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Abstract—Knowing and guessing, these are two essential epistemological pillars in the theory of
quantum-mechanical measurement. As formulated quantum mechanics is a statistical theory. In general,
a priori unknown states can be completely determined only when measurements on infinite ensembles
of identically prepared quantum systems are performed. But how one can estimate (guess) quantum
state when only incomplete data are available (known)? What is the most reliable estimation based on
a given measured data? What is the optimal measurement providing only a finite number of identically
prepared quantum objects are available? These are some of the questions we address in the article.
We present several schemes for a reconstruction of states of quantum systems from measured data:
(1) We show how the maximum entropy (MaxEnt) principle can be efficiently used for an estimation of
quantum states (i.e. density operators or Wigner functions) on incomplete observation levels, when just
a fraction of system observables are measured (i.e., the mean values of these observables are known
from the measurement). With the extension of observation levels more reliable estimation of quantum
states can be performed. In the limit, when all system observables (i.e., the quorum of observables) are
measured, the MaxEnt principle leads to a complete reconstruction of quantum states, i.e. quantum
states are uniquely determined. We analyze the reconstruction via the MaxEnt principle of bosonic
systems (e.g. single-mode electromagnetic fields modeled as harmonic oscillators) as well as spin systems.
We present results of MaxEnt reconstruction of Wigner functions of various nonclassical states of light
on different observation levels. We also present results of numerical simulations which illustrate how
the MaxEnt principle can be efficiently applied for a reconstruction of quantum states from incomplete
tomographic data.
(2) When only a finite number of identically prepared systems are measured, then the measured data
contain only information about frequencies of appearances of eigenstates of certain observables. We
show that in this case states of quantum systems can be estimated with the help of quantum Bayesian
inference. We analyze the connection between this reconstruction scheme and the reconstruction via
the MaxEnt principle in the limit of infinite number of measurements. We discuss how an a priori
knowledge about the state which is going to be reconstructed can be utilized in the estimation procedure.
In particular, we discuss in detail the difference between the reconstruction of states which are a priori
known to be pure or impure.
(3) We show how to construct the optimal generalized measurement of a finite number of identically
prepared quantum systems which results in the estimation of a quantum state with the highest fidelity. We
show how this optimal measurement can in principle be realized. We analyze two physically interesting
examples—a reconstruction of states of a spin-1/2 and an estimation of phase shifts. c© 1999 Elsevier
Science Ltd. All rights reserved

1. INTRODUCTION: MEASUREMENT OF QUANTUM STATES

The concept of a quantum state represents one of the most fundamental pillars of the paradigm
of quantum theory [1–3]. Contrary to its mathematical elegance and convenience in calculations,
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the physical interpretation of a quantum state is not so transparent. The problem is that the
quantum state (described either by a state vector, or density operator or a phase-space proba-
bility density distribution) does not have a well defined objective status, i.e. a state vector is not
an objective property of a particle. According to Peres (see [1], p. 374): “There is no physical ev-
idence whatsoever that every physical system has at every instant a well defined state... In strict
interpretation of quantum theory these mathematical symbols [i.e., state vectors] represent sta-
tistical information enabling us to compute the probabilities of occurrence of specific events.”
Once this point of view is adopted then it becomes clear that any “measurement” or a recon-
struction of a density operator (or its mathematical equivalent) can be understood exclusively as
an expression of our knowledge about the quantum mechanical state based on a certain set of
measured data. To be more specific, any quantum-mechanical reconstruction scheme is nothing
more than an a posteriori estimation of the density operator of a quantum-mechanical (micro-
scopic) system based on data obtained with the help of a macroscopic measurement apparatus
[3]. The quality of the reconstruction depends on the “quality” of the measured data and the
efficiency of the reconstruction procedure with the help of which the data analysis is performed.
In particular, we can specify three different situations: firstly, when all system observables are
precisely measured. In this case the complete reconstruction of an initially unknown state can
be performed (we will call this the reconstruction on the complete observation level). Secondly,
when just part of the system observables is precisely measured then one cannot perform a com-
plete reconstruction of the measured state. Nevertheless, the reconstructed density operator still
uniquely determines mean values of the measured observables (we will denote this scheme as
reconstruction on incomplete observation levels). Finally, when measurement does not provide
us with sufficient information to specify the exact mean values (or probability distributions) but
only the frequencies of appearances of eigenstates of the measured observables, then one can
perform an estimation (e.g. reconstruction based on the quantum Bayesian inference) which is
the “best” with respect to the given measured data and the a priori knowledge about the state
of the measured system.

1.1. Complete observation level

Providing all system observables (i.e., the quorum [4,5]) have been precisely measured, then
the density operator of a quantum-mechanical system can be completely reconstructed (i.e., the
density operator can be uniquely determined based on the available data). In principle, we can
consider two different schemes for reconstruction of the density operator (or, equivalently, the
Wigner function) of the given quantum-mechanical system. The difference between these two
schemes is based on the way in which information about the quantum-mechanical system is
obtained. The first type of measurement is such that on each element of the ensemble of the
measured states only a single observable is measured. In the second type of measurement a
simultaneous measurement of conjugate observables is assumed. We note that in both cases we
will assume ideal, i.e., unit-efficiency, measurements.

1.1.1. Quantum tomography
When the single-observable measurement is performed, a distribution w|Ψ〉(A) for a particular

observable Â of the state |Ψ〉 is obtained in an unbiased way [6], i.e., w|Ψ〉(A) = |〈ΦA|Ψ〉|2, where
|ΦA〉 are eigenstates of the observable Â such that

∑
A |ΦA〉〈ΦA| = 1̂. Here a question arises:

What is the smallest number of distributions w|Ψ〉(A) required to determine the state uniquely?
If we consider the reconstruction of the state of a harmonic oscillator, then this question is
directly related to the so-called Pauli problem [7] of the reconstruction of the wave-function
from distributions w|Ψ〉(q) and w|Ψ〉(p) for the position and momentum of the state |Ψ〉. As
shown by Gale, Guth and Trammel [8] the knowledge of w|Ψ〉(q) and w|Ψ〉(p) is not in general
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sufficient for a complete reconstruction of the wave (or, equivalently, the Wigner) function. In
contrast, one can consider an infinite set of distributions w|Ψ〉(xθ,θ) of the rotated quadrature
x̂θ = q̂ cosθ + p̂ sinθ. Each distribution w|Ψ〉(xθ,θ) can be obtained from a measurement of a
single observable x̂θ, in which case a detector (filter) is prepared in an eigenstate |xθ〉 of this
observable. It has been shown by Vogel and Risken [9] that from an infinite set (in the case
of the harmonic oscillator) of the measured distributions w|Ψ〉(xθ,θ) for all values of θ such
that [0 < θ ≤ π], the Wigner function can be reconstructed uniquely via the inverse Radon
transformation. In other words knowledge of the set of distributions w|Ψ〉(xθ,θ) is equivalent
to knowledge of the Wigner function. This scheme for reconstruction of the Wigner function
(i.e., the optical homodyne tomography) has recently been realized experimentally by Raymer
and his coworkers [10,11]. In these experiments the Wigner functions of a coherent state and
a squeezed vacuum state have been reconstructed from tomographic data. Very comprehensive
discussion of the quantum homodyne tomography can be found in the book by Leonhardt [12]
and the review article by Welsch, Vogel and Opatrný [13]. Quantum homodyne tomography can
be efficiently performed not only with the help of the inverse Radon transformation but also with
the help of the so-called pattern functions [14,15]. Other theoretical concept of Wigner-function
reconstruction has been considered by Royer [16].

Quantum-state tomography can be applied not only to optical fields but also for reconstruc-
tion of other physical systems. In particular, recently Janicke and Wilkens [17] have suggested
that Wigner functions of atomic waves can be tomographically reconstructed. Kurtsiefer et al.
[18] have performed experiments in which Wigner functions of matter wave packets have been
reconstructed. Yet another example of the tomographic reconstruction is a reconstruction of
Wigner functions of vibrational states of trapped atomic ions theoretically described by a num-
ber of groups [19] and experimentally measured by Leibfried et al. [20]. Vibrational motional
states of molecules have also been reconstructed by this kind of quantum tomography by Dunn
et al. [21].

Leonhardt [22] has recently developed a theory of quantum tomography of discrete Wigner
functions describing states of quantum systems with finite-dimensional Hilbert spaces (for in-
stance, angular momentum or spin). We note that the problem of reconstruction of states of
finite-dimensional systems is closely related to various aspects of quantum information process-
ing, such as reading of registers of quantum computers [23]. This problem also emerges when
states of atoms are reconstructed (see, for instance, [24]).

Here we stress once again, that reconstruction on the complete observation level (such as quan-
tum tomography) is a deterministic inversion procedure which helps us to “rewrite” measured
data in the more convenient form of a density operator or a Wigner function of the measured
state.

1.1.2. Filtering with quantum rulers
For the case of simultaneous measurement of two non-commuting observables (let us say q̂

and p̂), it is not possible to construct a joint eigenstate of these two operators, and therefore it
is inevitable that the simultaneous measurement of two non-commuting observables introduces
additional noise (of quantum origin) into measured data. This noise is associated with Heisen-
berg’s uncertainty relation and it results in a specific “smoothing” (equivalent to a reduction
of resolution) of the original Wigner function of the system under consideration (see [25] and
[26] and the reviews [27,28]). To describe the process of simultaneous measurement of two non-
commuting observables, Wódkiewicz [29] has proposed a formalism based on an operational
probability density distribution which explicitly takes into account the action of the measure-
ment device modeled as a “filter” (quantum ruler). A particular choice of the state of the ruler
samples a specific type of accessible information concerning the system, i.e., information about
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the system is biased by the filtering process.† The quantum-mechanical noise induced by filtering
formally results in a smoothing of the original Wigner function of the measured state [25,26],
so that the operational probability density distribution can be expressed as a convolution of the
original Wigner function and the Wigner function of the filter state. In particular, if the filter
is considered to be in its vacuum state then the corresponding operational probability density
distributions is equal to the Husimi (Q) function [25]. The Q function of optical fields has been
experimentally measured using such an approach by Walker and Carroll [32]. The direct ex-
perimental measurement of the operational probability density distribution with the filter in an
arbitrary state is feasible in an 8-port experimental setup of the type used by Noh, Fougéres and
Mandel [33] (see also [34,12]).

As a consequence of a simultaneous measurement of non-commuting observables the mea-
sured distributions are fuzzy (i.e., they are equal to smoothed Wigner functions). Nevertheless,
if detectors used in the experiment have unit efficiency (in the case of an ideal measurement), the
noise induced by quantum filtering can be “separated” from the measured data and the density
operator (Wigner function) of the measured system can be “extracted” from the operational
probability density distribution. In particular, the Wigner function can be uniquely reconstructed
from the Q function (for more details see [35]). This extraction procedure is technically quite
involved and it suffers significantly if additional stochastic noise due to imperfect measurement
is present in the data.

We note that propensities, and in particular Q-functions, can also be associated with dis-
crete phase space and they can in principle be measured directly [36]. These discrete probability
distributions contain complete information about density operators of measured systems. Con-
sequently, these density operators can be uniquely determined from the discrete-phase space
propensities.

1.2. Reduced observation levels and MaxEnt principle

As we have already indicated it is well understood that density operators (or Wigner functions)
can, in principle, be uniquely reconstructed using either the single observable measurements
(optical homodyne tomography) or the simultaneous measurement of two non-commuting ob-
servables. The completely reconstructed density operator (or, equivalently, the Wigner function)
contains information about all independent moments of the system operators. For example, in
the case of the quantum harmonic oscillator, the knowledge of the Wigner function is equivalent
to the knowledge of all moments 〈(â†)mân〉 of the creation (â†) and annihilation (â) operators.

In many cases it turns out that the state of a harmonic oscillator is characterized by an
infinite number of independent moments 〈(â†)mân〉 (for all m and n). Analogously, the state of
a quantum system in a finite-dimensional Hilbert space can be characterized by a very large
number of independent parameters. A complete measurement of these moments may take an
infinite time to perform. This means that even though the Wigner function can in principle
be reconstructed the collection of a complete set of experimental data points is (in principle)
a “never ending” process. In addition the data processing and numerical reconstruction of the
Wigner function are time consuming. Therefore experimental realization of the reconstruction
of the density operators (or Wigner functions) for many systems can be difficult.

In practice, it is possible to measure just a finite number of independent moments of the
system operators, so that only a subset Ĝν (ν = 1, 2, ..., n) of observables from the quorum
(this subset constitutes the so-called observation level [37]) is measured. In this case, when the

†The quantum filtering, i.e. the measurement with “unsharp observables” belongs to a class of generalized POVM
(positive operator value measure) measurements [30,31]. In Section 10 we will show that POVM measurements are in
some cases the most optimal one when the state estimation is based on measurements performed on finite ensembles.
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complete information about the system is not available, one needs an additional criterion which
would help to reconstruct (or estimate) the density operator uniquely. Provided mean values of
all observables on the given observation level are measured precisely, then the density operator
(or the Wigner function) of the system under consideration can be reconstructed with the help
of the Jaynes principle of maximum entropy (the so called MaxEnt principle) [37] (see also
[38–40]). The MaxEnt principle provides us with a very efficient prescription to reconstruct
density operators of quantum-mechanical systems providing the mean values of a given set of
observables are known. It works perfectly well for systems with infinite Hilbert spaces (such
as the quantum-mechanical harmonic oscillator) as well as for systems with finite-dimensional
Hilbert spaces (such as spin systems). If the observation level is composed of the quorum of
the observables (i.e., the complete observation level), then the MaxEnt principle represents an
alternative to quantum tomography, i.e. both schemes are equally suitable for the analysis of
the tomographic data (for details see [41]). To be specific, the observation level in this case is
composed of all projectors associated with probability distributions of rotated quadratures. The
power of the MaxEnt principle can be appreciated in analysis of incomplete tomographic data.
In particular cases MaxEnt reconstruction from incomplete tomographic data can be several
orders better than a standard tomographic inversion (see Section 6). This result suggests that
the MaxEnt principle is the conceptual basis underlying incomplete tomographic reconstruction
(irrespective whether this is employed in continuous or discrete phase spaces).

