!.

FIG. 4. The network that realizes the transformation~3.3!.
5-3
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The arrangement of quantum logic networks with mo
target qubits is straightforward. One has to add another m
tiqubit CNOT gate acting on the added target qubit and th
one more multiqubitCNOT gate must be included at the en
of the network in order to erase ‘‘unwanted’’ changes on
other terms in a superposition state@for instance, see the
fourth and fifth lines in Eq.~3.4!#.

As an example let us consider a network that prepare
pure symmetric~with respect to permutations! entangled
state with just one qubit in the stateu0& and all others in the
stateu1& @see Eq.~1.1!#. It can be shown that this state e
hibits the maximum degree of entanglement between
pair of N qubits @14#. The network for the synthesis of th
state ~1.1! from the initial stateu1&N is shown in Fig. 6,
where the rotationsU j are defined as follows:

U j5S A N2 j

N2 j 11

1

AN2 j 11

2
1

AN2 j 11
A N2 j

N2 j 11

D , j 51, . . . ,N21.

~3.5!

The action of the network in Fig. 6 can be described
follows:

FIG. 5. The network that realizes the transformation~3.4!.

FIG. 6. The network for the synthesis of the symmetric e
tangled state~1.1! on N qubits. The rotationsU j are given by Eq.
~3.5!. TheN qubits are assumed to be initially in the stateu1&N.
01230
l-
n

ll

a

y

s

u1&N ——→
U1 1

AN
u1&N21u0&11AN21

N
u1&N

——→
CU1 1

AN
u1&N21u0&11

1

AN
u1&N21u0&2

1AN22

N
u1&N

→¯5
1

AN
(
j 51

N22

u1&N21u0& j1A2

N
u1&N

——→
CUN21 1

AN
(
j 51

N22

u1&N21u0& j1
1

AN
u1&N21u0&N21

1
1

AN
u1&N

——→
CNOT 1

AN
(
j 51

N21

u1&N21u0& j1
1

AN
u1&N21u0&N

5
1

AN
(
j 51

N

u1&N21u0& j , ~3.6!

where u1&N denotes the state with all qubits in the stateu1&
and u1&N21u0& j represents the state of the register with (N
21) qubits in u1& and thej th qubit in the stateu0& @see the
notation in Eq.~3.1!#.

A very simple example is the synthesis of the GHZ sta
i.e., a coherent superposition with all qubits to be in the st
u0& or u1& with the same probability, i.e.,uJ&GHZ5(u0&N

1u1&N)/&. The corresponding network is shown in Fig.
The single-qubit rotationR5O(p/2,p) defined in Eq.~2.2!
is applied on the initial stateu0&N and prepares the superpo
sition (u0&N1u0&N21u1&1)/&. Applying sequentially all
CNOT gates one prepares the GHZ stateuJ&GHZ.

-

FIG. 7. The network for the synthesis of the generalization
the GHZ state. The single-qubit rotationR is given by Eq.~2.2! for
R5O(p/2,p). The initial state isu0&N.
5-4
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FIG. 8. An array of networks
for the synthesis of an arbitrary
pure quantum state~4.2! on three
qubits. The initial state isu000&
and the rotationsU j are given by
Eq. ~4.4!.
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IV. SYNTHESIS OF AN ARBITRARY PURE QUANTUM
STATE

Coherent manipulation with states of quantum regist
and, in particular, the synthesis of an arbitrary pure quan
state is of central importance for quantum computing. One
the important tasks is the preparation of multiqubit entang
states.

Based on the discussion presented above we can pro
an array of quantum logic networks that prepare an arbitr
state from the register initially prepared in the stateu0&N, i.e.,

u0&N→uc~N!&5 (
j 50

xj P$0,1%N

2N21

cj uxj&5 (
x500...0

11...1

cxux&, ~4.1!

where x is a binary representation of the number 2j . The
proposed scheme can be generalized on the quantum re
of an arbitrary size, but for simplicity we will first conside
the case of three qubits.

A general state of three qubits is given as

uc~3!&5a0u000&1eiw1a1u001&1eiw2a2u010&1eiw3a3u100&

1eiw4a4u011&1eiw5a5u101&1eiw6a6u110&

1eiw7a7u111&, ~4.2!

wherea0 ,...,a7 are real numbers satisfying the normaliz
tion condition

(
j 50

7

a j
251, ~4.3!

andw1 ,...,w7 are relative phase factors. The global phase
chosen such thatw050.

