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842 28 Bratislava, Slovakia
{ Faculty of Informatics, Masaryk University, Botanická 68a, Brno
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Abstract. We show how the maximum entropy (MaxEnt) principle can be
e æ ciently used for a reconstruction of quantum states of light from incomplete
tomographic data. This MaxEnt reconstruction scheme is several orders more
e æ cient than the standard inverse Radon transformation or the reconstruction
via direct sampling using pattern functions.

1. Introduction
Quantum-state reconstruction schemes can be understood as an a posteriori

estimation of the density operator of a given quantum-mechanical (microscopic)
system based on data obtained with the help of a macroscopic measurement
apparatus [1]. The quality of the reconstruction depends on the ‘quality’ of the
measured data and the e æ ciency of the reconstruction procedure with the help of
which the data analysis is performed.

Providing all system observables (the complete observation level or the quorum
of observables [2, 3]) have been precisely measured, then the density operator of a
quantum-mechanical system can be precisely reconstructed. A typical example of
such deterministic reconstruction is quantum homodyne tomography (see section 2).

On the other hand, if just a subset Ĝ¸ (¸ ˆ 1;2 ; . . . ;n† of observables from the
quorum (this subset constitutes the so-called observation level [4]) is measured
then the complete information about the system is not available. Therefore one
needs an additional criterion which would help to reconstruct (estimate) the
density operator uniquely in a most reliable way.

The Jaynes principle of the maximum entropy (the so-called MaxEnt prin-
ciple) [4] (see also [5–7]) serves as the desired criterion. We will show in the paper
that the MaxEnt principle provides us with a very e æ cient prescription how to
reconstruct density operators of quantum-mechanical systems from mean values of
a given set of observables. We will show that when applied to incomplete
tomographic data the reconstruction of density operators via the MaxEnt principle
is several orders more e æ cient than the standard reconstruction via the inverse
Radon transformation or the direct sampling via the pattern functions.

This paper is organized as follows. In section 2 we brie� y describe the
tomographic reconstruction of Wigner functions of a single-mode light � eld. In
section 3 we introduce the Jaynes principle of Maximum Entropy and we show its
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connection to quantum tomography. Numerical reconstruction of Wigner func-
tions from incomplete tomographic data is analysed in section 4. We summarize
our results in section 5.

2. Tomographic reconstruction of quantum states of light
Utilizing a close analogy between the operator for the electric component

Ê…r ;t† of a monochromatic light � eld and the quantum-mechanical harmonic
oscillator we will consider a dynamical system which is described by a pair of
canonically conjugated Hermitean observables q̂ and p̂,

‰q̂; p̂Š ˆ i -h: …1†

Eigenvalues of these operators range continuously from ¡1 to ‡1. The annihila-
tion and creation operators â and ây can be expressed as a complex linear
combination of q̂ and p̂:

â ˆ 1

…2 -h†1=2 ¶q̂ ‡ i¶¡1p̂ ; ây ˆ 1

…2 -h†1=2 ¶q̂ ¡ i¶¡1p̂ ; …2†

where ¶ is a real parameter. The operators â and ây obey the Weyl–Heisenberg
commutation relation

‰â ; âyŠ ˆ 1 ; …3†

and therefore possess the same algebraic properties as the operator associated with
the complex amplitude of a harmonic oscillator (in this case ¶ ˆ …m!†1=2, where m
and ! are the mass and the frequency of the quantum-mechanical oscillator,
respectively) or the photon annihilation and creation operators of a single mode of
the quantum electromagnetic � eld. In this case ¶ ˆ …°0!†1=2 (°0 is the dielectric
constant and ! is the frequency of the � eld mode) and the operator for the electric
� eld reads (we do not take into account polarization of the � eld)

Ê…r ;t† ˆ 21=2E0 â exp …¡i!t† ‡ ây exp …i!t† u…r† ; …4†

where u…r† describes the spatial � eld distribution and is the same in both classical
and quantum theories. The constant E0 ˆ … -h!=2°0V†1=2 is equal to the ‘electric
� eld per photon’ in the cavity of volume V.

The Wigner function [8] can be de� ned as a particular Fourier transform of the
density operator «̂ of a harmonic oscillator expressed in the basis of the eigenvec-
tors jqi of the position operator q̂:

W«̂…q;p† ²
1

¡1
d±hq ¡ ±=2j«̂jq ‡ ±=2i exp …ip±= -h†: …5†

Alternatively, the Wigner function (WF) can be rewritten in the form

W«̂…q;p† ˆ 1
2º -h

C…W†
«̂ …q 0 ;p 0† exp ¡ i

-h
…qp 0 ¡ pq 0† dq 0 dp 0 ; …6†

where the characteristic function C…W†
«̂ …q ;p† is given by the relation

C…W†
«̂ …q;p† ˆ Tr ‰«̂D̂…q;p†Š: …7†
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The displacement operator D̂…q;p† in terms of the position and the momentum
operators reads