1.3. Incomplete measurement and Bayesian inference

It has to be stressed that the Jaynes principle of maximum entropy can be consistently applied
only when exact mean values of the measured observables are available. This condition implicitly
assumes that an infinite number of repeated measurements on different elements of the ensemble
has to be performed to reveal the exact mean value of the given observable. In practice only a
finite number of measurements can be performed. What is obtained from these measurements
is a specific set of data indicating the number of times the eigenvalues of given observables have
appeared (which in the limit of an infinite number of measurements results in the corresponding
quantum probability distributions). The question is how to obtain the best a posteriori estimation
of the density operator based on the measured data. Helstrom [30], Holevo [31], and Jones [42]
have shown that the answer to this question can be given by the Bayesian inference method,
providing it is a priori known that the quantum-mechanical state which is to be reconstructed
is prepared in a pure (although unknown) state. When the purity condition is fulfilled, then the
observer can systematically estimate an a posteriori probability distribution in an abstract state
space of the measured system. It is this probability distribution (conditioned by the assumed
Bayesian prior) which characterizes observer’s knowledge of the system after the measurement is
performed. Using this probability distribution one can derive a reconstructed density operator,
which however is subject to certain ambiguity associated with the choice of the cost function (see
Ref. [30], p. 25). In general, depending on the choice of the cost function one obtains different
estimators (i.e., different reconstructed density operators). In this paper we adopt the approach
advocated by Jones [42] when the estimated density operator is equal to the mean over all possible
pure states weighted by the estimated probability distribution (see below in Section 9). We note
once again that the quantum Bayesian inference has been developed for a reconstruction of pure
quantum mechanical states and in this sense it corresponds to an averaging over a generalized
microcanonical ensemble. Nevertheless it can also be applied for a reconstruction of impure states
of quantum systems [43]. The Bayesian inference based on appropriate a priori assumptions in
the limit of infinite number of measurements results in the same estimation as the reconstruction
via the MaxEnt principle.
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1.4. The optimal generalized measurements

The quantum Bayesian inference allows us to estimate reliably the quantum state from a given
set of measured data obtained in a specific measurement performed on a finite ensemble of
identically prepared quantum objects. But the measurement itself may be designed very badly,
i.e. the chosen observables do not efficiently reveal the nature of the state. Therefore the question
is: Given the finite ensemble of N identical quantum objects prepared in an unknown quantum
state. What is the the optimal measurement which should provide us the best possible estimation
of this unknown state? Holevo [31] (see also [44]) has solved this problem. He has shown that the
so called covariant generalized measurements are optimal. The problem is that these generalized
measurements are associated with an infinite (continuous) number of observables. This obviously
is physically unrealizable measurement. On the other hand it has been recently shown [45] how to
find a finite optimal generalized measurements. This allows the design of optimal measurements
such that the data obtained in these measurements allow for best estimation of quantum states.

The purpose of the present paper is to show how the various estimation procedures can
be applied in different situations. In particular, we show how the MaxEnt principle can be
applied for a reconstruction of quantum states of light fields and spin systems. We show how
the quantum Bayesian inference can be used for a reconstruction of spin systems and how it is
related to the reconstruction via the MaxEnt principle. We also present a universal algorithm
which allows us to “construct” the optimal generalized measurements. The paper is organized
as follows: In Section 2 we briefly describe main ideas of the MaxEnt principle. In Section 3 we
set up a scene for a description of reconstruction of quantum states of light fields. In this section
we briefly discuss the phase-space formalism which can be used for a description of quantum
states of light. In addition we introduce the states of light which are going to be considered
later in the paper. In Section 4 we introduce various observation levels suitable for a description
of light fields. Reconstruction of Wigner functions of light fields on these observation levels
is then discussed in Section 5. In Section 6 we present results of numerical reconstruction of
quantum states of light from incomplete tomographic data. We compare two reconstruction
schemes: reconstruction via the MaxEnt principle and the reconstruction via direct sampling
(i.e., the tomography reconstruction via pattern functions—see below in Section 3). We analyze
the reconstruction of spin systems via the MaxEnt principle in Section 7. The Bayesian quantum
inference is discussed in Section 8 and its application to spin systems is presented in Section 9.
Finally, in Section 10 we discuss how the optimal realizable (i.e. finite) measurements can be
designed.

2. MAXENT PRINCIPLE AND OBSERVATION LEVELS

The state of a quantum system can always be described by a statistical density operator ρ̂.
Depending on the system preparation, the density operator represents either a pure quantum state
(complete system preparation) or a statistical mixture of pure states (incomplete preparation).
The degree of deviation of a statistical mixture from the pure state can be best described by the
uncertainty measure η[ρ̂] (see [6,38,40,46])

η[ρ̂] = −Tr(ρ̂ ln ρ̂). (1)

The uncertainty measure η[ρ̂] possesses the following properties:
1. In the eigenrepresentation of the density operator ρ̂

ρ̂ |rm〉 = rm|rm〉, (2)

we can write
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η[ρ̂] = −
∑
m

rm ln rm ≥ 0, (3)

where rm are eigenvalues and |rm〉 the eigenstates of ρ̂.
2. For uncertainty measure η[ρ̂] the following inequality holds:

0 ≤ η[ρ̂] ≤ ln N, (4)

where N denotes the dimension of the state space of the system and η[ρ̂] takes its maximum
value when

ρ̂ = 1̂
Tr1̂

= 1̂
N

, (5)

In this case all pure states in the mixture appear with the same probability equal to 1/N. If the
system is prepared in a pure state then it holds that η[ρ̂] = 0.
3. It can be shown with the help of the Liouville equation:

∂
∂t
ρ̂(t) = − i

�
[Ĥ, ρ̂(t)], (6)

that in the case of an isolated system the uncertainty measure is a constant of motion, i.e.,

dη(t)
dt

= 0. (7)

2.1. MaxEnt principle

When instead of the density operator ρ̂, expectation values Gν of a set O of operators Ĝν
(ν = 1, . . . , n) are given, then the uncertainty measure can be determined as well. The set of
linearly independent operators is referred to as the observation level O [38,41]. The operators
Ĝν which belong to a given observation level do not commutate necessarily. A large number of
density operators which fulfill the conditions

Tr ρ̂{Ĝ} = 1, (8)

Tr (ρ̂{Ĝ}Ĝν) = Gν , ν = 1, 2, ..., n;

can be found for a given set of expectation values Gν = 〈Ĝν〉, that is the conditions (8) specify
a set C of density operators which has to be considered. Each of these density operators ρ̂{Ĝ}
can possess a different value of the uncertainty measure η[ρ̂{Ĝ}]. If we wish to use only the
expectation values Gν of the chosen observation level for determining the density operator, we
must select a particular density operator ρ̂{Ĝ} = σ̂{Ĝ} in an unbiased manner. According to the
Jaynes principle of the Maximum Entropy [37–40] this density operator σ̂{Ĝ} must be the one
which has the largest uncertainty measure

η[σ̂{Ĝ}] = ηmax ≡ max
{
η[σ̂{Ĝ}]

}
(9)

and simultaneously fulfills constraints (8). As a consequence of eqn (9) the following fundamental
inequality holds

η[σ̂{Ĝ}] = −Tr(σ̂{Ĝ} ln σ̂{Ĝ}) ≥ η[ρ̂{Ĝ}] = −Tr(ρ̂{Ĝ} ln ρ̂{Ĝ}) (10)

for all possible ρ̂{Ĝ} which fulfill eqns (8). The variation determining the maximum of η[σ̂{Ĝ}]
under the conditions (8) leads to a generalized canonical density operator [37,38,40,41]
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σ̂{Ĝ} =
1

Z{Ĝ}
exp (−

∑
ν
λνĜν); (11)

Z{Ĝ}(λ1, ...,λn) = Tr[exp(−
∑
ν
λνĜν)], (12)

where λn are the Lagrange multipliers and Z{Ĝ}(λ1, . . .λn) is the generalized partition function.
By using the derivatives of the partition function we obtain the expectation values Gν as

Gν = Tr(σ̂{Ĝ}Ĝν) = −
∂
∂λν

ln Z{Ĝ}(λ1, ...,λn), (13)

where in the case of noncommuting operators the following relation has to be used

∂
∂a

exp[−X̂ (a)] = exp[−X̂ (a)]

1∫
0

exp[µX̂ (a)]
∂X̂ (a)
∂a

exp[−µX̂ (a)] dµ. (14)

By using eqn (13) the Lagrange multipliers can, in principle, be expressed as functions of the
expectation values

λν = λν(G1, ..., Gn). (15)

We note that eqns (13) for Lagrange multipliers does not always have solutions which lead to
physical results (see Section 6.2), which means that in these cases states of quantum systems
cannot be reconstructed on a given observation level via the MaxEnt principle.

The maximum uncertainty measure regarding an observation level O{Ĝ} will be referred to as
the entropy S{Ĝ}

S{Ĝ} ≡ ηmax = −Tr(σ̂{Ĝ} ln σ̂{Ĝ}). (16)

This means that to different observation levels different entropies are related. By inserting σ{Ĝ}
[cf. eqn (11)] into eqn (16), we obtain the following expression for the entropy

S{Ĝ} = ln Z{Ĝ} +
∑
ν
λνGν . (17)

By making use of eqn (15), the parameters λν in the above equation can be expressed as functions
of the expectation values Gν and this leads to a new expression for the entropy

S{Ĝ} = S(G1, ..., Gn). (18)

We note that using the expression

dS{Ĝ} =
∑
ν
λνdGν , (19)

which follows from eqns (13) and (17) the following relation can be obtained

λν =
∂
∂Gν

S(G1, ..., Gn). (20)
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2.2. Linear transformations within an observation level

An observation level can be defined either by a set of linearly independent operators {Ĝν},
or by a set of independent linear combinations of the same operators

Ĝ′µ =
∑
ν

cµνĜν. (21)

Therefore, σ̂ and S are invariant under a linear transformation:

σ̂ ′{Ĝ′} =
exp(−∑

µ
λ′µĜ′µ)

Tr exp(−∑
µ
λ′µĜ′µ)

= σ̂{Ĝ}. (22)

As a result, the Lagrange multipliers transform contravariantly to eqn (21), i.e.,

λ′µ =
∑
ν

c′µνλν , (23)

∑
µ

c′νµcµρ = δνρ . (24)

2.3. Extension and reduction of the observation level

If an observation level O{Ĝ} ≡ Ĝ1, . . . , Ĝn is extended by including further operators
M̂1, . . . , M̂l , then additional expectation values M1 = 〈M̂1〉, . . . , Ml = 〈M̂l 〉 can only increase
amount of available information about the state of the system. This procedure is called the
extension of the observation level (from O{Ĝ} to O{Ĝ,M̂}) and is associated with a decrease of
the entropy. More precisely, the entropy S{Ĝ,M̂} of the extended observation level O{Ĝ,M̂} can be
only smaller or equal to the entropy S{Ĝ} of the original observation level O{Ĝ},

S{Ĝ,M̂} ≤ S{Ĝ} . (25)

The generalized canonical density operator of the observation level O{Ĝ,M̂}

σ̂{Ĝ,M̂} =
1

Z{Ĝ,M̂}
exp

− n∑
ν=1

λνĜν −
l∑
µ=1

κµM̂µ

 , (26)

with

Z{Ĝ,M̂} = Tr

exp

− n∑
ν=1

λνĜν −
l∑
µ=1

κµM̂µ

 , (27)

belongs to the set of density operators ρ̂{Ĝ} fulfilling eqn (8). Therefore, eqn (26) is a special
case of eqn (11). Analogously to eqns (13) and (15), the Lagrange multipliers can be expressed
by functions of the expectation values

λν = λν(G1, ..., Gn, M1, ..., Ml),

κµ = κµ(G1, ..., Gn, M1, ..., Ml). (28)

The sign of equality in eqn (25) holds only for κµ = 0. In this special case the expectation values
Mµ are functions of the expectation values Gν. The measurement of observables M̂µ does not
increase information about the system. Consequently, ρ̂{Ĝ,M̂} = ρ̂{Ĝ} and S{Ĝ,M̂} = S{Ĝ}.



990 V. BUŽEK et al.

We can also consider a reduction of the observation level if we decrease number of independent
observables which are measured, e.g., O{Ĝ,M̂} → O{Ĝ}. This reduction is accompanied with an
increase of the entropy due to the decrease of the information available about the system.

2.4. Time dependent entropy of an observation level

If the dynamical evolution of the system is governed by the evolution superoperator Û (t, t0),
such that ρ̂(t) = Û (t, t0)ρ̂(t0), then expectation values of the operators Ĝν on the given obser-
vation level at time t read

Gν(t) = Tr[ĜνÛ (t, t0)ρ̂(t0)]. (29)

By using these time-dependent expectation values as constraints for maximizing the uncertainty
measure η[ρ̂{Ĝ}(t)], we get the generalized canonical density operator

σ̂{Ĝ}(t) =
exp

(
−∑

ν
λν(t)Ĝν

)
Tr
[

exp
(
−∑

ν
λν(t)Ĝν

)] , (30)

and the time-dependent entropy of the corresponding observation level

S{Ĝ}(t) = −Tr[σ̂{Ĝ}(t) ln σ̂{Ĝ}(t)] = ln Z{Ĝ}(t)+
∑
ν
λν(t)Gν(t) . (31)

This generalized canonical density operator does not satisfy the von Neumann equation but
it satisfies an integro-differential equation derived by Robertson [47] (see also [48]). The time-
dependent entropy is defined for any system being arbitrarily far from equilibrium. In the case
of an isolated system the entropy can increase or decrease during the time evolution (see, for
example Ref. [40], section 5.6).

3. STATES OF LIGHT: PHASE-SPACE DESCRIPTION

Utilizing a close analogy between the operator for the electric component Ê(r, t) of a
monochromatic light field and the quantum-mechanical harmonic oscillator we will consider a
dynamical system which is described by a pair of canonically conjugated Hermitean observables
q̂ and p̂,

[q̂, p̂] = i�. (32)

Eigenvalues of these operators range continuously from −∞ to +∞. The annihilation and cre-
ation operators â and â† can be expressed as a complex linear combination of q̂ and p̂:

â = 1√
2�

(
λq̂+ iλ−1 p̂

)
; â† = 1√

2�

(
λq̂− iλ−1 p̂

)
, (33)

where λ is an arbitrary real parameter. The operators â and â† obey the Weyl–Heisenberg
commutation relation

[â, â†] = 1, (34)

and therefore possess the same algebraic properties as the operator associated with the complex
amplitude of a harmonic oscillator (in this case λ = √mω, where m andω are the mass and the



Quantum state reconstruction from incomplete data 991

frequency of the quantum-mechanical oscillator, respectively) or the photon annihilation and
creation operators of a single mode of the quantum electromagnetic field. In this case λ = √ε0ω
(ε0 is the dielectric constant and ω is the frequency of the field mode) and the operator for the
electric field reads (we do not take into account polarization of the field)

Ê(r, t) =
√

2E0

(
âe−iωt + â†eiωt

)
u(r), (35)

where u(r) describes the spatial field distribution and is same in both classical and quantum
theories. The constant E0 = (�ω/2ε0V )1/2 is equal to the “electric field per photon” in the
cavity of volume V .