In what follows we will present the procedure for th
synthesis of the state~4.2!. Let us use the abbreviated form
of the matrixR defined in Eq.~2.5! which we denote as
01230
s
m
f
d

ose
ry

ster

is

U j5S aj ei2f jbj

2e2 i2f jbj aj
D , j 50, . . . ,6, ~4.4!

where aj5cosuj and bj5sinuj . The initial state isu000&.
The network presented in Fig. 8~a! prepares out of the stat
u000& the superposition

a0u000&2e2 i2f0b0u111&. ~4.5!

Applying the network in Fig. 8~b!, a new term

2ei2~f12f0!b0b1u001& ~4.6!

is added to the superposition~4.5! while the amplitude of the
componentu000& is not affected at all. The application of th
network given by Fig. 8~c! adds another new term

2ei2~f22f0!b0a1b2u010& ~4.7!

and does not influence the amplitudes of two foregoing te
u000& and u001&. Repeating this procedure, the network
Fig. 8~d! adds a new term

2ei2~f32f0!b0a1a2b3u100&. ~4.8!

Analogously, the network shown in Fig. 8~e! adds a new
term
5-5
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FIG. 9. A compact form of the
array of the networks shown in
Fig. 8.
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2ei2~f42f0!b0a1a2a3b4u011&, ~4.9!

while the networks shown in Figs. 8~f! and 8~g! add new
terms

2ei2~f52f0!b0a1a2a3a4b5u101&, ~4.10!

2ei2~f62f0!b0a1a2a3a4a5b6u110&, ~4.11!

respectively. The last network shown in Fig. 8~g! also deter-
mines the amplitude of the last term

2ei2~f72f0!b0a1a2a3a4a5a6u111&. ~4.12!

Comparing the output from the networks shown in Figs
~see a compact form in Fig. 9!, determined by the relation
~4.5!–~4.12!, with the expression~4.2!, we get the final re-
sults in Table I..

The coherent superposition~4.2! is completely deter-
mined by 15 parameters (a0 ,...,a7 ;w1 ,...,w7). The nor-
malization condition~4.3! reduces this number to 14. Th
networks in Fig. 8 are determined by 14 paramet
(b0 ,...,b6 ,f0 ,...,f6). Thus, the mapping between the sta
~4.2! and the networks is clearly defined. From given valu
of a j and w j one can calculatebj and f j according to the
expressions

f05 1
2 ~p2w7!, f j5

1
2 ~w j2w7!, j 51, . . . 6

~4.13!

and

TABLE I. The network in Fig. 9 generates the state~4.2! from
an empty registeru000&. The network is characterized by the coe
ficientsaj ,f j , wherebj5A12aj

2. The state~4.2! is determined by
the coefficientsa j ,w j . The table relates these two set of numbe
The inverse relations are given by Eqs.~4.13! and ~4.14!.

j a j w j State

0 a0 0 ~default! 000
1 b0b1 2(f12f0)1p 001
2 b0a1b2 2(f22f0)1p 010
3 b0a1a2b3 2(f32f0)1p 100
4 b0a1a2a3b4 2(f42f0)1p 011
5 b0a1a2a3a4b5 2(f52f0)1p 101
6 b0a1a2a3a4a5b6 2(f62f0)1p 110
7 b0a1a2a3a4a5a6 22f01p 111
01230
8

s

s

b05A12a0
2, bj5

a j

A12 (
k50

j 21

ak
2

, j 51, . . . ,6,

~4.14!

which determine the single-qubit rotations~4.4!.
The state~4.2! contains terms corresponding to all po

sible permutations of three qubits. However, areducedsu-
perposition with some terms missing might be desired.
this purpose, we can skip networks responsible for the s
thesis of these terms or the corresponding parameterbj can
be set to zero. For instance, in the case when the termu000&
does not appear in a final desired quantum state, we b
with the initial stateu111& and skip the network in Fig. 8~a!.
If we do not wish, for a change, to generate the termu111&,
one may set the parametera6 to zero and the phase facto
can be chosen arbitrarily~see the table above!.