D̂…q;p† ˆ exp
i
-h
…q̂p ¡ p̂q† : …8†

The Wigner function can be interpreted as the quasiprobability density distri-
bution through which a probability can be expressed to � nd a quantum-mechan-
ical system (harmonic oscillator) around the ‘point’ …q;p† of the phase space. With
the help of the Wigner function W«̂…q;p† the position and momentum probability
distributions w«̂…q† and w«̂…p† can be expressed from W«̂…q ;p† via marginal
integration over the conjugated variable (in what follows we assume ¶ ˆ 1)

w«̂…q† ² 1

…2p -h†1=2 dp W«̂…q;p† ˆ …2p -h†1=2hqj«̂jqi; …9†

where jqi is the eigenstate of the position operator q̂. The marginal probability
distribution w«̂…q† is normalized to unity, i.e.

1

…2p -h†1=2 dq w«̂…q† ˆ 1: …10†

As an illustration let us consider a Wigner function of a speci� c superposition
of two coherent states:

j¬ei ˆ N1=2
e j¬i ‡ j ¡ ¬i… †; N¡1

e ˆ 2‰1 ‡exp …¡2j¬j2†Š ; …11†

which is called the even coherent state [9]. The coherent state j¬i is de� ned as,
usually, j¬i ˆ D̂… -q; -p†j0i, where j0i is the vacuum state of the harmonic oscillator.
The parameter ¬ ˆ ¬x ‡ i¬y is de� ned via the relations -q ˆ …2 -h†1=2

¬x=¶ and
-p ˆ …2 -h†1=2

¬y¶. The Wigner function of the coherent state j¬i has a Gaussian form

Wj¬i…q;p† ˆ 1
¼q¼p

exp ¡ 1
2 -h

…q ¡ -q†2

¼2
q

¡ 1
2 -h

…p ¡ -p†2

¼2
p

; …12†

where

¼2
q ˆ 1

2¶2 and ¼2
p ˆ ¶2

2
: …13†

If we assume ¬ to be real, then the Wigner function of the even coherent state
reads

Wj¬ei…q;p† ˆ Ne Wj¬i…q;p† ‡Wj¡¬i…q;p† ‡Wint…q;p† ; …14†

where Wj§¬i…q;p† is the WF of coherent states j § ¬i. The interference part of the
Wigner function (14) is given by the relation

Wint…q;p† ˆ 2
¼q¼p

exp ¡ q2

2 -h¼2
q

¡ p2

2 -h¼2
p

cos
-qp

-h¼q¼p
; …15†

We plot the Wigner function of the even coherent state in � gure 1 (a). From the
� gure it is clearly seen that the interference term (15) results in oscillations of the
Wigner function around the origin of the phase space.
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2.1. Quantum homodyne tomography
Relation (9) for the probability distribution w«̂…q† of the position operator q̂ can

be generalized to the case of the distribution of the rotated quadrature operator x̂³.
This operator is de� ned as

x̂³ ˆ
-h
2

1=2

â exp …¡i³† ‡ ây exp …i³† ; …16†

and the corresponding conjugated operator x̂³‡p=2, such that ‰x̂³ ; x̂³‡p=2Š ˆ i -h, reads
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Figure 1. (a) The Wigner function of the even coherent state with ¬ ˆ 2. (b)
Reconstruction of the Wigner function via the MaxEnt principle from two marginal
distributions (N³ ˆ 2) for the position and momentum. The measured marginal
distributions are divided into Nx ˆ 40 bins of width D x ˆ 0:2 covering the interval
h¡4;4i. The � delity of the reconstruction is D Q ˆ 5:4 £ 10¡12 and D « ˆ 1:0 £ 10¡8,
the corresponding entropy is S º 10¡6. (c) Optical tomography via direct sampling
using pattern functions with N³ ˆ 2 and with an arti� cial truncation at Nmax ˆ 4.
This value of Nmax is chosen such that the deviation D Q is minimized. In this case
D Q ’ 9:17 and D « ’ 3:7. The reconstructed Wigner function is unphysical because
the corresponding density operator has negative probabilities for odd Fock states
(P1 º ¡0:35, P3 º ¡0:54). (d) The result of the tomography can be improved when
the number of quadratures is larger. For N³ ˆ 4 and the truncation at Nmax ˆ 6 we
can improve the � delity of the reconstruction ( D Q ’ 1:33 and D « ˆ 0:51) but it is
still unphysical because P1 º ¡0:1.



x̂³‡p=2 ˆ
-h1=2

i21=2 ‰â exp …¡i³† ¡ ây exp …i³†Š: …17†

The position and the momentum operators are related to the operator x̂³ as, q̂ ˆ x̂0

and x̂p=2 ˆ p̂. The rotation (i.e. the linear homogeneous canonical transformation)
given by equations (16) and (17) can be performed by the unitary operator Û…³†:

Û…³† ˆ exp ¡i³âyâ ; …18†

so that

x̂³ ˆ Û y…³†x̂0Û…³†; x̂³‡p=2 ˆ Û y…³†x̂p=2Û…³†: …19†

Alternatively, in the vector formalism we can rewrite the transformation (19) as

x̂³

x̂³‡p=2

ˆ F
q̂

p̂
; F ˆ

cos ³ sin ³

¡ sin ³ cos ³
: …20†

Eigenvalues x³ and x³‡p=2 of the operators x̂³ and x̂³‡p=2 can be expressed in
terms of the eigenvalues q and p of the position and momentum operators as:

x³

x³‡p=2

ˆ F
q

p
;

q

p
ˆ F¡1

x³

x³‡p=2

;

F¡1 ˆ
cos ³ ¡ sin ³

sin ³ cos ³
; …21†

where the matrix F is given by equation (20) and F¡1 is the corresponding inverse
matrix. It has been shown by Ekert and Knight [10] that Wigner functions are
transformed under the action of the linear canonical transformation (20) as:

W«̂…q;p† ! W«̂…F¡1…x³ ;x³‡p=2††

ˆ W«̂…x³ cos ³ ¡ x³‡p=2 sin ³; x³ sin ³ ‡x³‡p=2 cos ³† ; …22†

which means that the probability distribution w«̂…x³ ; ³† ˆ …2p -h†1=2hx³j«̂jx³i can be
evaluated as

w«̂…x³ ;³† ˆ 1

…2p -h†1=2

1

¡1
dx³‡p=2

£ W«̂…x³ cos ³ ¡ x³‡p=2 sin ³; x³ sin ³ ‡x³‡p=2 cos ³†: …23†

As shown by Vogel and Risken [11] (see also [12–15]) the knowledge of w«̂…x³ ;³†
for all values of ³ (such that ‰0 < ³ µ pŠ) is equivalent to the knowledge of the
Wigner function itself. This Wigner function can be obtained from the set of
distributions w«̂…x³ ;³† via the inverse Radon transformation:

W«̂…q;p† ˆ 1

…2p -h†3=2

1

¡1
dx³

1

¡1
d¹ j¹j

£
p

0
d³ w«̂…x³ ;³† exp

i
-h

¹…x³ ¡ q cos ³ ¡ p sin ³† : …24†
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We stress that the transformation (24) is a ‘deterministic’ inverse transformation
with the help of which the complete knowledge about the state encoded in the
marginal distributions w«̂…x³ ; ³† is rewritten in the form of a Wigner function.

This reconstruction scheme has been used by Raymer and his co-workers [16,
17]. In their experiments the Wigner functions of a coherent state and a squeezed
vacuum state have been reconstructed from tomographic data.

Quantum-state tomography can be applied not only to optical � elds but also for
reconstruction of other physical systems. In particular, Janicke and Wilkens [18]
have suggested that Wigner functions of atomic waves can be tomographically
reconstructed. Mlynek and co-workers [19] have performed experiments in which
Wigner functions of matter wave packets have been reconstructed. Yet another
example of the tomographic reconstruction is a reconstruction of Wigner functions
of vibrational states of trapped atomic ions theoretically described by a number of
groups [20] and experimentally measured by Leibfried and co-workers [21].
Vibrational motional states of molecules have also been reconstructed by this
kind of quantum tomography by Dunn et al. [22].

The problem with the inverse Radon transformation is that it does not take into
account the possibility of � nite number of measured distributions. As we will show
later, in the case of incomplete tomographic data the transformation (24) can lead
to unphysical reconstructions (e.g. non-positive density operators). In what
follows we brie� y review a quantum tomography scheme which is based on
sampling via the pattern functions, which is equivalent to the inverse Radon
transformation.

2.1.1. Quantum tomography via pattern functions
In a sequence of papers D’Ariano et al. [14], Leonhardt et al. [23] and Richter

[24] have shown that Wigner functions can be very e æ ciently reconstructed from
tomographic data with the help of the so-called pattern functions. This recon-
struction procedure is more e æ cient than the usual Radon transformation [25]. To
be speci� c, D’Ariano et al. [14] have shown that the density matrix «mn in the Fock
basis can be reconstructed directly from the tomographic data, i.e. from the
quadrature-amplitude ‘histograms’ (probabilities), w…x³ ;³† via the so-called direct
sampling method when

«mn ˆ
p

0

1

¡1
w…x³ ;³†Fmn…x³ ;³† dx³ d³; …25†

where Fmn…x³ ;³† is a set of speci� c sampling functions (see below). Once the density
matrix elements are reconstructed with the help of equation (25) then the Wigner
function of the corresponding state can be directly obtained using the relation