A particularly useful set of states is the overcomplete set of coherent states |α〉 which are the
eigenstates of the annihilation operator â:

â|α〉 = α|α〉. (36)

These coherent states can be generated from the vacuum state |0〉 [defined as â|0〉 = 0] by the
action of the unitary displacement operator D̂(α) [49]

D̂(α) ≡ exp
[
αâ† −α∗â

]
; |α〉 = D̂(α)|0〉. (37)

The parametric space of eigenvalues, i.e., the phase space for our dynamical system, is the infinite
plane of eigenvalues (q, p) of the Hermitean operators q̂ and p̂. An equivalent phase space is
the complex plane of eigenvalues

α = 1√
2�

(
λq+ iλ−1 p

)
; (38)

of the annihilation operator â. We should note here that the coherent state |α〉 is not an eigenstate
of either q̂ or p̂. The quantities q and p in eqn (38) can be interpreted as the expectation values
of the operators q̂ and p̂ in the state |α〉. Two invariant differential elements of the two phase-
spaces are related as:

1
π

d2α = 1
π

d[Re(α)] d[Im(α)] = 1
2π�

dq dp. (39)

The phase-space description of the quantum-mechanical oscillator which is in the state described
by the density operator ρ̂ (in what follows we will consider mainly pure states such that ρ̂ =
|Ψ〉〈Ψ|) is based on the definition of the Wigner function [50] Wρ̂(ξ). Here the subscript ρ̂ in the
expression Wρ̂(ξ) explicitly indicates the state which is described by the given Wigner function.

The Wigner function is related to the characteristic function C(W)
ρ̂ (η) of the Weyl-ordered

moments of the annihilation and creation operators of the harmonic oscillator as follows [51]

Wρ̂(ξ) = 1
π

∫
C(W )
ρ̂ (η) exp(ξη∗ − ξ∗η) d2η. (40)

The characteristic function C(W )
ρ̂ (η) of the system described by the density operator ρ̂ is defined

as

C(W )
ρ̂ (η) ≡ Tr[ρ̂D̂(η)], (41)

where D̂(η) is the displacement operator given by eqn (37). The characteristic function C(W )
ρ̂ (η)

can be used for the evaluation of the Weyl-ordered products of the annihilation and creation
operators:
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〈{(â†)mân}〉 = ∂(m+n)

∂ηm∂(−η∗)n C(W)
ρ̂ (η)

∣∣∣∣∣
η=0

, (42)

On the other hand the mean value of the Weyl-ordered product 〈{(â†)mân}〉 can be obtained
by using the Wigner function directly

Tr
[
{(â†)mân}ρ̂

]
= 1
π

∫
d2ξ (ξ∗)mξnWρ̂(ξ). (43)

For instance, the Weyl-ordered product 〈{â†â2}〉 can be evaluated as:

〈{â†â2}〉 = 1
3
〈â†â2 + ââ†â+ â2â†〉 = 1

π

∫
d2ξ |ξ|2ξWρ̂(ξ). (44)

In this paper we will several times refer to mean values of central moments and cumulants of
the system operators â and â†. We will denote central moments as 〈...〉(c) and in what follows
we will consider the Weyl-ordered central moments which are defined as:

〈{(â†)mân}〉(c) ≡ 〈{(â† − 〈â†〉)m(â− 〈â〉)n}〉. (45)

From this definition it follows that the central moments of the order k (k = m + n) can be
expressed by moments of the order less or equal to k. On the other hand we denote cumulants
as 〈〈...〉〉. The cumulants are usually defined via characteristic functions. In particular, the Weyl-
ordered cumulants are defined as

〈〈{(â†)mân}〉〉 = ∂(m+n)

∂ηm∂(−η∗)n lnC(W)
ρ̂ (η)

∣∣∣∣∣
η=0

, (46)

where C(W)
ρ̂ (η) is the characteristic function of the Weyl-ordered moments given by eqn (41).

The cumulants of the order k (k = m+ n) can be expressed in terms of moments of the order
less or equal to k.

Originally the Wigner function was introduced in a form different from (40). Namely, the
Wigner function was defined as a particular Fourier transform of the density operator expressed
in the basis of the eigenvectors |q〉 of the position operator q̂:

Wρ̂(q, p) ≡
∞∫
−∞

dζ〈q− ζ/2|ρ̂|q+ ζ/2〉eipζ/�, (47)

which for a pure state described by a state vector |Ψ〉 (i.e., ρ̂ = |Ψ〉〈Ψ|) reads

Wρ̂(q, p) ≡
∞∫
−∞

dζψ(q− ζ/2)ψ∗(q+ ζ/2)eipζ/�, (48)

where ψ(q) ≡ 〈q|Ψ〉. It can be shown that both definitions (40) and (47) of the Wigner function
are identical (see Hillery et al. [50]), providing the parameters ξ and ξ∗ are related to the
coordinates q and p of the phase space as:

ξ = 1√
2�

(
λq+ iλ−1 p

)
; ξ∗ = 1√

2�

(
λq− iλ−1p

)
, (49)

i.e.,
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Wρ̂(q, p) = 1
2π�

∫
C(W )
ρ̂ (q′, p′) exp

[
− i
�
(qp′ − pq′)

]
dq′ d p′, (50)

where the characteristic function C(W )
ρ̂ (q, p) is given by the relation

C(W )
ρ̂ (q, p) = Tr

[
ρ̂D̂(q, p)

]
. (51)

The displacement operator in terms of the position and the momentum operators reads

D̂(q, p) = exp
[

i
�
(q̂p− p̂q)

]
. (52)

The symmetrically ordered cumulants of the operators q̂ and p̂ can be evaluated as

〈〈{p̂mq̂n}〉〉 = �n+m ∂(m+n)

∂(−iq)m∂(ip)n
lnC(W)

ρ̂ (q, p)

∣∣∣∣∣
q,p=0

. (53)

The Wigner function can be interpreted as the quasiprobability (see below) density distribution
through which a probability can be expressed to find a quantum-mechanical system (harmonic
oscillator) around the “point” (q, p) of the phase space.

With the help of the Wigner function Wρ̂(q, p) the position and momentum probability dis-
tributions wρ̂(q) and wρ̂(p) can be expressed from Wρ̂(q, p) via marginal integration over the
conjugated variable (in what follows we assume λ = 1)

wρ̂(q) ≡
1√

2π�

∫
dpWρ̂(q, p) =

√
2π�〈q|ρ̂|q〉, (54)

where |q〉 is the eigenstate of the position operator q̂. The marginal probability distribution
Wρ̂(q) is normalized to unity, i.e.,

1√
2π�

∫
dq wρ̂(q) = 1. (55)

3.1. Quantum homodyne tomography

The relation (54) for the probability distribution wρ̂(q) of the position operator q̂ can be
generalized to the case of the distribution of the rotated quadrature operator x̂θ. This operator
is defined as

x̂θ =
√
�
2

[
âe−iθ + â†eiθ

]
, (56)

and the corresponding conjugated operator x̂θ+π/2, such that [x̂θ, x̂θ+π/2] = i�, reads

x̂θ+π/2 =
√
�

i
√

2

[
âe−iθ − â†eiθ

]
. (57)

The position and the momentum operators are related to the operator x̂θ as, q̂ = x̂0 and x̂π/2 =
p̂. The rotation (i.e., the linear homogeneous canonical transformation) given by eqns (56) and
(57) can be performed by the unitary operator Û (θ):

Û (θ) = exp
[
−iθâ†â

]
, (58)

so that
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x̂θ = Û †(θ)x̂0Û (θ); x̂θ+π/2 = Û †(θ)x̂π/2Û(θ). (59)

Alternatively, in the vector formalism we can rewrite the transformation (59) as(
x̂θ

x̂θ+π/2

)
= F

(
q̂
p̂

)
; F =

(
cosθ sinθ
− sinθ cosθ

)
. (60)

Eigenvalues xθ and xθ+π/2 of the operators x̂θ and x̂θ+π/2 can be expressed in terms of the
eigenvalues q and p of the position and momentum operators as:(

xθ
xθ+π/2

)
= F

(
q
p

)
;

(
q
p

)
= F−1

(
xθ

xθ+π/2

)
; F−1 =

(
cosθ − sinθ
sinθ cosθ

)
, (61)

where the matrix F is given by eqn (60) and F−1 is the corresponding inverse matrix. It has been
shown by Ekert and Knight [52] that Wigner functions are transformed under the action of the
linear canonical transformation (60) as:

Wρ̂(q, p)→Wρ̂(F−1(xθ, xθ+π/2)) =Wρ̂(xθ cosθ − xθ+π/2 sinθ; xθ sinθ+ xθ+π/2 cosθ), (62)

which means that the probability distribution wρ̂(xθ,θ) =
√

2π�〈xθ|ρ̂|xθ〉 can be evaluated as

wρ̂(xθ,θ) = 1√
2π�

∞∫
−∞

dxθ+π/2 Wρ̂(xθ cosθ− xθ+π/2 sinθ; xθ sinθ + xθ+π/2 cosθ). (63)

As shown by Vogel and Risken [9] (see also [12–14,53]) the knowledge of wρ̂(xθ,θ) for all values
of θ (such that [0 < θ ≤ π]) is equivalent to the knowledge of the Wigner function itself. This
Wigner function can be obtained from the set of distributions wρ̂(xθ,θ) via the inverse Radon
transformation:

Wρ̂(q, p) = 1
(2π�)3/2

∞∫
−∞

dxθ

∞∫
−∞

dξ |ξ|
π∫
0

dθwρ̂(xθ,θ) exp
[

i
�
ξ(xθ − q cosθ − p sinθ)

]
.(64)

It will be shown later in this paper that the optical homodyne tomography is implicitly based
on a measurement of all (in principle, infinite number) independent moments (cumulants) of
the system operators. Nevertheless, there are states for which the Wigner function can be recon-
structed much easier than via the homodyne tomography. These are Gaussian and generalized
Gaussian states which are completely characterized by the first two cumulants of the relevant
observables while all higher-order cumulants are equal to zero. On the other hand, if the state
under consideration is characterized by an infinite number of nonzero cumulants then the ho-
modyne tomography can fail because it does not provide us with a consistent truncation scheme
(see below and [54]). As we will show later, the MaxEnt principle may help use to reconstruct
reliably the Wigner function from incomplete tomographic data.

3.1.1. Quantum tomography via pattern functions
In a sequence of papers D’Ariano et al. [14], Leonhardt et al. [55] and Richter [56] have

shown that Wigner functions can be very efficiently reconstructed from tomographic data with
the help of the so-called pattern functions. This reconstruction procedure is more efficient than
the usual Radon transformation [15]. To be specific, D’Ariano et al. [14] have shown that the
density matrix ρmn in the Fock basis† can be reconstructed directly from the tomographic data,

†We note that very analogous procedure for a reconstruction of density operators in the quadrature basis has
been proposed by Kühn, Welsch and Vogel [53].
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i.e. from the quadrature-amplitude “histograms” (probabilities), w(xθ,θ) via the so-called direct
sampling method when

ρmn =
π∫
0

∞∫
−∞

w(xθ,θ)Fmn(xθ,θ) dxθ dθ, (65)

where Fmn(xθ,θ) is a set of specific sampling functions (see below). Once the density matrix ele-
ments are reconstructed with the help of eqn (65) then the Wigner function of the corresponding
state can be directly obtained using the relation

Wρ̂(q, p) =
∑
m,n
ρmnW|m〉〈n|(q, p), (66)

where W|m〉〈n|(q, p) is the Wigner function of the operator |m〉〈n|.
A serious problem with the direct sampling method as proposed by D’Ariano et al. [14] is

that the sampling functions Fmn(xθ,θ) are difficult to compute. Later D’Ariano, Leonhardt and
Paul [55,57] have simplified the expression for the sampling function and have found that it can
be expressed as

Fmn(xθ,θ) = fmn(xθ) exp [i(m− n)θ] , (67)

where the so-called pattern function “picks up” the pattern in the quadrature histograms (prob-
ability distributions) wmn(xθ,θ) which just match the corresponding density-matrix elements.
Recently Leonhardt et al. [15] have shown that the pattern function fmn(xθ) can be expressed
as derivatives

fmn(x) =
∂
∂x

gmn(x), (68)

of functions gmn(x) which are given by the Hilbert transformation

gmn(x) =
P
π

∞∫
−∞

ψm(ζ)ψn(ζ)
x− ζ dζ, (69)

whereP stands for the principal value of the integral andψn(x) are the real energy eigenfunctions
of the harmonic oscillator, i.e. the normalizable solutions of the Schrödinger equation(

−�
2

2
d2

dx2
+ x2

2

)
ψn(x) = �(n+ 1/2)ψn(x), (70)

(we assume m = ω = 1). Further details of possible applications and discussion devoted to
numerical procedures of the reconstruction of density operators via the direct sampling method
can be found in Ref. [15].