The scheme can be analogically extended to an arbit
number of qubits. In what follows we will briefly discuss th
extension on four qubits. These can be prepared, in gen
in the coherent superposition consisting of 16 terms, i
u0000&, u0100&, u0010&, . . . ,u1111&.

The network in Fig. 10~a! prepares the superposition o
the termsu0000& and u1111& with the corresponding comple
amplitudes, depending on the choice of the single-qubit
tation R1 . Application of the network in Fig. 10~b! running
through all possible permutations of four qubits, i.
(c1 ,t1 ,t2 ,t3)5$(1,2,3,4);(2,1,3,4);(3,1,2,4);(4,1,2,3)%,
adds to the superposition new termsu1000&, u0100&, u0010&,
u0001& with corresponding amplitudes determined byR2 .
Further, we apply the network of the type in Fig. 10~c! run-
ning through the permutations (c1 ,c2 ,t1 ,t2)
5$(3,4,1,2);(2,4,1,3);(2,3,1,4);(1,4,2,3);(1,3,2,4);(1,2,3,4)%
and the terms u0011&,u0101&,u0110&,u1001&,u1010&, u1100&
~with corresponding amplitudes given byR3! will be in-
cluded to the state under construction. Finally, the network
Fig. 10~d! running through (c1 ,c2 ,c3 ,t1)
5$(2,3,4,1);(3,4,1,2);(4,1,2,3);(1,2,3,4)% generates new
termsu0111&,u1011&,u1101&, u1110&.

The extension toN qubits is analogical. The state synth
sis is started from the initial stateu0&N. Firstly, one uses the
network for the preparation of superpositions ofu0&N and
u1&N with determined amplitudes. Secondly, the netwo
with one control qubit (c1) and N21 target qubits
(t1 ,...,tN21) running through all permutations are applie
Then, we employ the networks with two control qubi
(c1 ,c2) andN22 target qubits (t1 , . . . ,tN22). Further, the
networks with more control qubits (3,4, . . . ,N21). These

.
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FIG. 10. An array of networks
for the synthesis of an arbitrary
pure quantum state~4.1! of four
qubits as discussed in Sec. IV.
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procedures are repeated until we achieveN21 control qubits
~and one target qubit!. The synthesis stops and a desired fin
state is prepared.

V. REALIZATION ON COLD TRAPPED IONS

In previous sections we have proposed a scheme for
synthesis of an arbitrary pure quantum state of a systemN
qubits. The implementation of the multiqubitCNOT gate has
played the central role in our scheme. It is well known ho
to decompose multiqubit gates into a network of single-qu
and two-qubitCNOT gates@17#. However, it seems that
direct implementation of multiqubitCNOT gates in specific
quantum systems is more straightforward and requires
elementary operations~for example, laser pulses! than its
decomposition. We demonstrate this idea on a system ofcold
trapped ions. We will briefly describe the system under co
sideration and show how multiqubit gates can be imp
mented.

The quantum system considered here is a model o
string of N atomic ions confined in the linear Paul trap pr
posed by Cirac and Zoller in 1995@16#. First experiments on
a single ion and two ions were realized by the NIST group
Boulder @18#. Experiments with more ions were done, f
example, by the group in Innsbruck@19#.

The confinement of a system of trapped ions along thx,
y, and z axes can be described by an anisotropic harmo
pseudopontential of frequenciesvz!v r , where for the usua
choice of trapping radio-frequency~rf! voltage we getv r
5vx5vy . The ions are firstly Doppler cooled and then u
dergo the sideband cooling. Laser cooling minimizes th
motional energy and the ions oscillate around their equi
rium positions. In this case we can describe their motion
terms of normal modes. We will consider only the lowe
center-of-mass~COM!, vibrational collective mode of the
ions along thez axis, when all the ions oscillate back an
forth as if they were a rigid body. The sideband cooli
leaves the ions in the quantum ground motional state; th
fore, we have to assume the Lamb-Dicke limit, i.e., the p
ton recoil frequency~corresponding to the laser-cooling tra
01230
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sition! is much smaller than the frequency of the conside
COM mode. The ions in the trap represent qubits with t
distinct internal atomic states denoted asug& and ue& with
corresponding energy levelsEg and Ee , respectively. We
will consider individual-ion-addressing with a laser beam
the frequencyvL represented by a classical traveling wav
Then, in the interaction picture, in the rotating-wave appro
mation plus the weak-coupling regime and in the Lam
Dicke limit we can write the Hamiltonian corresponding
the interaction between thej th trapped ion (j 51, . . . ,N)
and the laser beam tuned on thecarrier (vL5v0)