W«̂…q;p† ˆ
m;n

«mnWjmihnj…q;p† ; …26†

where Wjmihnj…q;p† is the Wigner function of the operator jmihnj.
A serious problem with the direct sampling method as proposed by D’Ariano

et al. [14] is that the sampling functions Fmn…x³ ;³† are diæ cult to compute. Later
D’Ariano and co-workers [23, 26] have simpli� ed the expression for the sampling
function and have found that it can be expressed as

Fmn…x³ ;³† ˆ fmn…x³† exp i…m ¡ n†³‰ Š; …27†
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where the so-called pattern function ‘picks up’ the pattern in the quadrature
histograms (probability distributions) wmn…x³ ;³† which just matches the corre-
sponding density-matrix element. Recently Leonhardt et al. [25] have shown that
the pattern functions fmn…x³† can be expressed as derivatives

fmn…x† ˆ @

@x
gmn…x† ; …28†

of functions gmn…x† which are given by the Hilbert transformation

gmn…x† ˆ P
p

1

¡1

Ám…±†Án…±†
x ¡ ±

d±; …29†

where P stands for the principal value of the integral and Án…x† are the real energy
eigenfunctions of the harmonic oscillator, i.e. the normalizable solutions of the
Schrödinger equation

¡
-h2

2
d2

dx2
‡x2

2
Án…x† ˆ -h…n ‡1=2†Án…x† ; …30†

(we assume m ˆ ! ˆ 1†. Further details of possible applications and discussion
devoted to numerical procedures of the reconstruction of density operators via the
direct sampling method can be found in [25].

3. MaxEnt principle and quantum tomography
3.1. MaxEnt principle and reconstruction of density operators

Let us assume a set of observables Ĝ¸ …¸ ˆ 1 ; . . . ;n† associated with the
quantum system under consideration. This system is prepared in an unknown
state «̂. Let us assume that from a measurement performed over the system mean
values G¸ of the observables Ĝ¸ are found. The task is to determine (estimate) the
unknown state of the quantum system based on the results of the measurement.
Providing the set of the observables Ĝ¸ is not equal to the quorum, then the
measured mean values do not determine the state uniquely. Speci� cally, there is a
large number of density operators which ful� ll the conditions

Tr «̂fĜg ˆ 1;

Tr …«̂fĜgĜ¸† ˆ G¸ ; ¸ ˆ 1 ;2 ; . . . ;n:
…31†

To estimate the unknown density operator in the most reliable way we utilize the
Jaynes principle of maximum entropy (MaxEnt principle) [4–7], according to
which, among those operators which ful� ll constraints (31), the most reliable
estimation «̂ME is the one with the maximal value of the von Neumann entropy
S…«̂† ˆ ¡Tr …«̂ ln «̂†:

S…«̂ME † ˆ max ‰S…«̂fĜg†;8 «̂fĜgŠ: …32†

The operator which ful� lls constraints (31) and simultaneously maximizes the
von Neumann entropy can be expressed in the generalized canonical form [4, 5, 7,
27]

«̂ME
ˆ 1

ZfĜg
exp ¡

¸

¶¸Ĝ¸ ; …33†
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where

ZfĜg…¶1 ; . . . ;¶n† ˆ Tr exp ¡
¸

¶¸Ĝ¸ ; …34†

is the generalized partition function and ¶n are the Lagrange multipliers. The
mean values G¸ which determine the density operator can be obtained as the
derivatives of the partition function

G¸ ˆ Tr …«̂ME Ĝ¸† ˆ ¡ @

@¶¸
ln ZfĜg…¶1 ; . . . ;¶n†: …35†

If we solve the last equation with respect to the Lagrange multipliers we can
express them in terms of the measured mean values

¶¸ ˆ ¶¸…G1 ; . . . ;Gn†: …36†

When we substitute the Lagrange multipliers (36) into the expression for the
generalized canonical density operator (33) we obtain the explicit expression for
the estimated density operator.

3.2. Quantum tomography via the MaxEnt principle
The probability density distribution w«̂…x³† (see equation (9)) for rotated

quadratures x̂³ can be represented as a result of the measurement of the continuous
set of projectors jx³ihx³j. Based on the measurement of the distributions w«̂…x³† for
all values of ³ 2 ‰0;pŠ we can reconstruct the density operator according to the
formula

«̂ME
ˆ 1

Z0
exp ¡

p

0
d³

1

¡1
dx³jx³ihx³j¶…x³† ; …37†

where the Lagrange multipliers ¶…x³† are given by an in� nite set of equations

w«̂…x³† ˆ …2p -h†1=2hx³j«̂ME jx³i; 8x³ 2 …¡1 ;1†: …38†

If the distributions w«̂…x³† are measured for all values of x³ and all angles ³ then the
density operator «̂ME is reconstructed precisely and is equal to a density operator
obtained with the help of the inverse Radon transformation (or with the help of the
pattern functions).