3.2. States of light to be considered

In this paper we will consider several quantum-mechanical states of a single-mode light field. In
particular, we will analyze coherent state, Fock state, squeezed vacuum state, and superpositions
of coherent states.
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3.2.1. Coherent state
The coherent state |α〉 [see eqns (36) and (37)] is an eigenstate of the annihilation operator â,

i.e., |α〉 is not an eigenstate of an observable [49]. The Wigner function [eqn (40)] of the coherent
state in the complex ξ-phase space reads

W|α〉(ξ) = 2 exp
(
−2|ξ −α|2

)
; α = αx + iαy, (71)

or alternatively, in the (q, p) phase space we have:

W|α〉(q, p) = 1
σqσp

exp

[
− 1

2�
(q− q̄)2

σ2
q

− 1
2�
(p− p̄)2

σ2
p

]
, (72)

where q̄ =
√

2�αx/λ; p̄ =
√

2�αyλ, and

σ2
q =

1
2λ2 and σ2

p =
λ2

2
. (73)

The mean photon number in the coherent state is equal to n̄ = |α|2. The variances for the
position and momentum operators are

〈α|(∆q̂)2|α〉 = �σ2
q ; 〈α|(∆ p̂)2|α〉 = �σ2

p, (74)

from which it is seen that the coherent state belongs to the class of the minimum uncertainty
states for which

〈(∆q̂)2〉〈(∆ p̂)2〉 = �2σ2
qσ

2
p =

�2

4
. (75)

Using the expression (72) for the Wigner function in the (q, p)-phase space we can evaluate the
central moments of the Weyl-ordered moments of the operators q̂ and p̂ in the coherent state as:

〈{q̂k p̂l}〉(c) =
{
(2n− 1)!!(2m− 1)!!(�σq)n(�σp)m; for k = 2n, l = 2m
0; for k = 2n+ 1 or l = 2m+ 1. (76)

We see that all central moments of the order higher than second can be expressed in terms
of the second-order central moments, so we can conclude that the coherent state is completely
characterized by four mean values 〈q̂〉; 〈p̂〉; 〈q̂2〉, and 〈p̂2〉. With the help of the relation (51)
we can find the characteristic function C(W )

|α〉 (q, p) of the symmetrically ordered moments of the
coherent state

C(W )
|α〉 (q, p) = exp

[
i
�

q̄p− i
�

p̄q−
σ2

q

2�
p2 −

σ2
p

2�
q2

]
, (77)

from which the following nonzero cumulants for the coherent state:

〈〈q̂〉〉 = q̄; 〈〈p̂〉〉 = p̄; 〈〈q̂2〉〉 = �σ2
q ; 〈〈p̂2〉〉 = �σ2

p, (78)

can be found. We stress that all other cumulants of the operators q̂ and p̂ are equal to zero. This
is due to the fact that the characteristic function of the Weyl-ordered moments is an exponential
of a polynomial of the second order in q and p.

3.2.2. Fock state
Eigenstates |n〉 of the photon number operator n̂
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n̂ = â†â = 1
2�

(
q̂2 + p̂2

)
− 1

2
, (79)

are called the Fock states. The Wigner function of the Fock state |n〉 is the ξ-phase space reads

W|n〉(ξ) = 2(−1)n exp
(
−2|ξ|2

)
Ln

(
4|ξ|2

)
, (80)

where Ln(x) is the Laguerre polynomial of the order n. In the (q, p) phase space this Wigner
function has the form

W|n〉(q, p) = 2(−1)n exp

(
−q2 + p2

�

)
Ln

(
2

q2 + p2

�

)
. (81)

The Wigner function (81) does not have a Gaussian form. One can find from eqn (81) the
following expressions for first few moments of the position and momentum operators:

〈q̂〉= 〈p̂〉 = 0;

〈q̂2〉= 〈p̂2〉 = �
2
(2n+ 1);

〈q̂4〉= 〈p̂4〉 = �2

4
(6n2 + 6n+ 3) = 3

2
〈q̂2〉2 + 〈p̂2〉2

2
+ 3

8
�2; (82)

〈q̂2 p̂2〉= 〈p̂2q̂2〉 = �2

4
(2n2 + 2n− 1) = 1

2
〈q̂2〉2 + 〈p̂2〉2

2
− 3

8
�2.

In addition we find for the characteristic function C(W )
|n〉 (q, p) of the Weyl-ordered moments of

the operators q̂ and p̂ in the Fock state |n〉 the expression

C(W )
|n〉 (q, p) = exp

[
−(q

2 + p2)
4�

]
Ln

(
(q2 + p2)

2�

)
, (83)

from which it follows that the Fock state is characterized by an infinite number of nonzero
cumulants. On the other hand, moments of the photon number operator n̂ in the Fock state |n〉
are

〈n̂k〉 = nk, (84)

from which it follows higher-order moments of the operator n̂ can be expressed in terms of the
first-order moment and that all central moments 〈n̂k〉(c) are equal to zero.

3.2.3. Squeezed vacuum state
The squeezed vacuum state [58] can be expressed in the Fock basis as

|η〉 =
(

1− η2
)1/4 ∞∑

n=0

[(2n)!]1/2

2nn!
ηn|2n〉, (85)

where the squeezing parameter η (for simplicity we assume η to be real) ranges from −1 to +1.
The squeezed vacuum state (85) can be obtained by the action of the squeezing operator Ŝ(r)
on the vacuum state |0〉

|η〉 = Ŝ(r)|0〉; Ŝ(r) = exp
[
− ir

2�
(q̂ p̂+ p̂q̂)

]
= exp

[
r
2

(
â†2 − â2

)]
, (86)

where the squeezing parameter r ∈ (−∞,+∞) is related to the parameter η as follows, η =
tanh r. The mean photon number in the squeezed vacuum (85) is given by the relation
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n̄ = η2

1− η2
. (87)

The variances of the position and momentum operators can be expressed in a form (74) with
the parameters σq and σp given by the relations

σ2
q =

1
2

(
1+ η
1− η

)
; σ2

p =
1
2

(
1− η
1+ η

)
. (88)

If we assume the squeezing parameter to be real and η ∈ [0,−1) then from eqn (88) it follows
that fluctuations in the momentum are reduced below the vacuum state limit �/2 at the expense
of increased fluctuations in the position. Simultaneously it is important to stress that the product
of variances 〈(∆q̂

)2〉 and 〈(∆ p̂
)2〉 is equal to �2/4, which means that the squeezed vacuum state

belongs to the class of the minimum uncertainty states.
The Wigner function of the squeezed vacuum state is of the Gaussian form

W|η〉(q, p) = 1
σqσp

exp

[
− 1

2�
q2

σ2
q
− 1

2�
p2

σ2
p

]
, (89)

with the parameters σ2
q and σ2

p given by eqn (88). From eqn (89) it follows that the mean value
of the position and the momentum operators in the squeezed vacuum state are equal to zero,
while the higher-order symmetrically ordered (central) moments are given by eqn (76) with the
parameters σ2

q and σ2
p given by eqn (88). We see that higher-order moments can be expressed in

terms of the second-order moments. We can find the expression for the characteristic function
C(W )
|η〉 (q, p) for the squeezed vacuum state which reads

C(W)
|η〉 (q, p) = exp

[
−
σ2

q

2�
p2 −

σ2
p

2�
q2

]
, (90)

from which it directly follows that the squeezed vacuum state is completely characterized by to
nonzero cumulants 〈〈q̂2〉〉 = �σ2

q and 〈〈p̂2〉〉 = �σ2
p (all other cumulants are equal to zero).

3.2.4. Even and odd coherent states
In nonlinear optical processes superpositions of coherent states can be produced [59]. In

particular, Brune et al. [60] have shown that an atomic-phase detection quantum non-demolition
scheme can serve for production of superpositions of two coherent states of a single-mode
radiation field. The following superpositions can be produced via this scheme:

|αe〉 = N1/2
e (|α〉 + | −α〉) ; N−1

e = 2
[
1+ exp(−2|α|2)

]
, (91)

and

|αo〉 = N1/2
o (|α〉 − | −α〉) ; N−1

o = 2
[
1− exp(−2|α|2)

]
, (92)

which are called the even and odd coherent states, respectively. These states have been introduced
by Dodonov et al. [61] in a formal group-theoretical analysis of various subsystems of coherent
states. More recently, these states have been analyzed as prototypes of superposition states of
light which exhibit various nonclassical effects (for the review see [59]). In particular, quantum
interference between component states leads to oscillations in the photon number distributions.
Another consequence of this interference is a reduction (squeezing) of quadrature fluctuations
in the even coherent state. On the other hand, the odd coherent state exhibits reduced fluctua-
tions in the photon number distribution (sub-Poissonian photon statistics). Nonclassical effects
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associated with superposition states can be explained in terms of quantum interference between
the “points” (coherent states) in phase space. The character of quantum interference is very sen-
sitive with respect to the relative phase between coherent components of superposition states.
To illustrate this effect we write down the expressions for the Wigner functions of the even and
odd coherent states (in what follows we assume α to be real):

W|αe〉(q, p) = Ne
[
W|α〉(q, p)+W|−α〉(q, p)+Wint(q, p)

]
; (93)

W|αo〉(q, p) = No
[
W|α〉(q, p)+W|−α〉(q, p)−Wint(q, p)

]
, (94)

where the Wigner functions W|±α〉(q, p) of coherent states | ± α〉 are given by eqn (72). The
interference part of the Wigner functions (93) and (94) is given by the relation

Wint(q, p) = 2
σqσp

exp

[
− q2

2�σ2
q
− p2

2�σ2
p

]
cos

(
q̄p

�σqσp

)
, (95)

where q̄ =
√

2�α (we assume real α) and the variances σ2
q and σ2

p are given by eqn (73). From
eqns (93) and (94) it follows that the even and odd coherent states differ by a sign of the
interference part, which results in completely different quantum-statistical properties of these
states.

With the help of the Wigner function (93) we evaluate mean values of moments of the operators
q̂ and p̂. The first moments are equal to zero, i.e., 〈q̂〉 = 〈p̂〉 = 0, while for higher-order moments
we find

〈q̂2〉 = �
2

(
1+ 8Neα2

)
;

〈p̂2〉 = �
2

(
1− 8Neα2e−2α2

)
;

〈q̂4〉 = 3�2

4

[
1+ 16Neα2

(
1+ 2

3
α2
)]

;

〈p̂4〉 = 3�2

4

[
1− 16Neα2e−2α2

(
1− 2

3
α2
)]

.

(96)

From eqns (96) it follows that the even coherent state exhibits the second and fourth-order
squeezing in the p̂-quadrature [59]. We do not present explicit expression for higher-order mo-
ments, which in general cannot be expressed in powers of second-order moments. In terms of
the cumulants it means that the even (and odd) coherent states are characterized by an infi-
nite number of nonzero cumulants. This can be seen from the expression for the characteristic
function of the even coherent state which reads

C(W )
|αe〉 (q, p) = 2Ne exp

[
−
σ2

p

2�
q2 −

σ2
q

2�
p2

]{
cos

(
q̄p
�

)
+ exp

(
− q̄2

2�σ2
q

)
cosh

(
σp

�σq
q̄q

)}
. (97)

4. OBSERVATION LEVELS FOR SINGLE-MODE FIELD

In our paper we will consider two different classes of observation levels. Namely, we will
consider the phase-sensitive and phase-insensitive observation levels. These two classes do differ
by the fact that phase-sensitive observation levels are related to such operator which provide some
information about off-diagonal matrix elements of the density operator in the Fock basis (i.e.,
these observation levels reveal some information about the phase of states under consideration).
On the contrary, phase-insensitive observation levels are based exclusively on a measurement of
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diagonal matrix elements in the Fock basis. Before we proceed to a detailed description of the
phase-sensitive and phase-insensitive observation levels we introduce two exceptional observation
levels, the complete and thermal observation levels.

4.1. Two extreme observation levels

4.1.1. Complete observation level O0 ≡ {(â†)kâl ; ∀k, l}
The set of operators |n〉〈m| (for all n and m) is referred to as complete observation level.

Expectation values of the operators |n〉〈m| are the matrix elements of the density operator in
the Fock basis

〈m|ρ̂|n〉 = Tr
[
ρ̂|n〉〈m|] ; ∀n, m, (98)

and therefore the generalized canonical density operator is identical with the statistical density
operator

σ̂0 =
1

Z0
exp

− ∞∑
m,n=0

λm,n |n〉 〈m|
 = ρ̂ ; (99)

Z0 = Tr

exp

− ∞∑
m,n=0

λm,n |n〉〈m|
 . (100)

In this case the entropy S0 is determined by the density operator ρ̂ as

S0 = −Tr [σ̂0 ln σ̂0] = −Tr
[
ρ̂ ln ρ̂

]
. (101)

This entropy is usually called the von Neumann entropy [6,46].
As a consequence of the relation (cf. section 3.3 in [62])

|n〉 〈m| = lim
ε→1

∞∑
k=0

(−ε)k
k!
√

n! m!
(â†)k+nâk+m , (102)

the complete observation level O0 can also be given by a set of operators {(â†)kâl ; ∀k, l} or
{q̂k p̂l ; ∀k, l}. The Wigner function on the complete information level is equal to the Wigner
function of the state itself, i.e., W (0)

ρ̂ (ξ) =Wρ̂(ξ).

4.1.2. Thermal observation level Oth ≡ {â†â}
The total reduction of the complete observation level O0 results in a thermal observation

level Oth characterized just by one observable, the photon number operator n̂, i.e., quantum-
mechanical states of light on this observation level are characterized only by their mean photon
number n̄ ≡ 〈n̂〉. The generalized canonical density operator of this observation level is the
well-known density operator of the harmonic oscillator in the thermal equilibrium

σ̂th = 1
Zth

exp[−λthn̂]. (103)

To find an explicit expression for the Lagrange multiplier λth we have to solve the equation

Tr [σthn̂] = n̄, (104)

from which we find that
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λth = ln
(

n̄+ 1
n̄

)
, (105)

so that the partition function corresponding to the operator σ̂th reads

Zth = {1− exp[−λth]}−1 = n̄+ 1 . (106)

Now we can rewrite the generalized canonical density operator σ̂th in the Fock basis in a form

σ̂th =
∞∑

n=0

n̄n

(n̄+ 1)n+1
|n〉〈n|. (107)

For the entropy of the thermal observation level we find a familiar expression

Sth = (n̄+ 1) ln(n̄+ 1)− n̄ ln n̄ . (108)

The fact that the entropy Sth is larger than zero for any n̄ > 0 reflects the fact that on the thermal
observation level all states with the same mean photon number are indistinguishable. This is the
reason why Wigner function of different states on the thermal information level are identical.
The Wigner function of the state |Ψ〉 on the thermal observation level is given by the relation

W (th)
ρ̂ (ξ) = 2

1+ 2n̄
exp

[
− 2|ξ|2

1+ 2n̄

]
. (109)

Extending the thermal observation level we can obtain more “realistic” Wigner functions which
in the limit of the complete observation level are equal to the Wigner function of the measured
state itself, i.e., they are not biased by the lack of information (measured data) about the state.