Âj5
\V j

2
~ ue& j^gu1ug& j^eu! ~5.1!

and on thefirst red sideband(vL5v02vz)

B̂j5
\V j

2

ih

AN
~ ue& j^guâ1ug& j^euâ†!, ~5.2!

whereV j5uV j ue2 if is the laser coupling constant,f is the
laser phase,h is the Lamb-Dicke parameter,â andâ† are the
annihilation and creation operators of the quantized CO
mode with the frequencyvz , where â†âun&5nun& and v0
5(Ee2Eg)/\ is the atomic transition frequency.

Further, we can write the unitary evolution operators v
which the action of the quantum gates is realized. Firstly,
us consider the evolution operator corresponding to akp
pulse on the carrier (t5kp/uV j u) applied on thej th ion with
the arbitrary initial choice of the laser phase such that

Âj
k~f!5expF2

kp

2
~ ue& j^gue2 if2ug& j^eueif!G . ~5.3!

Under the action of this unitary operator the two intern
states of thej th ion are changed as follows:

ug& j→cos~kp/2!ug& j2e2 if sin~kp/2!ue& j ,

ue& j→cos~kp/2!ue& j1eif sin~kp/2!ug& j . ~5.4!
5-7
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Secondly, we have the evolution operator for akp pulse on
the first red sideband (t5kpAN/uV j uh) on the j th ion
choosing the laser phase such that

B̂j
k,q~f!5expF2

ikp

2
~ ueq& j^guâe2 if1ug& j^equâ†eif!G ,

~5.5!

which implies the transformation

ug& j u0&→ug& j u0&,

ug& j u1&→cos~kp/2!ug& j u1&2 ie2 if sin~kp/2!ue& j u0&, ~5.6!

ue& j u0&→cos~kp/2!ue& j u0&2 ieif sin~kp/2!ug& j u1&,

where q5I, II, and ueI& denotes the upper internal leve
whereasueII& refers to an auxiliary internal leveluaux&. In the
original proposal@16# the values of the parameterq5I, II
refer to the situation where the transition excited by the la
depends on the laser polarization.

The operators~5.3! and ~5.5! provide us with the possi
bility of introducing the implementation of the single-qub
rotation and multiqubitCNOT gate on selected ions~repre-
senting qubits!. It is obvious from the transformation~5.4!
that the evolution operator~5.3! corresponds to the single
qubit rotationO(kp,f) on the j th ion @see the definition
~2.2!#. The two-qubitCNOT gate~the m1th ion is the control
and them2th ion is the target! is realized by the evolution
operator~from right to left!

Âm2

1/2~p!B̂m1

1,I B̂m2

2,IIB̂m1

1,I Âm2

1/2~0!, ~5.7!

which corresponds to a sequence of pulses as desc
above. This transformation acts on two ions as

ug&m1
ug&m2

u0&→ug&m1
ug&m2

u0&,

ug&m1
ue&m2

u0&→ug&m1
ue&m2

u0&,

~5.8!
ue&m1

ug&m2
u0&→ue&m1

ue&m2
u0&,

ue&m1
ue&m2

u0&→ue&m1
ug&m2

u0&.

The ions are assumed to be cooled to the ground vibrati
stateu0& before the operation. We have used the notationB̂
[B̂(0) in the relation~5.7!. The two-qubitCNOT gate can be
extended to the multiqubit (control)q-NOT gate acting onq
11 ions ~m1 ,...,mq ions represent the control, while th
mq11th ion is the target! and can be realized by the follow
ing evolution operator~from right to left!:

Âmq11

1/2 ~p!B̂m1

1,I F)
j 52

q

B̂mj

1,IIG B̂mq11

2,II F)
j 5q

2

B̂mj

1,IIG B̂m1

1,I Âmq11

1/2 ~0!