In a practical experimental situation (see the experiments by Raymer et al. [16]
and by Mlynek and co-workers [19]) it is impossible to measure the distributions
w«̂…x³† for all values of x³ and all angles ³. What is measured are distributions
(histograms) for a � nite number N³ of quadrature angles ³ and the � nite number
Nx of bins for quadrature operators. This means that practical experiments are
associated with an observation level speci� ed by a � nite number of observables

Q̂nm ˆ jx…n†
³m

ihx…n†
³m

j …39†

with the number of quadrature angles equal to N³ and the number of bins for each
quadrature equal to Nx. These observables in the Fock basis can be represented as

Q̂nm k1 ;k2
ˆ Á?

k1
…xn†Ák2 …xn† exp ‰i³m…k1 ¡ k2†Š; …40†

where ³m is the quadrature phase, xn is eigenvalue of the quadrature operator and
Ák…x† is the wavefunction of the kth energy eigenstate (Fock state) of the harmonic
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oscillator. We can therefore assume that from the measurement of the observables
Q̂nm the mean values Qnm are determined (these mean values correspond to
‘discretized’ quadrature distributions). In addition it is usually the case that the
mean photon number of the state is known (measured) as well.

The operators Q̂nm together with n̂ form a speci� c observation level corre-
sponding to the incomplete tomographic measurement. In this case we can express
the generalized canonical density operator in the form

«̂ME
ˆ 1

Z
exp ¡¶0n̂ ¡

Nx

nˆ1

N³

mˆ1

¶n;mjx…n†
³m

ihx…n†
³m

j : …41†

The knowledge of the mean photon number is essential for the MaxEnt recon-
struction because it formally regularizes the MaxEnt reconstruction scheme (the
general partition function is � nite in this case).

4. Numerical implementation
Let us summarize what is supposed to be known as a result of the meas-

urement—these are the measured mean values Qnm and n of the observables Q̂nm

and n̂, respectively. Further, the experimental setup gives us the numbers N³ and
Nx as well as the size D x of the quadrature bins. These last two numbers specify
the range of measured quadratures ¡Nx D x=2 µ x µ Nx D x=2.

In addition to these ‘experimental’ parameters we have to specify also the
dimensionality Nmax of the Hilbert space in which we reconstruct the density
operator. In the case of the MaxEnt reconstruction Nmax has to be chosen so that
the ‘truncation’ of the Hilbert space does not a å ect the reconstruction of the state
of the original light � eld (i.e. Nmax ¾ n so that the reconstructed state ‘� ts’ into the
truncated Hilbert space).

To perform the reconstruction we have to determine the Lagrange multipliers
¶n;m in the expression for the generalized canonical density operator (41). These
multipliers are given by constraints (31) and numerically can be determined via the
minimization of a deviation function D Q with respect to the measured mean
photon number -n and the set of histograms

-Qnm ˆ Tr f«̂Q̂nmg:

D Q ˆ -n ¡ Tr «̂ME n̂f g… †2‡
N³ ;Nx

n;mˆ1

-Qnm ¡ Tr «̂ME Q̂nm
2
: …42†

The trace is performed within the truncated Hilbert space speci� ed by the
parameter Nmax. When D Q ˆ 0 the Lagrange multipliers are determined precisely
and the reconstructed density operator «̂ME ideally satis� es the mean values of the
measured observables. In the case of incompatible observations [28] the minimum
of D Q (least squares) yield a good physical estimate. Alternatively, the maximum
likelihood estimation can be e æ ciently used [28].

In order to � nd the minimal value of the function D Q and to determine the
Lagrange multipliers we utilize the Levenberg–Marquardt algorithm with a � nite
diå erence Jacobian (see a standard routine from the IMSL library, Visual
Numerics, Inc., http://www.vni.com).

Once the Lagrange multipliers are speci� ed then using the expression for the
generalized canonical density operator (41) we can plot the corresponding Wigner
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function. The � delity of the reconstruction is given by three parameters. First, it is
the minimal value of the function D Q which determines the deviation between the
measured mean values of the observables and the corresponding mean values
evaluated from the reconstructed density operator. Secondly, if it is a priori known
that the measured system is prepared in a pure state then the von Neumann
entropy S of the density operator «̂ME is a measure of the � delity of the
reconstruction. Speci� cally, if the entropy is equal to zero then the pure state is
perfectly reconstructed. Thirdly, if we want to test the reconstruction scheme we
can compare the reconstructed density operator with the known original «̂. In this
case we can use the measure

D « ˆ
Nx ;N³

m;n

j…«̂†mn ¡ …«̂ME†mnj2: …43†

Let us test the MaxEnt reconstruction scheme and assume the mean values of
the observables Q̂mn to be given by the even coherent state (11) with the real
amplitude ¬ ˆ 2 (we plot the Wigner function of this state in � gure 1 (a)). Let us
further assume just two quadrature angles N³ ˆ 2 corresponding to the meas-
urement of the position and the momentum of the harmonic oscillator. The total
number of bins for each quadrature is taken to be Nx ˆ 40 with the size of the bin
equal to D x ˆ 0:2 (we assume -h ˆ 1) which corresponds to the measurement of the
quadrature distributions on the interval h¡4;4i. For the given mean photon
number ( -n ’ 4) it is enough to consider the Hilbert space of the dimension
Nmax ˆ 20. The even coherent state with ¬ ˆ 2 can be very well approximated
as a superposition of even number states up to n ˆ 8 (the higher number states are
occupied with 1% probability), so Nmax ˆ 20 is a very good truncation.