4.2. Phase-sensitive observation levels

4.2.1. Observation level O1 ≡ {â†â, â†, â}
We can extent the thermal observation level if in addition to the observable n̂ we consider also

the measurement of mean values of the operators â and â† (that is, we consider a measurement
of the observables q̂ and p̂). If we denote the (measured) mean values of this operators as 〈â〉 = γ
and 〈â†〉 = γ∗, then the generalized canonical density operator σ̂1 can be written as

σ̂1 =
1

Z1
exp

[
−λ1(â† − γ∗)(â− γ)

]
, (110)

with the partition function Z1 given by the relation

Z1 =
(

1− e−λ1

)−1
. (111)

We have chosen the density operator σ̂1 in such form that the conditions

〈â〉 = Tr[âσ̂1] = γ; 〈â†〉 = Tr[â†σ̂1] = γ∗, (112)

are automatically fulfilled. To see this we rewrite the density operator σ̂1 in the form:

σ̂1 = 1
Z1

D̂(γ) exp[−λ1â†â]D̂†(γ), (113)

where we have used the transformation property D̂(γ)âD̂†(γ) = â− γ, and therefore
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Tr[âσ̂1] =
1

Z1
Tr
[

D̂†(γ)âD̂(γ) exp(−λ1â†â)
]
= γ + 1

Z1
Tr
[

â exp(−λ1â†â)
]
= γ. (114)

To find the Lagrange multiplier λ1 we have to solve the equation Tr[â†âσ̂1] = n̄ from which we
find

e−λ1 = n̄− |γ|2
1+ n̄− |γ|2 . (115)

The entropy S1 on the observation level O1 can be expressed in a form very similar to Sth [see
eqn (108)]

S1 = [n̄− |γ|2 + 1] ln[n̄− |γ|2 + 1]− [n̄− |γ|2] ln[n̄− |γ|2]. (116)

The Wigner function W (1)
ρ̂ (ξ) corresponding to the generalized canonical density operator σ̂1

reads

W (1)
ρ̂ (ξ) = 2

1+ 2(n̄− |γ|2) exp

[
− 2|ξ− γ|2

1+ 2(n̄− |γ|2)

]
. (117)

From the expression (116) for the entropy S1 it follows that S1 = 0 for those states for which
n̄ = |γ|2. In fact, there is only one state with this property. It is a coherent state |α〉 (37). In
other words, because of the fact that S1 = 0, the coherent state can be completely reconstructed
on the observation level O1. In this case

W (1)
|α〉(ξ) =W (0)

|α〉 (ξ) = 2 exp
[
−2|ξ −α|2

]
, (118)

[see eqn (71)]. For other states S1 > 0 and therefore to improve our information about the state
we have to perform further measurements, i.e., we have to extent the observation level O1.

4.2.2. Observation level O2 ≡ {â†â, (â†)2, â2, â†, â}
One of possible extensions of the observation level O1 can be performed with a help of

observables q̂2 and p̂2, i.e., when not only the mean photon number n̄ and mean values of q̂ and
p̂ are known, but also the variances 〈(∆q̂

)2〉 and 〈(∆ p̂
)2〉 are measured. On the observation

level O2 we can express the generalized canonical operator σ̂2 as

σ̂2 =
1

Z2
exp

[
−λ2

2
(â† − γ∗)2 − λ

∗
2

2
(â− γ)2 − λ1(â† − γ∗)(â− γ)

]
, (119)

where the Lagrange multiplier λ1 is real while λ2 can be complex: λ2 = |λ2|e−iθ. We can rewrite
σ̂2 in a form similar to the thermal density operator:

σ̂2 = 1
Z̃2

D̂(γ)Û (θ/2)Ŝ(r) exp
[
−
(
λ2

1 − |λ2|2
)1/2

â†â
]

Ŝ†(r)Û †(θ/2)D̂†(γ), (120)

where the operators D̂(γ), Û (θ/2), and Ŝ(r) are given by eqns (37), (58) and (86), respectively.
These operators transform the annihilation operator â as:

D̂†(γ)âD̂(γ) = â+ γ;

Û †(θ/2)âÛ(θ/2) = âe−iθ/2; (121)

Ŝ†(r)âŜ(r) = â cosh r+ â† sinh r.

The partition function Z̃2 in eqn (120) can be evaluated in an explicit form:
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Z̃−1
2 = 1− exp[−(λ2

1 − |λ2|2)1/2]. (122)

In eqn (120) we have chosen the parameter r to be given by the relation tanh 2r = −|λ2|/λ1.
The density operator (120) is defined in such way that it automatically fulfills the condition
Tr[âσ̂2] = γ, while the Lagrange multipliers λ1 and λ2 have to be found from the relations
Tr[â†âσ̂2] = n̄ and Tr[â2σ̂2] = µ:

Tr[â†âσ̂2] = n̄ = |γ|2 − 1/2+ (χ+ 1/2) cosh2r;

Tr[â2σ̂2] = µ = γ2 + e−iθ(χ+ 1/2) sinh2r, (123)

where we have used the notation

χ =
{

exp[(λ2
1 − |λ2|2)1/2]− 1

}−1
. (124)

Instead of finding explicit expressions for the Lagrange multipliers λ1 andλ2 we can find solutions
for the parameters tanh 2r and χ. We express these parameters in terms of the measured central
moments 〈â†â〉(c) ≡ N = n̄− |γ|2 > 0 and 〈â2〉(c) ≡M = |M|e−iθ = µ − γ2:

tanh 2r = |M|
N + 1/2

; (125)

χ =
[
(N + 1/2)2− |M|2

]1/2− 1/2. (126)

We remind us that physical requirements [63] lead to the following restrictions on the parameters
N and M:

N ≥ 0; N(N + 1) ≥ |M|2. (127)

Once the tanh 2r and χ are found we can reconstruct the Wigner function W (2)
ρ̂ (ξ) on the

observation level O2. This Wigner function reads:

W (2)
ρ̂ (ξ)= 1[

(N + 1/2)2− |M|2]1/2

× exp

−(N + 1/2)|ξ− γ|2 − M∗
2 (ξ− γ)2 −

M
2 (ξ

∗ − γ∗)2[
(N + 1/2)2 − |M|2]

 . (128)

Analogously we can find an expression for the entropy S2:

S2 = (χ+ 1) ln(χ+ 1)− χ lnχ. (129)

It has a form of the thermal entropy (108) with a mean thermal-photon number equal to χ [see
eqn (126)].

Using the expression for the Wigner function (128) we can rewrite the variances of the position
and momentum operators in terms of the parameters N and M as follows

〈(∆q̂
)2〉 = �

2
[1+ 2N + 2ReM]; 〈(∆ p̂

)2〉 = �
2
[1+ 2N − 2ReM]. (130)

The product of these variances reads:

〈(∆q̂
)2〉〈(∆ p̂

)2〉 = �2

4

[
(1+ 2N)2 − 4(ReM)2

]
. (131)

From the expression (129) for the entropy S2 it is seen that states for which N(N + 1) = |M|2
can be completely reconstructed of the observation level O2, because for these states S2 = 0. In
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fact, it has been shown by Dodonov et al. [64] that the states for which N(N + 1) = |M|2 are
the only pure states which have non-negative Wigner functions [see eqn (128)]. For these states
the product of variances (131) reads

〈(∆q̂
)2〉〈(∆ p̂

)2〉 = �2

4

[
1+ 4(ImM)2

]
, (132)

which means that if in addition ImM = 0 (see for instance squeezed vacuum state with real
parameter of squeezing) then these states also belong to the class of the minimum uncertainty
states. From our previous discussion it follows that the squeezed vacuum as well as squeezed
coherent states can be completely reconstructed on the observation level O2. More generally, we
can say that all Gaussian states for which N(N+1) = |M|2 can be completely reconstructed on
this observation level.

4.2.3. Higher-order phase-sensitive observation levels
There are pure non-Gaussian states (such as the even coherent state) for which the entropy S2

is larger than zero and therefore in order to reconstruct Wigner functions of such states more
precisely, we have to extent the observation level O2. Straightforward extension of O2 is the
observation level Ok ≡ {(â†)mân;∀m, n; m + n ≤ k}, which in the limit k → ∞ is extended to
the complete observation level.

To perform a reconstruction of the Wigner function on the observation level Ok with k > 2
an attention has to be paid to the fact that for a certain choice of possible observables the
vacuum-to-vacuum matrix elements of the generalized canonical density operator 〈0|σ̂k|0〉 can
have divergent Taylor-series expansion. To be more specific, if we consider an observation level
such that Ok ≡ {(â†)k, âk} then for the generalized canonical density operator

σ̂k =
1

Zk
exp

[
−λk(â†)k − λ∗k âk

]
, (133)

the corresponding partition function Zk = Tr exp
[−λk(â†)k − λ∗k âk

]
is divergent [65]. This

means that one cannot consistently define an observation level based exclusively on the measure-
ment of the operators (â†)k and âk. In general, to “regularize” the problem one has to include the
photon number operator n̂ into the observation level. Then the generalized density operator σ̂k

σ̂k =
1

Zk
exp

[
−λ0â†â− λk(â†)k − λ∗k âk

]
, (134)

can be properly defined and one may reconstruct the corresponding Wigner function Wk(ξ).
We note that any observation has to be chosen in such a way that information about the mean
photon number is available, i.e., knowledge of the mean photon number (the mean energy) of the
system under consideration represents a necessary condition for a reconstruction of the Wigner
function.

4.3. Phase-insensitive observation levels

The choice of the observation level is very important in order to optimize the strategy for the
measurement and the reconstruction of the Wigner function of a given quantum-mechanical
state of light. For instance, if we would like to reconstruct the Wigner function of the Fock state
|n〉 at the observation level Ok ≡ {â†â, (â†)mân; m+n ≤ k and m ≠ n} we find that irrespectively
on the number (k) of “measured” moments 〈(â†)mân〉 (for m ≠ n) the reconstructed Wigner
function is always equal to the thermal Wigner function (109). So it can happen that in a very
tedious experiment negligible information is obtained. On the other hand, if a measurement of
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diagonal elements of the density operator in the Fock basis is performed relevant information
can be obtained much easier.

4.3.1. Observation level OA ≡ {P̂n = |n〉〈n|; ∀n}
The most general phase-insensitive observation level corresponds to the case when all diagonal

elements Pn = 〈n|ρ̂|n〉 of the density operator ρ̂ describing the state under consideration are
measured. The observation level OA can be obtained via a reduction of the complete observation
level O0 and it corresponds to the measurement of the photon number distribution Pn such that∑

n Pn = 1. Because of the relation [see eqn (102)]

|n〉〈n| = lim
ε→1

∞∑
k=0

(−ε)k
k!n!

(â†)k+nâk+n = lim
ε→1

∞∑
k=0

(−ε)k
k!n!

n̂!
(n̂− k− n)!

, (135)

we can conclude that the observation level OA corresponds to the measurement of all moments
of the creation and annihilation operators of the form (â†)kâk or, what is the same, it corresponds
to a measurement of all moments of the photon number operator, i.e.,

OA ≡ {P̂n = |n〉〈n|; ∀n} = {(â†)kâk;∀ k} = {n̂k; ∀k}. (136)

The generalized canonical operator σ̂A at the observation level OA reads

σ̂A = 1
ZA

exp

− ∞∑
n=0

λn|n〉〈n|
 ; (137)

with the partition function given by the relation

ZA = Tr

exp

− ∞∑
n=0

λn|n〉〈n|
 =

∞∑
n=0

exp[−λn]. (138)

The entropy SA at the observation level OA can be expressed in the form

SA = ln ZA +
∞∑

n=0

λnPn. (139)

The Lagrange multipliers λn have to be evaluated from an infinite set of equations:

Pn = Tr[σ̂AP̂n] =
e−λn

ZA
; ∀n, (140)

from which we find λn = − ln[ZAPn]. If we insert λn into expression (139) we obtain for the
entropy SA the familiar expression

SA = −
∞∑

n=0

Pn ln Pn, (141)

derived by Shannon [66]. Here it should be briefly noted that as a consequence of the relation

∞∑
n=0

P̂n = 1̂, (142)

the operators P̂n are not linearly independent, which means that the Lagrange multipliers λn and
the partition function ZA are not uniquely defined. Nevertheless, if ZA is chosen to be equal to
unity, then the Lagrange multipliers can be expressed as
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λn = − ln Pn; (143)

and the generalized canonical density operator reads

σ̂A =
∞∑

n=0

Pn|n〉〈n|;
∞∑

n=0

Pn = 1. (144)

From here it follows that the Wigner function W (A)
ρ̂ (ξ) of the state ρ̂ at the observation level

OA can be reconstructed in the form

W (A)
ρ̂ (ξ) =

∞∑
n=0

PnW|n〉(ξ), (145)

where W|n〉(ξ) is the Wigner function of the Fock state |n〉 given by eqn (80).
The phase-insensitive observation level OA can be further reduced if only a finite number of

operators P̂n [where n ∈ M] is considered. In this case, in general, we have
∑

n∈MPn < 1 and
therefore it is essential that apart of mean values Pn also the mean photon number n̄ is known
from the measurement.

4.3.2. Observation level OB ≡ {n̂, P̂2n = |2n〉〈2n|; ∀n}
As an example of the observation level which is reduced with respect to OA we can consider

the observation level OB which is based on a measurement of the average photon number n̄ and
on the photon statistics on the subspace of the Fock space composed of the even Fock states
|2n〉. In this case the generalized canonical density operator σ̂B can be written as

σ̂B = 1
ZB

exp

−λn̂ −
∞∑

n=0

λnP̂2n

 = e−λn̂

ZB

1−
∞∑

n=0

P̂2n

+ ∞∑
n=0

e−λnP̂2n

 , (146)

where the partition function is given by the relation

ZB = Tr

exp

−λn̂−
∞∑

n=0

λnP̂2n

 . (147)

This partition function can be explicitly evaluated with the help solutions for the Lagrange
multipliers from equations Tr[P̂2nσ̂B] = P2n. If we introduce the notation

Podd ≡ 1−
∞∑

n=0

P2n; (148)

n̄odd ≡ n̄−
∞∑

n=0

2nP2n, (149)

then the partition function ZB can be expressed as

ZB =
[

n̄2
odd − P2

odd

]1/2

2P2
odd

. (150)

Analogously we find for the generalized canonical density operator the expression
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σ̂B =
∞∑

n=0

P2n|2n〉〈2n| +
∞∑

n=0

P2n+1|2n+ 1〉〈2n+ 1|, (151)

where P2n are measured values of P̂2n and P2n+1 are evaluated from the MaxEnt principle:

P2n+1 =
2P2

odd

n̄odd + Podd

(
n̄odd − Podd

n̄odd + Podd

)n

. (152)

From eqn (152) we see that on the subspace of odd Fock states we have obtained from the
MaxEnt principle a “thermal-like” photon number distribution. Now, we know all values of P2n

and P2n+1 and using eqn (141) we can easily evaluate the entropy SB and the Wigner function
W (B)
ρ̂ (ξ) on the observation level OB [see eqn (145)].