~5.9!

corresponding to the transformation
01230
r

ed

al

uCno&ug&mq11
u0&→uCno&ug&mq11

u0&, uCno&Þ)
j 51

q

^ ue&mj
,

uCno&ue&mq11
u0&→uCno&ue&mq11

u0&,

uCyes&ug&mq11
u0&→uCyes&ue&mq11

u0&,

uCyes&5)
j 51

q

^ ue&mq
,

uCyes&ue&mq11
u0&→uCyes&ug&mq11

u0&. ~5.10!

It is obvious from Eqs.~5.8! and~5.10! that the ions must be
kept in the ground motional state. This arrangement eli
nates heating processes that lead to decoherence. Howev
is still an experimental challenge to cool more than two io
to the ground stateun50&.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have shown how multiparticle entang
states can be constructed with the help of multiqubit qu
tum gates. We have shown how to implement these gate
the system of cold trapped ions. This allows us to ‘‘realiz
any multiqubit control-R gate and also any logic networ
proposed in Secs. III and IV. To understand the feasibility
this algorithm we present some estimations considering
application of the introduced gates and networks on c
trapped ions.

The main aim of further discussion is to illustrate a ran
of relevant physical parameters for implementation of p
posed scheme. Obviously, specific experimental setups h
to be considered separately. We present just rough estim
of minimal times required for the realization of desired ga
operations.

Let us consider calcium ions40Ca1 with the ‘‘ground’’
~computational! stateug5S1/2& and the ‘‘excited’’~computa-
tional! stateue5D5/2&. The lifetime of the ion on the meta
stableD5/2 level is 1.045 s.

We will assumeN ions loaded and confined in the tra
The ions will be individually addressed with a laser bea
(l5729 nm) supposing the Gaussian intensity profileI /I 0

5exp(22r2/w0
2), where r denotes the radial distance an

2w0510mm is the beam waist. Further, let the angle b
tween the laser beam and thez axis beq560°. Then, the
recoil frequency of the calcium ion isf R52.33 kHz, where
f R5ER /h, ER5\2k2/2m, k52p/l, and h52p\. The
axial trapping frequency isvz/2p5110 kHz. We can also
calculate the Lamb-Dicke parameterh5AER /\vz, i.e., h
50.15. The minimum spacing between two neighboring io
is determined by the approximate formula@20,21#,

Dzmin.
2.018

N0.559S q2

4p«0mvz
2D 1/3

, ~6.1!

whereq is the ion charge,m is the ion mass, ande0 is the
permitivity of vacuum.
5-8
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TABLE II. N is the number of calcium ions in the trap,Dzmin is the minimal distance between tw
neighboring ions~6.1!, TB is the minimal time for the realization of the operationB1 @in Eq. ~5.9!# for two
different values of the fidelity~F599%, F575%!. N(A) is the total number of the operationsA in the
network in Fig. 6, andN(B1) andN(B2) are the total numbers of the operationsB1 andB2, respectively.T
is the total minimal time~6.3! for the experimental preparation of the state~1.1! on N ions via the network
in Fig. 6. TA55 ms is the time for the realization of the operationA @in Eq. ~5.9!#.

N Dzmin ~mm!

TB ~ms!

N(A) N(B1) N(B2)

T ~ms!

F599% F575% F599% F575%

2 24.4 312 62.4 3 2 1 1.26 0.265
3 20.8 382 76.4 9 8 3 5.39 1.11
4 18.0 441 88.3 15 18 5 12.4 2.55
5 15.9 493 98.7 21 32 7 22.8 4.65
6 14.3 540 108 27 50 9 36.9 7.48
7 13.1 584 117 33 72 11 55.1 11.2
8 12.2 624 125 39 98 13 77.6 15.7
9 11.4 662 132 45 128 15 105 21.1
10 10.8 698 140 51 162 17 137 27.7
15 8.59 855 171 81 392 27 382 76.7
20 7.31 987 197 111 722 37 786 157
e
-

n
co
of

-

te

b

b
h

ed

i.e

t
a-

m

l

h
en
i-

the
ns-

s

-
er
on

di-

. In

te

m
m
nt

It
did

for
u-
se
ion
The multiqubitCNOT gate on the ions is realized by th
evolution operator~5.9!. We will consider three types of el
ementary operations:~1! p/2 pulse on the carrier~A! defined
by the relation~5.3!, ~2! p pulse (B1), and~3! 2p pulse (B2)
on the first red sideband~5.5!. Each elementary operatio
takes a certain time to be implemented on the system of
trapped ions. Steaneet al. addressed in detail the speed
ion-trap information processors in@22#.