With these values of the parameters we have performed the reconstruction of
the state via the MaxEnt principle. Using the minimization procedure we have
achieved the deviation, with respect to the ‘experimental’ data,
D Q ˆ 5:4 £ 10¡12. The diå erence between the reconstructed density operator
and the original measured in terms of (43) in this particular case is
D « ˆ 1:0 £ 10¡10. We see that the reconstruction is indeed very precise even for
a very small number of experimental data. The high quality of the reconstruction
is indicated by the corresponding value of the von Neumann entropy S º 10¡6.
We plot the reconstructed Wigner function in � gure 1 (b). From this � gure we
see that the reconstruction and the original are essentially identical. We also note
that the quality of the reconstruction practically does not depend on the choice of
Nmax when this is larger than some minimal value related to -n (in our case for
Nmax > 12 the reconstruction is almost perfect but even for Nmax ˆ 8 the � delity is
very high).

In order to illustrate the MaxEnt reconstruction scheme for statistical
mixtures we will consider brie� y a statistical mixture described by the density
operator

«̂ ˆ 1
2 j¬ih¬j ‡ 1

2 j ¡ ¬ih¡¬j …44†

with a real amplitude ¬ ˆ 2. The Wigner function of this state is plotted in
� gure 2 (a). In � gure 2 (b) we plot the reconstructed Wigner function under the
same conditions as � gure 1 (b), i.e. N³ ˆ 2, Nx ˆ 40, D x ˆ 0:2 and Nmax ˆ 20. The
two measured quadratures are the position and the momentum. We see from the
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� gure that the reconstruction is almost perfect. For this reconstruction we have
D Q ˆ 1:4 £ 10¡8 and D « ˆ 1:1 £ 10¡8. The corresponding entropy S ˆ 0:694 is
close to ln 2.

Here we note that the size of the bin D x does not play a signi� cant role in the
reconstruction via the MaxEnt principle. We will discuss this issue in more detail
below, but now we concentrate our attention on role of the number N³ of the
quadrature angles.
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Figure 2. (a) The Wigner function of the mixture of two coherent states with ¬ ˆ §2.
(b) The reconstruction of the Wigner function via the MaxEnt principle based on
the measurement of marginal distributions for the position and the momentum
(N³ ˆ 2). The measured marginal distributions are divided into Nx ˆ 40 bins of
width D x ˆ 0:2 covering the interval h¡4; 4i. The � delity of the reconstruction is
D Q ˆ 1:4 £ 10¡8 and D « ˆ 1:1 £ 10¡8, with entropy S ˆ 0:694. (c) The tomography
via pattern functions with N³ ˆ 4 and Nmax ˆ 8 for which the minimum deviation
D Q ˆ 0:71 is obtained. The � delity of the reconstruction is D « ˆ 0:17. The
reconstructed density operator is unphysical. (d) For the larger number of
quadratures N³ ˆ 8 with Nmax ˆ 8 we obtain D Q ˆ 0:13 and D « ˆ 0:023. The
reconstructed Wigner function still exhibits some � ctitious interference structure.



4.1. Minimal number of measured quadratures
The two quadratures q̂ ˆ x̂³ˆ0 and p̂ ˆ x̂³ˆp=2 are su æ cient for a reconstruction

of the even coherent state when ¬ is real (this corresponds a speci� c a priori
information about the state). If we consider the most general case, when ¬ is
complex, then the reconstruction based on the measurement of just two quad-
ratures is not very good (in what follows, instead of choosing the complex ¬, we
will use the corresponding rotated quadratures).

First, let us consider a reconstruction of the even coherent state with the real
amplitude ¬ based on the measurement of two rotated quadratures which are not
mutually orthogonal. In particular, let us assume x̂³ˆ0 and x̂³ˆp=8. The other
settings are the same as in � gure 1 (b). We plot the reconstructed Wigner function
in � gure 3 (a). It is very similar to the Wigner function of the statistical mixture
(which is also indicated by the value of the corresponding von Neumann entropy
close to ln 2). The reason is that the type of measurement considered in the
example does not provide us with enough information about the interference
pattern in the phase space (the two measured quadratures are ‘too’ close).

Our next example is the case when the two measured quadratures are mutually
orthogonal, but are rotated with respect to the position and the momentum.
Speci� cally, x̂³ˆp=8 and x̂³ˆp=2‡p=8 and the other settings are the same as in
� gure 1 (b). We plot the reconstructed Wigner function in � gure 3 (b). In this
Wigner function we see some interference pattern but the information from the
measurement does not allow us to perform a reliable reconstruction (D Q º 10¡7,
D « ˆ 0:60, and S ˆ 1:31). We can observe some ‘� ctitious’ peaks in the recon-
structed Wigner function.