4.3.3. Observation level OC ≡ {n̂, P̂2n+1 = |2n+ 1〉〈2n+ 1|; ∀n}
If the mean photon number and the probabilities P2n+1 = 〈2n+ 1|ρ̂|2n+ 1〉 are known, then

we can define an observation level OC which in a sense is a complementary observation level
to OB. After some algebra one can find for the generalized canonical density operator σ̂C the
expression equivalent to eqn (151), i.e.,

σ̂C =
∞∑

n=0

P2n|2n〉〈2n| +
∞∑

n=0

P2n+1|2n+ 1〉〈2n+ 1|, (153)

where the parameters P2n+1 are known from measurement and P2n are evaluated as follows

P2n =
2P2

even

n̄even+ 2Peven

(
n̄even

n̄even+ 2Peven

)n

. (154)

In eqn (154) we have introduced notations

Peven ≡ 1−
∞∑

n=0

P2n+1; (155)

n̄even ≡ n̄−
∞∑

n=0

(2n+ 1)P2n+1. (156)

The explicit expression for the partition function ZC is

ZC = n̄even+ 2Peven

2P2
even

. (157)

The reconstruction of the Wigner function W (C)
ρ̂ (ξ) is now straightforward [see eqn (145)].

4.3.4. Observation level OD ≡ {n̂, P̂N = |N〉〈N|}
We can reduce observation levels OA,B,C even further and we can consider only a measurement

of the mean photon number n̄ and a probability PN to find the system under consideration in
the Fock state |N〉. The generalized density operator σ̂D in this case reads

σ̂D =
1

ZD
exp

[
−λn̂− λN P̂N

]
. (158)

Taking into account the fact that the observables under consideration do commute, i.e., [n̂, P̂N] =
0, and that the operator P̂N is a projector (i.e., P̂2

N = P̂N) we can rewrite eqn (158) as
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σ̂D = e−λn̂

ZD

[
(1− P̂N)+ e−λN P̂N

]
= PN|N〉〈N| +

∞∑
n≠N

Pn|n〉〈n|, (159)

where λ and λN are Lagrange multipliers associated with operators n̂ and P̂N , respectively, and
Pn = exp(−λn)/ZD gives the photon number distribution on the subspace of the Fock space
without the vector |N〉. The generalized partition function can be expressed as

ZD =
1

1− x
+ xN(y− 1), (160)

where we have introduced notation

x = exp(−λ); y = exp(−λN). (161)

The Lagrange multipliers can be found from equations

PN = 1
ZD

xN y = (1− x)xNy
1+ xN(y− 1)(1− x)

; (162)

n̄ = 1
ZD

[
x

(1− x)2
+NxN(y− 1)

]
= x+NxN(1− x)2(y− 1)
(1− x)[1+ xN(y− 1)(1− x)]

. (163)

Generally, we cannot express the Lagrange multipliers λ and λN as functions of n̄ and PN

in an analytical way for arbitrary N and eqns (162) and (163) have to be solved numerically.
Nevertheless, there are two cases when these equations can be solved in a closed analytical form.

1. If N = 0 (we will denote this observation level as OD1), then we can find for Lagrange
multipliers λ and λ0 following expressions:

e−λ = 1− 1− P0

n̄
; e−λ0 = P0

(1− P0)2
[n̄− (1− P0)]; (164)

and for the partition function we find

ZD1 =
n̄− (1− P0)
(1− P0)2

. (165)

Then after some straightforward algebra we can evaluate the parameters Pn as

Pn =


P0 for n = 0;
(1− P0)2

n̄− (1− P0)

[
n̄− (1− P0)

n̄

]n

for n > 0.
(166)

From eqn (166) which describes the photon number distribution obtained from the generalized
density operator σ̂D1 it follows that the reconstructed state on the observation level OD1 has on
the subspace formed of Fock states except the vacuum a thermal-like character. Nevertheless, in
this case the reconstructed Wigner function can be negative (unlike in the case of the thermal
observation level). This can happen if P0 is close to zero and n̄ is small. Using explicit expressions
for the parameters Pn given by eqn (166) we can evaluate the entropy SD1 corresponding to the
present observation level:

SD1 = −P0 ln P0 − (n̄− P) ln(n̄− P)− 2P ln P+ n̄ ln n̄, (167)

where we have used notation P = 1− P0. In the limit P0 → (1+ n̄)−1 expression (167) reads
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lim
P0→(1+n̄)−1

SD1 = (n̄+ 1) ln(n̄+ 1)− n̄ ln n̄, (168)

which is the entropy on the thermal observation level eqn (108). In this limit the OD1 reduces
to the thermal observation level Oth . On the other hand, in the limit P0 → 0 we obtain from
eqn (167)

lim
P0→0

SD1 = n̄ ln n̄− (n̄− 1) ln(n̄− 1), (169)

from which it directly follows that in this case the mean photon number has necessary to be larger
or equal than unity. Moreover, from eqn (169) we see that in the limit n̄ → 1 the entropy SD1 = 0
which means that the Fock state |1〉 can be completely reconstructed on the observation level
OD1. This fact can also be seen from an explicit expression for the photon number distribution
(166) from which it follows that

lim
n̄→1

lim
P0→0

Pn = δn,1. (170)

2. If the mean photon number is an integer, then in the case N = n̄ (we will denote this
observation level as OD2) we find for the Lagrange multipliers λ and λN=n̄ ≡ λn̄ the expressions

e−λ = n̄
1+ n̄

; e−λn̄ = (1+ n̄)1+n̄ − n̄n̄

(1− Pn̄)n̄n̄ Pn̄, (171)

and for the partition function we find

ZD2 = (1+ n̄)1+n̄ − n̄n̄

(1− Pn̄)(1+ n̄)n̄
. (172)

Taking into account the expression for the reconstructed photon number distribution

Pn = 〈n|σ̂D2|n〉 =
e−nλ

ZD2

[
1+ δn,n̄

(
e−λn̄ − 1

)]
, (173)

then with the help of relations (171) and (172) we find

Pn =


Pn̄ ; n = n̄
(1− Pn̄)(1+ n̄)n̄

(1+ n̄)1+n̄ − n̄n̄

(
n̄

1+ n̄

)n

; n ≠ n̄.
(174)

We see that the reconstructed photon-number distribution has a thermal-like character. The
corresponding entropy can be evaluated in a closed analytical form

SD2 = −Pn̄ ln Pn̄ − (1− Pn̄) ln(1− Pn̄)+ (1− Pn̄) ln

[
(1+ n̄)1+n̄

n̄n̄
− 1

]
. (175)

It is interesting to note that if Pn̄ is given by its value in the thermal photon number distribution,
i.e.,

Pn̄ =
n̄n̄

(1+ n̄)1+n̄
, (176)

then the entropy (175) reduces to

SD2 = (n̄+ 1) ln(n̄+ 1)− n̄ ln n̄ = − ln Pn̄, (177)

which means that the reconstructed density operator σ̂D2 on the observation level OD2 with Pn̄

given by eqn (176) is equal to the density operator of the thermal field [see eqn (107)] and so, in
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this case the reduction OD2 → Oth takes place. Obviously, if Pn̄ = 1 then SD2 = 0 and the Fock
state |n̄〉 can be completely reconstructed on the observation level OD2.

4.4. Relations between observation levels

Various observation levels considered in this section can be obtained as a result of a sequence of
mutual reductions. Therefore we can order observation levels under consideration. This ordering
can be done separately for phase-sensitive and phase-insensitive observation levels. In particular,
phase-sensitive observation levels are ordered as follows:

O0 ⊃ O2 ⊃ O1 ⊃ Oth. (178)

The corresponding entropies are related as

S0 ≤ S2 ≤ S1 ≤ Sth. (179)

The ordering of phase-insensitive observation levels OA,OB,OC,OD1 and OD2 is more complex.
In particular, we find

O0 ⊃ OA ⊃
{
OB

OC

}
⊃ Oth;

O0 ⊃ OA ⊃
{
OD1
OD2

}
⊃ Oth, (180)

O0 ⊃ OA ⊃ OB ⊃ OD1 ⊃ Oth,

which reflects the fact that observation levels OB and OC (as well as OD1 and OD2) cannot be
obtained as a result of mutual reduction or extension. The corresponding entropies are related as

S0 ≤ SA ≤
{

SB

SC

}
≤ Sth;

S0 ≤ SA ≤
{

SD1
SD2

}
≤ Sth, (181)

S0 ≤ SA ≤ SB ≤ SD1 ≤ Sth.

For a particular quantum-mechanical state of light observation levels OX can be ordered with
respect to increasing values of entropies SX. From the above it also follows that if the entropy
SX on the observation level OX is equal to zero, then the entropies on the extended observation
levels are equal to zero as well. It this case the complete reconstruction of the Wigner function
of a pure state can be performed on the observation level which is based on a measurement of
a finite number of observables.

5. RECONSTRUCTION OF WIGNER FUNCTIONS

5.1. Coherent states

The Wigner function W|α〉(ξ) of a coherent state |α〉 on the complete observation level is
given by eqn (71) [see Fig. 1(a)]. Coherent states are uniquely characterized by their amplitude
and phase and therefore phase-sensitive observation levels have to be considered for a proper
reconstruction of their Wigner functions. In Section 4.1.1 we have shown that the Wigner function
of coherent states can be completely reconstructed on the observation level O1 (see Fig. 1(a)).
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Nevertheless it is interesting to understand how Wigner functions of coherent states can be
reconstructed on phase-insensitive observation levels.

5.1.1. Observation level OA

The coherent state |α〉 has a Poissonian photon number distribution and therefore we obtain
for the generalized density operator of the coherent state on OA the expression

σ̂A =
∞∑

n=0

Pn|n〉〈n|; Pn = e−|α|
2 |α|2n

n!
. (182)

This density operator describes a phase-diffused coherent state. Eqn (182) can be rewritten in
the coherent-state basis

σ̂A =
1

2π

π∫
−π

dφ |α〉〈α|; α = |α|eiφ. (183)

From eqns (182) and (183) it follows that on the observation level OA phase information is
completely lost and the corresponding Wigner function can be written as

W (A)
|α〉 (ξ) = 2 exp(−2|ξ|2− |α|2)

∞∑
n=0

(−|α|2)n
n!

Ln(4|ξ|2), (184)

or after some algebra we can find

W (A)
|α〉 (ξ) = 2 exp(−2|ξ|2 − 2|α|2)J0(4i|α| |ξ|), (185)

where J0(4i|α| |ξ|) is the Bessel function

J0(4i|α| |ξ|)=
∞∑

n=0

(4|α|2|ξ|2)n
(n!)2

, (186)

from which we see that the Wigner function (185) is positive. We plot W (A)
|α〉 (ξ) in Fig. 1(b).

We can understand the shape of W (A)
|α〉 (ξ) if we imagine phase-averaging of the Wigner function

W|α〉(ξ) [see Fig. 1(a)]. On the other hand we can represent W (A)
|α〉 (ξ) as a sum of weighted Wigner

functions of Fock states [see eqn (184)]. For the considered coherent state |α〉 with the mean
photon number n̄ = 2 we have P1 = P2 = 2P0 = 2 exp(−2), so the Wigner functions of Fock
states |1〉 and |2〉 dominantly contribute to W (A)

|α〉 (ξ). On the other hand contribution of the

Wigner function of the vacuum state is suppressed and therefore W (A)
|α〉 (ξ) has a local minimum

around the origin of the phase space while its maximum is at the same distance from the origin
of the phase space as for the Wigner function on the complete observation level [see Fig. 1(a)].
We note that the Wigner function W (A)

|α〉 (ξ) describing the phase-diffused coherent state has been
experimentally reconstructed recently by Munroe et al. [11].

5.1.2. Observation level OB

Let us assume that from a measurement the mean photon number n̄ and probabilities P2n

are know (see Section 4.3.2). If the values of P2n are given by Poissonian distribution (182), i.e.,
P2n = exp(−n̄)n̄2n/(2n)!, then using definitions (148) and (149) we can find the parameters Podd

and n̄odd to be

Podd = e−n̄ sinh n̄; n̄odd = n̄(1− Podd), (187)
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Fig. 1. The reconstructed Wigner functions of the coherent state |α〉 with n̄ = 2. We consider the observation levels
as indicated in the figure. It is clearly seen that the Wigner function of a coherent state can be easily reconstructed
on the most simple phase-sensitive observation level O1. We note that on some observation levels the reconstructed

Wigner function of the coherent state may take negative values.

The reconstructed probabilities P2n+1 are given by eqn (152) and in the limit of large n̄ (when
Podd → 1/2 and n̄odd → n̄/2) they read

P2n+1 → (n̄− 1)n

(n̄+ 1)n+1
. (188)

With the help of the relation (145) and explicit expressions for P2n and P2n+1 we can evaluate
expression for the Wigner function of the coherent state on the observation level OB. We plot
W (B)
|α〉 (ξ) of the coherent state with the mean photon number equal to two (n̄ = 2) in Fig. 1(c).

In this case P2 is dominant from which it follows that the Fock state |2〉 gives a significant
contribution into W (B)

|α〉 (ξ) [compare with Fig. 1(b)].

5.1.3. Observation level OC

The Wigner function W (C)
|α〉 (ξ) of the coherent state on the observation level OC can be re-

constructed in exactly same way as on the level OB. In Fig. 1(d) we present a result of this
reconstruction. On the observation level OC the contribution of the vacuum state is more sig-
nificant than in the case OB which is due to the thermal-like photon number distribution P2n on
the even-number subspace of the Fock space [see eqn (154)].