First, the single-qubit rotation~A! can be made much
faster than two-qubit operations (B1,B2), because the Lamb
Dicke parameterh can be set to zero~i.e., the laser beam is
perpendicular to thez axis!. Thus, uVu can be made large
without restrictions on the weak-coupling regime charac
ized by the conditionuVu!vz . We will assumeuVu/2p
550 kHz and estimate the time required for the single-qu
rotation asTA5p/2uVu55 ms.

Second, by definition for the operationsB1 and B2, the
Lamb-Dicke parameter must be nonzero@see Eq.~5.2!#. This
means that some unwanted off-resonant transitions will
present, which may significantly affect times required for t
operationsB1,2.

In Ref. @22# it has been shown that the minimal spe
1/TB for the realization of the operationB1 is proportional to
the geometric mean of the recoil and trapping frequency,

1

TB
.

2&e

AN
AER

h

vz

2p
, ~6.2!

where the imprecisione5A12F is defined via the fidelityF
of the process. The time for the operationB2 is then 2TB .

Once the gate times are estimated, we can determine
minimal total timeT required for the experimental prepar
tion of the state~1.1! on calcium ions. The total timeT is the
sum of times of all operationsA, B1, B2, which appear in
the implementation of the network in Fig. 6. The total nu
01230
ld

r-

it

e
e
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he
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ber of all operations, when preparing the state~1.1! on N
ions, is 2N214N210. The explicit expression for the tota
time reads

T5N~A!TA1N~B1!TB1N~B2!2TB . ~6.3!

In what follows we will consider several situations wit
the number of trapped ions varying from 2 to 20. In a giv
ion trap for different values of ions we obtain different min
mal spacingsDzmin @see Eq.~6.1!#. The minimal spacing
between ions has to be larger than the half-width of
Gaussian profile of the addressing laser beam. In the In
bruck experiment@23# the width of the Gaussian profile i
proportional to 10mm. Even for 20 ions with Dzmin
57.31mm @see Eq.~6.1!# and the given width of the Gauss
ian profile, the ratio between the light intensity of the las
addressing a given ion to the intensity of the same beam
the neighboring ion is as small as 1.4%. Therefore, in
vidual ions can be addressed rather efficiently.

As follows from Eq.~6.2! the minimal time for the gate
operation depends on the required fidelity of the process
our case we consider two values of the fidelity, namelyF
599% andF575%. Given these values we can estima
relevant physical parameters.

In Table II we present results of our estimations. Fro
here we can conclude that for a given lifetime of calciu
ions ~1.045 s! one can perform in our scheme a cohere
manipulation with up to 20 ions with the fidelity 99%.
seems to be a very optimistic estimation; however, we
not optimize the network itself.

We have chosen the cold trapped ions as an example
the situation when the direct implementation of the multiq
bit CNOT gate~using elementary operations, i.e., in this ca
laser pulses! is much less demanding than the decomposit
of multiqubit CNOT gates into the network of two-qubitCNOT

gates. For instance, let us consider the multiqubitCNOT gate
5-9
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on six qubits. Using the results of Ref.@17# we can decom-
pose this multiqubitCNOT gate into the network composed o
12 two-qubitCNOT gates. In addition, this network had to b
extended by three additional auxiliary qubits. The multi
CNOT gate onN ions ~5.9! is realized by 2N11 laser pulses.
Each two-qubitCNOT gate on two ions is then realized usin
five laser pulses~5.7!. It means that all together 60 pulse
have to be used for 12 two-qubitCNOT gates. However, the
direct implementation of the multiqubitCNOT gate on six
ions requires only 13 laser pulses. This difference beco
ds

t

-

s,

01230
t

es

even more significant with the increasing number of the io
Obviously, the smaller the number of pulses the easier
scheme can be implemented.
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