To improve the � delity of the reconstruction we have to consider a larger
number of the rotated quadratures. In fact, it is our empirical experience that three
rotated quadratures (N³ ˆ 3) are always suæ cient to perform a very reliable
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Figure 3. The Wigner function of the even coherent state ¬ ˆ 2 reconstructed via the
MaxEnt principle from two particular marginal distributions (N³ ˆ 2). In (a) we
consider two rotated quadratures for ³ ˆ 0 and ³ ˆ p=8. The reconstruction leads to
a statistical mixture of two coherent states. The � delity of the reconstruction is
D Q º £10¡6, D « ˆ 0:49, and the entropy is S ˆ 0:7. (b) The choice of
‘measurement angles’ ³ ˆ p=8;p=2 ‡p=8 leads to a mixture with D Q º £10¡7,
D « ˆ 0:60 and the entropy is S ˆ 1:31. Other settings (the number of bins and their
width) are the same as in � gure 1.



MaxEnt reconstruction of an arbitrary unknown state. We have not found yet a
rigorous proof for this empirical observation.

4.2. Comparison with the reconstruction via direct sampling
It has been shown by Leonhardt and co-workers [25, 28] that for a reliable

reconstruction via direct sampling with the help of the pattern functions two
conditions have to be satis� ed:

N³ ˆ Nmax ;

D x < p=2…2Nmax ‡1†1=2
:

…45†

This means that the truncation of the Hilbert space in which the reconstructed
density operator is de� ned speci� es how many quadrature angles have to be
considered as well as putting some restriction on the size of the bin.

4.2.1. The role of N³

We start with the analysis of the � rst condition. In our case of the even
coherent state with ¬ ˆ 2 we have to consider at least Nmax ˆ 8. Consequently,
following Leonhardt and co-workers we would have to consider a measurement of
N³ ˆ 8 quadratures. In this case the precision of reconstruction via the direct
sampling using pattern functions is D Q ˆ 0:13 and D « ˆ 0:03 which is reasonable,
but much smaller than in the case of the MaxEnt reconstruction. It is important to
remember that any deviation of N³ from Nmax causes a dramatic deterioration of
the reconstruction scheme (for more details see [25, 28]). In particular, for
Nmax > N³ higher ‘ghost’ Fock states appear in the reconstructed density matrix.
This e å ect of aliasing (see [28]) is caused by the fact that in the sampling method
the matrix elements «mn with …m ¡ n† mod N³ cannot be distinguished.

To see the e å ect of an insuæ cient number of phases for the sampling via
pattern functions we plot in � gure 1 the results for N³ ˆ 2 (see � gure 1 (c)) and
N³ ˆ 4 (see � gure 1 (d)) marginal distributions. In both cases we chose Nmax such
that the parameter D Q (deviation from the measured data) is minimized. In
particular, for N³ ˆ 2 using the numerical search we have found that D Q is
minimized for Nmax ˆ 4 when D Q ˆ 9:17 and D « ˆ 3:7. However, the recon-
structed density operator is unphysical—we obtain negative probabilities of odd
Fock states: P1 ˆ ¡0:35, P3 ˆ ¡0:54. The corresponding Wigner function is
plotted in � gure 1 (c). Analogously, for N³ ˆ 4 we have found the optimal
truncation to be Nmax ˆ 6. In this case D Q ˆ 1:33 and D « ˆ 0:51. The � delity
of the reconstruction is now better, but it still gives us an unphysical result with
P1 ˆ ¡0:1 (the corresponding Wigner function is plotted in � gure 1 (d)). We have
checked that higher values of Nmax signi� cantly deteriorate the quality of recon-
structions. Comparing the sampling method with the result of the MaxEnt
approach we see the great advantage of the later for a small number of quadrature
phases.

Analogous results are obtained also for statistical mixtures (see � gure 2).
Speci� c values for the � delities of the reconstruction are given in the � gure
caption.
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Figure 4. The reconstruction of the Wigner function of the even coherent state with
¬ ˆ 2. (a) The reconstruction via the MaxEnt principle with two marginal
distributions (N³ ˆ 2) for the position and the momentum. The ‘measured’
marginal distributions are divided into Nx ˆ 20 bins of width D x ˆ 0:2 covering the
interval h¡2; 2i. The � delity of the reconstruction is D Q ˆ 2 £ 10¡15 and
D « ˆ 2 £ 10¡10 which is comparable with � gure 1 (b) (where Nx ˆ 40 corresponding
to x 2 h¡4; 4i). (b) This is the same example as (a) except Nx ˆ 10, i.e. x 2 h¡1;1i.
The quality of the reconstruction decreases to D Q ˆ 3 £ 10¡15 and D « ˆ 0:029. (c)–
(f) Reconstruction via pattern functions with N³ ˆ 20 and Nmax ˆ 20. The
marginals are taken within the intervals (c) h¡4;4i [ D Q ˆ 0:05, D « ˆ 0:002]; (d)
h¡3;3i [ D Q ˆ 0:88, D « ˆ 0:154]; (e) h¡2; 2i [D Q ˆ 8:6, D « ˆ 1:01]; (f) h¡1;1i
[ D Q ˆ 47:7, D « ˆ 5:82]. We see that the shorter the interval on which the
quadrature distribution is measured, the less reliable the reconstruction is.