5.1.4. Observation level OD1
We can easily reconstruct the Wigner function of the coherent state at the observation level

OD1. Using general expressions from Section 4.3.4 we find the following expression for the
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Wigner function W (D1)
|α〉 (ξ) [we remind us that for coherent state the parameter P0 is given by

the relation P0 = exp(−n̄) ]:

W (D1)
|α〉 (ξ) =

(
P0 −

1− P0

ñ

)
W|0〉(ξ)+ (1− P0)

ñ+ 1
ñ

Wth(ξ), (189)

where W|0〉(ξ) is the Wigner function of the vacuum state given by eqn (71) and Wth(ξ) is the
Wigner function of a thermal state (109) with an effective number of photons equal to ñ, where

ñ = n̄
1− P0

− 1. (190)

In particular, from eqns (189) and (190) it follows that

lim
n̄→0

W (D1)
|α〉 (ξ) =W|0〉(ξ), (191)

and simultaneously SD1 = 0, which means that the vacuum state can be completely reconstructed
on the present observation level. Another result which can be derived from eqn (189) is that if
P0(2n̄+ 1) < 1, then the reconstructed Wigner function W (D1)

|α〉 (ξ) of the coherent state |α〉 can
be negative due to the fact that the contribution of the Fock state |1〉 is more dominant than the
contribution of the vacuum state and then the negativity of the Wigner function W|1〉(ξ) results
into negative values of W (D1)

|α〉 (ξ). This means that even though the Wigner function of the state
itself (i.e., the Wigner function at the complete observation level) is positive, the reconstructed
Wigner function can be negative. This is a clear indication that the observation level has to be
chosen very carefully and that reconstructed Wigner functions can indicate nonclassical behavior
even in those cases when the measured state itself does not exhibit nonclassical effects. In Fig. 1(e)
we plot the Wigner function W (D1)

|α〉 (ξ) of the coherent state which illustrates this effect.

5.1.5. Observation level OD2
If the mean photon number n̄ is an integer, then one may consider the observation level OD2.

The Wigner function of the coherent state at this observation level for which Pn̄ = exp(−n̄)n̄n̄/(n̄!)
reads

W (D2)
|α〉 (ξ) =

(
1− 1+ n̄

ZD2

)
W|n̄〉(ξ)+

n̄+ 1
ZD2

Wth(ξ), (192)

where W|n̄〉(ξ) is the Wigner function of the Fock state |n̄〉 and Wth(ξ) is the Wigner function
of the thermal state with the mean photon number equal to n̄. The partition function ZD2 is
given by the relation (172). The Wigner function (192) is plotted in Fig. 1(f). From this figure
we see that the vacuum state |0〉 (due to the thermal-like character of the reconstructed photon
number distribution) and the Fock state |2〉 (as a consequence of the measurement) dominantly
contribute to W (D1)

|α〉 (ξ).

5.2. Squeezed vacuum

The Wigner function of the squeezed vacuum state (85) on the complete observation level O0

is given by eqn (89) and is plotted (in the complex ξ phase space) in Fig. 2(a). This is a Gaussian
function, which carries phase information associated with the phase of squeezing. On the thermal
observation levelOth which is characterized only by the mean photon number n̄ the reconstructed
Wigner function of the squeezed vacuum state is a rotationally symmetrical Gaussian function
centered at the origin of the phase space [see eqn (109) and Fig. 1(g)]. On the observation level
O1 the reconstructed Wigner function is the same as on the thermal observation level because
the mean amplitudes 〈â〉 and 〈â†〉 are equal to zero. On the other hand, the Wigner function of
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the squeezed vacuum can be completely reconstructed on the observation level O2. To see this
we evaluate the entropy S2 for the squeezed vacuum state [see eqn (129)]. The parameters M
and N can be expressed in terms of the squeezing parameter η (we assume η to be real) as

N = η2

1− η2
; M = η

1− η2
, (193)

so that N(N+1) =M2. Consequently the parameter χ given by eqn (126) is equal to zero from
which it follows that S2 for the squeezed vacuum is equal to zero.

5.2.1. Observation level OA

The squeezed vacuum state (85) is characterized by the oscillatory photon number distribution
Pn:

P2n = (1− η2)1/2
(2n)!
[2nn!]2

η2n; P2n+1 = 0. (194)

Using eqn (145) we can express the Wigner function W (A)
|η〉 (ξ) of the squeezed vacuum on the

observation level OA as

W (A)
|η〉 (ξ) = 2(1− η2)1/2e−2|ξ|2

∞∑
n=0

(2n)!η2n

22n(n!)2
L2n(4|ξ|2). (195)

Taking into account that the Wigner function on the observation level OA can be obtained as
the phase-averaged Wigner function on the complete observation level, we can rewrite (195) as

W (A)
|η〉 (ξ) =

1
2π

π∫
−π

W|η〉(ξ)dφ; ξ = |ξ|eiφ. (196)

If we insert the explicit expression for W|η〉(ξ) [see eqn (89)] into eqn (196) we obtain

W (A)
|η〉 (ξ) = 2 exp

[
−
(
|ξ|2
2σ2

q
+ |ξ|

2

2σ2
p

)]
I0

(
|ξ|2
2σ2

q
− |ξ|

2

2σ2
p

)
, (197)

where I0(x) is the modified Bessel function. We plot this Wigner function in Fig. 2(b). We see
that W (A)

|η〉 (ξ) is not negative and that it is much narrower in the vicinity of the origin of the phase
space than the Wigner function of the vacuum state (compare with Fig. 1(a)). Nevertheless the
total width of Wigner function W (A)

|η〉 (ξ) is much larger than the width of the Wigner function
of the vacuum state.

5.2.2. Observation level OB

Due to the fact that for the squeezed vacuum state we have
∑

n P2n = 1, the Wigner function
of the squeezed vacuum state on the observation level OB is equal to the Wigner function on
the observation level OA, i.e., W (B)

|η〉 (ξ) =W (A)
|η〉 (ξ).

5.2.3. Observation level OC

For the squeezed vacuum state all meanvalues P2n+1 are equal to zero and therefore
∑

n P2n+1 =
0. From this fact and from the knowledge of the mean photon number n̄ we can reconstruct the
Wigner function W (C)

|η〉 (ξ) in the form [see Section 4.2.3]

W (C)
|η〉 (ξ) =

4e−2|ξ|2

n̄+ 2

∞∑
k=0

(
n̄

n̄+ 2

)k

L2k(4|ξ|2). (198)
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Fig. 2. The reconstructed Wigner functions of the squeezed vacuum state |η〉 with n̄ = 2. We consider the observation
levels as indicated in the figure. This Wigner function can be completely reconstructed on the observation level O2.

where n̄ is the mean photon number in the squeezed vacuum state. We plot the Wigner function
W (C)
|η〉 (ξ) in Fig. 2(c). This Wigner function is very similar to the Wigner function on the obser-

vation level OA [see Fig. 2(b)] which reflects the fact that the photon number distribution of the
squeezed vacuum state has a thermal-like character on the even-number subspace of the Fock
space.

5.2.4. Observation level OD1
With the help of the general formalism presented in Section 4 we can express the Wigner

function W (D1)
|η〉 (ξ) of the squeezed vacuum state on the observation level OD1 in the form [see

eqn (189)] with

P0 = (1− η2)1/2 = (n̄+ 1)−1/2; and ñ = n̄
1− (1+ n̄)−1/2 − 1. (199)

We plot the Wigner function W (D1)
|η〉 (ξ) in Fig. 2(d) from which the dominant contribution of

the vacuum state is transparent which is due to the fact that the squeezed vacuum state has a
thermal-like photon number distribution.

5.2.5. Observation level OD2

If we consider n̄ to be an even integer, then the Wigner function W (D2)
|η〉 (ξ) of the squeezed

vacuum state on OD2 is given by eqn (192). The partition function ZD2 is given by eqn (172)
where

Pn̄ = n̄!
2n̄ [(n̄/2)!]2

n̄n̄/2

(1+ n̄)(1+n̄)/2 . (200)
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We plot this Wigner function in Fig. 2(e). It has a thermal-like character [compare with Fig. 1(g)]
but contribution of the Fock state |n̄ = 2〉 is more dominant compared with the proper thermal
distribution. If n̄ is an odd integer, then Pn̄ = 0 and the corresponding Wigner function can be
again reconstructed with the help of eqns (192) and (172).

5.3. Even coherent state

We plot the Wigner function of the even coherent state on the complete observation level
in Fig. 3(a). Two contributions of coherent component state |α〉 and | − α〉 as well as the
interference peak around the origin of the phase space are transparent in this figure. As in the
case of the squeezed vacuum state, the mean amplitude 〈â〉 of the even coherent state is equal to
zero and therefore the Wigner function W (1)

|αe〉(ξ) of the even coherent state on the observation
level O1 is equal to the thermal Wigner function given by eqn (109).

5.3.1. Observation level O2
Using general expressions from Section 4.1.2 we can express the Wigner function W (2)

|αe〉(ξ) of
the even coherent state on the observation level O2 as

W (2)
|αe〉(ξ) =

1[
(N + 1/2)2 −M2

]1/2 exp

[
− ξ2

x

[(N + 1/2)+M]
−

ξ2
y

[(N + 1/2)−M]

]
, (201)

where ξ = ξx + iξy, and the parameters N and M read

N = α2 tanhα2; M = α2. (202)

We plot the Wigner function W (2)
|αe〉(ξ) in Fig. 3(b). This Wigner function is slightly “squeezed”

in the ξy-direction and stretched in the ξx-direction. Nevertheless, the reconstructed Wigner
function is different from the Wigner function of the squeezed vacuum state [compare with
Fig. 2(a)].

5.3.2. Observation level OA

The photon number distribution of the even coherent state is given by the relation (we assume
α to be real):

P2n = 1
coshα2

α4n

(2n)!
; P2n+1 = 0, (203)

so the corresponding Wigner function can be expressed as eqn (145). We can also express W (A)
|αe〉(ξ)

as the phase averaged Wigner function of the even coherent state W|αe〉(ξ) given by eqn (93).
After some algebra we find that W (A)

|αe〉(ξ) can be written in a closed form

W (A)
|αe〉(ξ) =

e−2|ξ|2

coshα2

[
e−α

2
J0(4iα|ξ|)+ eα

2
J0(4α|ξ|)

]
. (204)

We plot the Wigner function W (A)
|αe〉(ξ) in Fig. 3(c). From this figure the dominant contribution

of the Fock state |2〉 is transparent (in the present case we have P0 ' 2 exp(−2), P2 = 2P0, and
P4 = 2P0/3, while all other probabilities Pn are much smaller) which results in negative Wigner
function.

5.3.3. Observation level OB

Due to the fact that the even coherent state is expressed as a superposition of only even Fock
states, i.e.,

∑
n P2n = 1, the Wigner functions on the observation levels OA and OB are equal, i.e.,

W (B)
|αe〉(ξ) =W (A)

|αe〉(ξ).
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Fig. 3. The reconstructed Wigner functions of the even coherent state |αe〉 with n̄ = 2. We consider the observation
levels as indicated in the figure. This non-Gaussian Wigner function can be completely reconstructed only on the

complete observation level when all moments of systems operators are measured.

5.3.4. Observation level OC

As a consequence of the fact that for the even coherent state all meanvalues P2n+1 are equal to
zero the information available for the reconstruction of the Wigner function W (C)

|αe〉(ξ) is the same
as in the case of the reconstruction of the Wigner function of the squeezed vacuum state on the
observation level OC. Therefore, the Wigner function W (C)

|αe〉(ξ) has exactly the same form as for
the squeezed vacuum state with the same mean photon number n̄ [see Fig. 3(d) and Fig. 2(c)].

5.3.5. Observation level OD1
The Wigner function W (D1)

|αe〉 (ξ) of the even coherent state on the observation level OD1 is given
by eqn (189) with

P0 = 1
coshα2

; ñ = α2 sinhα2

coshα2 − 1
− 1. (205)
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We plot the Wigner function W (D1)
|αe〉 (ξ) in Fig. 3(e). This Wigner function has a thermal-like

character except the fact that the contribution of the vacuum state is slightly suppressed.

5.3.6. Observation level OD2
Analogously we can find the Wigner function W (D2)

|αe〉 (ξ). If we consider n̄ to be an even integer,

then the Wigner function W (D2)
|η〉 (ξ) of the even coherent state on OD2 is given by eqn (192) and

eqn (172) where

Pn̄ =
1

coshα2

α2n̄

n̄!
, (206)

and if n̄ is an odd integer then Pn̄ = 0. We plot W (D2)
|αe〉 (ξ) in Fig. 3(f). From our previous

discussion it is clear that in the present case the vacuum state and the Fock state |2〉 dominantly
contribute to W (D2)

|αe〉 (ξ) (similarly as on the observation level OA - see Fig. 3(c)).

5.4. Odd coherent state

We present the Wigner function of the odd coherent state with the mean photon number
equal to two in Fig. 4(a). The mean amplitude 〈â〉 of the odd coherent state is equal to zero
and therefore the Wigner function W (1)

|αo〉(ξ) of this state on the observation level O1 is equal to
the thermal Wigner function given by eqn (109) [see Fig. 1(g)].

5.4.1. Observation level O2
Using general expressions from Section 4.2.2 we find that the Wigner function W (2)

|αo〉(ξ) of
the odd coherent state on the observation level O2 is the same as for the even coherent state [see
eqn (201)] but the parameters N and M in the present case read

N = α2 cothα2; M = α2. (207)

We plot the Wigner function W (2)
|αo〉(ξ) in Fig. 4(b). This is a “squeezed”-Gaussian function

similar to the Wigner function of the even coherent state on the same observation level [see
Fig. 3(b) and discussion in the previous section].

5.4.2. Observation level OA

The photon number distribution of the odd coherent state is given by the relation (we assume
α to be real):

P2n = 0; P2n+1 =
1

sinhα2

(α2)2n+1

(2n+ 1)!
. (208)

Consequently, the Wigner function W (A)
|αo〉(ξ) can be expressed as (145). Alternatively, if we use

the fact that W (A)
|αo〉(ξ) is equal to the phase averaged Wigner function of the odd coherent state

W|αo〉(ξ) given by eqn (94), then we can write

W (A)
|αo〉(ξ) =

e−2|ξ|2

sinhα2

[
e−α

2
J0(4iα|ξ|)− eα

2
J0(4α|ξ|)

]
. (209)

This function is always negative in the origin of the phase space. We plot the Wigner function
W (A)
|αo〉(ξ) in Fig. 4(c). In the present case P0 = P2 = 0 and P1 is the largest probability therefore

the contribution of the Fock state |1〉 in W (A)
|αo〉(ξ) is the most dominant which is clearly seen

from Fig. 4(c). We also note that, in general, any superposition of odd Fock states has a negative
Wigner function on the observation level OA.
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5.4.3. Observation level OB

For the odd coherent state all meanvalues P2n are equal to zero. Taking into account this
information and the information about the mean photon number we reconstruct the Wigner
function W (B)

|αo〉(ξ) in the form (for details see Section 4.3.2)

W (B)
|αo〉(ξ) = −

4e−2|ξ|2

n̄+ 1

∞∑
k=0

(
n̄− 1
n̄+ 1

)k

L2k+1(4|ξ|2), (210)

where n̄ = α2 cothα2. We plot this Wigner function in Fig. 4(d). In the present case the dominant
contribution of the Fock state |1〉 is seen (P0 = P2 = 0 and due to the thermal-like photon
number distribution on the odd-number subspace of the Fock state P3 is much smaller than P1).
We can conclude, that any superposition of odd Fock states on the observation level OB has the
Wigner function given by eqn (210), i.e., superpositions of odd Fock states are indistinguishable
on OB.