4.2.2. The role of Nx

In addition to the required resolution of bins, i.e. D x < p=2…2Nmax ‡1†1=2, the
sampling via pattern functions is also very sensitive with respect to the size of the
interval on which the marginals are measured. To apply the sampling via pattern
functions marginal distributions have been measured on the whole interval where
they take non-zero values. The importance of the distribution ‘tails’ of the
marginals can be illustrated on the example of the even coherent state. Let us
consider the size of the bin (i.e. the resolution) to be D x ˆ 0:2 and let us change the
values of Nx.

In � gure 4 we plot the reconstructed Wigner functions which are obtained from
the incomplete marginal distributions via the MaxEnt (� gures 4 (a) and (b)) and via
the sampling (� gures 4 (c)–( f )) reconstruction schemes.

In � gure 4 (a) we plot the reconstruction via the MaxEnt principle with two
marginal distributions (N³ ˆ 2). The ‘measured’ marginal distributions are
divided into Nx ˆ 20 bins of width D x ˆ 0:2 covering the interval h¡2 ;2i. The
quality of the reconstruction is D Q ˆ 2 £ 10¡15, D « ˆ 2 £ 10¡10, and S º 10¡8

which is comparable with � gure 1 (b) when Nx ˆ 40 and x 2 h¡4;4i. We see that
even though the interval on which the marginal distributions are measured is
shorter by a factor of two the � delity of reconstruction is not a å ected. In � gure 4 (b)
we plot the reconstructed Wigner function under the same conditions except
Nx ˆ 10, i.e. x 2 h¡1;1i. The quality of the reconstruction decreases to
D Q ˆ 3 £ 10¡15, D « ˆ 0:029 and S ˆ 0:20, but still is rather reliable.

In � gures 4 (c)–( f ) we present results of the reconstruction via the direct
sampling. We assume N³ ˆ 20 and Nmax ˆ 20. That is, we consider signi� cantly
more data than in the previous two cases. Nevertheless, results of the reconstruc-
tion are much worse. Speci� cally, let us assume the marginal distributions to be
taken within the intervals (c) h¡4 ;4i which results in the reconstruction with the
� delity D Q ˆ 0:05 and D « ˆ 0:002. Analogously, (d) h¡3;3i with D Q ˆ 0:88,
D « ˆ 0:154; (e) h¡2;2i with D Q ˆ 8:6, D « ˆ 1:01; (f ) h¡1;1i with D Q ˆ 47:7,
D « ˆ 5:82. We conclude that the shorter the interval on which the quadrature
distribution is measured, the less reliable the reconstruction is. From � gure 4 it is
seen that the sampling via pattern functions can reconstruct only a structure within
a measured region of the phase space.

From above we can conclude that for a reliable use of the reconstruction via the
direct sampling we have to measure a su æ cient number of quadrature distribu-
tions (N³ ˆ Nmax) on the whole interval of x. Conversely, with the MaxEnt
approach we need just a small number of quadrature distributions and the interval
on which the distributions are measured can be rather small. We have also
analysed the situation when the distributions are measured on the interval which
is not symmetric with respect to the origin of the phase space. In this case the
MaxEnt scheme works very reliably while the direct sampling fails completely.

5. Conclusions
We have shown that the reconstruction of Wigner functions from incomplete

tomographic data can be very reliably performed with the help of the Jaynes
principle of Maximal Entropy. We have presented a generalized canonical density
operator which is suitable for the incomplete tomographic data. We have im-
plemented a numerical procedure with the help of which the MaxEnt reconstruc-
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tion can be performed. We have compared the MaxEnt scheme with the sampling
via pattern functions. The comparison is very clear—the MaxEnt approach is
much more e æ cient. It requires less data, it gives the reconstruction with much
higher � delity and is more stable with respect to the choice of parameters such as
the size of the quadrature bin, or the interval on which the quadrature distribu-
tions are measured. Our empirical experience shows that three rotated quadratures
are always su æ cient to perform a very reliable MaxEnt reconstruction of an
arbitrary unknown state. The method presented in this paper can be applied to
various quantum systems. We plan to adopt it for the reconstruction of Wigner
functions of vibrational states of neutral atoms based on the experimental data
obtained in the group of Salomon [29].
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