5.4.4. Observation level OC

Due to the fact that the odd coherent state is expressed as a superposition of only odd Fock
states, i.e.,

∑
n P2n+1 = 1, the Wigner functions on the observation levels OC and OA are equal,

i.e., W (C)
|αo〉(ξ) =W (A)

|αo〉(ξ).

5.4.5. Observation level OD1

The Wigner function W (D1)
|αo〉 (ξ) of the odd coherent state on the observation level OD1 is given

by the following relation [we remind us that for the odd coherent state we have P0 = 0]

W (D1)
|αo〉 (ξ) = −

1
n̄− 1

W|0〉(ξ)+
n̄

n̄− 1
Wth(ξ), (211)

where n̄ is the mean photon number in the odd coherent state; W|0〉(ξ) is the Wigner function
of the vacuum state and Wth(ξ) is the thermal Wigner function for the state with n̄− 1 photons.
We note that from eqn (211) it follows that

lim
n̄→1

W (D1)
|αo〉 (ξ) =W|1〉(ξ), (212)

We plot the Wigner function W (D1)
|αo〉 (ξ) in Fig. 4(e). Compared with Fig. 4(d) we see that the

contribution of the Fock state |1〉 on the observation level OD1 is smaller than on OB. This is
due to the fact that on the present observation level P2 is not equal to zero.

5.4.6. Observation level OD2

Reconstruction of the Wigner function W (D2)
|αo〉 (ξ) is straightforward. For the odd coherent

state it is valid that if n̄ is an odd integer, then

Pn̄ =
1

sinhα2

α2n̄

n̄!
, (213)

and the Wigner function is given by eqn (192). On the other hand if n̄ is an even integer, then
Pn̄ = 0 and we again use eqn (192) for the reconstruction of the Wigner function W (D2)

|η〉 (ξ).
We plot this Wigner function in Fig. 4(f). Even though on this observation level P2 = 0 the
contribution from the vacuum state is significant and therefore W (D2)

|αo〉 (ξ) is not negative in the
present case.



1020 V. BUŽEK et al.

Fig. 4. The reconstructed Wigner functions of the odd coherent state |αo〉 with n̄ = 2. We consider the observation
levels as indicated in the figure.

5.5. Fock state

Mean values of the operators âk in the Fock state are equal to zero, therefore the Wigner
functions W (1)

|n〉 (ξ) and W (2)
|n〉 (ξ) of the Fock state |n〉 on the observation levels O1 and O2,

respectively, are equal to the thermal Wigner function given by eqn (109) [see Fig. 5(b)]. On the
other hand the Shannon entropy of the Fock state is equal to zero, therefore this state can be
completely reconstructed on the observation level OA [see Fig. 5(a) for the Wigner function of
the Fock state |2〉].

5.5.1. Observation level OB

If the Fock state has an even number of photons then it can also be completely reconstructed
on the observation level OB. But if the number of photons of the Fock state is odd then the
Wigner function of this Fock state on OB is given by the relation (210) with n̄ = n.
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Fig. 5. The reconstructed Wigner functions of the Fock state |n = 2〉. We consider the observation levels as indicated
in the figure. Even though the Fock state is represented by the non-Gaussian Wigner function it can be completely

reconstructed on the observation level On.

5.5.2. Observation level OC

If the number of photons on the Fock state is odd than the corresponding Wigner function can
be completely reconstructed on the observation level OC. If the number of photons is even, then
the Wigner function W (C)

|n〉 (ξ) is given by eqn (198) with n̄ = n. We plot W (C)
|n〉 (ξ) in Fig. 5(c). This

Wigner function is the same as for the squeezed vacuum state W (C)
|η〉 (ξ) and the even coherent

state W (C)
|αe〉(ξ) with the same mean photon number [see Figs. 2(c) and 3(d)]. More generally, all

superpositions of even Fock states with the same mean photon number are indistinguishable on
OC.

5.5.3. Observation level OD1
If the Fock state under consideration is the vacuum state then it can be completely recon-

structed on the observation level OD1. If the number of photons is larger than zero, then P0 = 0
and the corresponding Wigner function is given by eqn (211) with n̄ = n. We plot W (D1)

|n=2〉(ξ) in
Fig. 5(d).

5.5.4. Observation level OD2

On this observation level the Wigner function of the Fock state |n〉 can be always completely
reconstructed, because this observation level is defined in such way that Pn = 1.

5.6. Observation level On ≡ {n̂, n̂2}

We will finish this section with a brief discussion about the phase-insensitive observation level
On which is related to a measurement of the observables n̂ and n̂2.

The generalized canonical density operator σ̂ on the observation level On reads:
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σ̂n = 1
Zn

exp
[
−λ1n̂− λ2n̂2

]
= 1

Zn

∞∑
n=0

exp
[
−λ1n− λ2n2

]
|n〉〈n|. (214)

The Lagrange multipliers are determined by the relations

〈n̂〉 = −∂ ln Zn

∂λ1
=

∞∑
m=0

mPm; (215)

〈n̂2〉 = −∂ ln Zn

∂λ2
=

∞∑
m=0

m2Pm, (216)

where

Pm = 1
Zn

exp
[
−λ1m− λ2m2

]
; (217)

and

Zn =
∞∑

m=0

exp
[
−λ1m− λ2m2

]
. (218)

From eqns (215) and (216) it follows that if 〈n̂〉 = N is an integer, then in the limit σn → 0+
(where σ2

n ≡ 〈n̂2〉 − 〈n̂〉2) λ1 = −2Nλ2 and λ2 tends to infinity. Simultaneously

Pm → δm,N, (219)

which means that in this case σ̂n → |N〉〈N|. In other words, on the observation level On the
Fock state |N〉 can be completely reconstructed (see Fig. 5(a)) and in this case the corresponding
entropy Sn = −kB

∑
m Pm ln Pm is equal to zero.

The Wigner function of this state is negative, which in particular reflects the fact that the re-
constructed distribution is narrower than the Poissonian (coherent-state) photon number distri-
bution, i.e., the state under consideration exhibits sub-Poissonian photon number distribution.
To quantify the degree of the sub-Poissonian photon statistics one can utilize the Mandel Q
parameter defined as:

Q = 〈n̂
2〉 − 〈n̂〉2 − 〈n̂〉

〈n̂〉 , (220)

which for Fock states is equal to -1 while for coherent states is equal to 0. The state is said
to have sub-Poissonian photon statistics providing Q < 0. One can easily reconstruct sub-
Poissonian states on the observation level On. In addition states with the Poissonian photon
statics Q = 0 can be partially reconstructed on this observation level as well. For instance in
Fig. 1(h) we represent a result of numerical reconstruction of the Wigner function W (n)

|α〉 (ξ) of
the coherent state with a Poissonian photon number distribution on the observation level On.
In this case the reconstructed photon number distribution Pn [see eqn (217)] does not have a
Poissonian character, and therefore the reconstructed Wigner functions of the coherent state on
the observation levels OA and On are different (compare Figs.1(b) and 1(h), respectively) even
though the reconstructed states have the same mean photon number 〈n̂〉 and the same variance
σ2

n in the photon number distribution.
On the observation level On we can reconstruct also the odd coherent state given by eqn (92)

which is a sub-Poissonian state with the Q parameter given by the relation (we assume α to be
real):
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Q = − 4α2e−2α2

1− e−4α2 = −
n̄

(coshα2)2
< 0, (221)

where the mean photon number n̄ in the odd coherent state is given by the relation n̄ = α2 cothα2.
We have plotted the result of the numerical reconstruction of the Wigner function of the odd
coherent state with n̄ = 2 on the given observation level in Fig. 4(g). Due to the fact, that for
the given mean photon number the odd coherent state does not exhibit a significant degree of
sub-Poissonian photon statistics, the corresponding Wigner function W (n)

|αo〉(ξ) is not negative
(compare with Fig. 4(c)).

The even coherent state (91) is characterized by the super-Poissonian photon statistics with
the Mandel Q parameter given by the relation

Q = 4α2e−2α2

1− e−4α2 =
n̄

(sinhα2)2
> 0, (222)

with the mean photon number given by the relation n̄ = α2 tanhα2. From eqn (222) it follows
that for large enough values of α (i.e., for large enough values of n̄) the Mandel Q parameter is
smaller than n̄ (it tends to zero). In this case the Wigner function of the even coherent state on
the observation level On can be easily reconstructed (see Fig. 3(g)). We can also reconstruct on
this observation level a thermal mixture for which the Mandel Q parameter is equal to n̄ (i.e.,
〈n̂2〉 = 2n̄2+ n̄). In this case the Lagrange multiplier λ2 in expression (214) is equal to zero and
consequently the results of the reconstruction on the observation levels On and Oth (thermal
observation level) are equal.

It is important to stress that all those states for which the Mandel Q parameter is less than
n̄ (in analogy with sub-Poissonian states we can call these states as the sub-thermal states) can
be reconstructed on On. For all these states the Lagrange multiplier λ2 is greater than zero and
consequently the generalized partition function (218) does exist. Nevertheless there are states
for which Q > n̄ (we will call these states as super-thermal states). For these state the Lagrange
multiplier λ2 is smaller than zero and Zn given by eqn (218) is diverging. Consequently, these
states cannot be reconstructed on the observation level On. In particular, the Mandel Q parameter
for the squeezed vacuum state (85) reads Q = 2n̄+ 1 (for n̄ > 0) and therefore we are not able
to reconstruct the Wigner function of the squeezed vacuum state on On. Analogously, the even
coherent state for small values of α such that sinhα2 < 1 has a super-thermal photon number
distribution and it cannot be reconstructed on this observation level.

The mathematical reason behind the fact that super-thermal states cannot be reconstructed on
On is closely related to the semi-infiniteness of the Fock state space of the harmonic oscillator,
i.e., the photon number distribution of these states cannot be approximated by discrete Gaussian
distributions Pm (217) on the interval m ∈ [0,∞). In principle, there exist two ways how to
regularize the problem: one can either expand the Fock space and to introduce “negative” Fock
states, i.e., m ∈ (−∞,∞). Alternatively, one can assume finite-dimensional Fock space such that
m ∈ [0, s]. In both these cases Zn for super-thermal states is finite and in principle σ̂n can be
reconstructed (but it may depend on the regularization procedure).

6. OPTICAL HOMODYNE TOMOGRAPHY AND MAXENT PRINCIPLE

From the point of view of the formalism presented in this paper it follows that from the
probability density distribution wρ̂(xθ) [see eqn (54)] which corresponds to a measurement of
all moments 〈x̂n

θ〉, the generalized canonical density operators σ̂xθ [see also eqn (11)]:
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σ̂xθ =
1

Zxθ
exp

− ∞∫
−∞

dxθ |xθ〉〈xθ|λ(xθ)
 (223)

can be constructed. The Lagrange multipliers λ(xθ) are given by an infinite set of equations

wρ̂(xθ) =
√

2π�〈xθ|σ̂xθ|xθ〉; ∀xθ ∈ (−∞,∞). (224)

If probability distributions wρ̂(xθ) for all values of θ ∈ [0,π] are known then the density
operator on the complete observation level can be obtained in the form

ρ̂ = 1
Z0

exp

− π∫
0

dθ

∞∫
−∞

dxθ |xθ〉〈xθ|λ(xθ)

 , (225)

and the corresponding Wigner function can be reconstructed. The optical homodyne tomography
can be understood as a method how to find a relation between measured distributions wρ̂(xθ)
and the Lagrange multipliers λ(xθ) for all values of xθ and θ. As we have shown earlier in
this section, the Gaussian and the generalized Gaussian states can be completely reconstructed
on reduced observation levels based on a measurement of just finite number of moments of
system observables, and therefore the optical homodyne tomography is essentially not needed
as a method for reconstruction of Wigner functions in these cases. On the other hand, the non-
Gaussian states can in principle reconstructed, but in practice the reconstruction of their Wigner
functions is associated with a measurement of an infinite number of independent moments of
system observables which is not realistic. In the experiments by Raymer et al. [10] only a finite
number of values of θ have been considered, i.e., these types of experiments are associated with
observation level for which the corresponding generalized canonical density operator reads

σ̂ = 1
Z

exp

λ0n̂+
Nx∑
l=1

Nθ∑
m=1

λl ,m|x(l)θm
〉〈x(l)θm

|
 . (226)

6.1. Implementation and numerical examples

We want to demonstrate our reconstruction scheme and compare it with known tomography
scheme† at four nontrivial examples. One is an incoherent superposition of two coherent states

ρ̂1 =
1
2
(|α1〉〈α1| + |α2〉〈α2|) , (227)

the second is a superposition of two coherent states

ρ̂2 = N (|α1〉 + |α2〉) (〈α1| + 〈α2|) , (228)

†The direct sampling method as described above can be straightfowardly applied also in the case when the
quadrature components x̂θ are measured at Nθ discrete phases θm . As shown by Leonhardt and Munroe [67] if it is
a priori known that ρmn = 0 for |m− n| ≥ Nθ then the density matrix elements ρmn for |m− n| < Nθ can be precisely
reconstructed from the measured distributions w(xθ,θm) at Nθ phases θm . On the other hand, if the parameter x is
discretized (which corresponds to a measurement of Nx projectors |x(l)θm

〉〈x(l)θm
| in the direction θm), then the direct-

sampling reconstruction can be applied as well, but may lead to “pathological” density operators which are not
positively defined. Alternatively, the least-square inversion method (see for instance [68]) can be efficiently applied. The
advantage of this method is that it is a linear method which means that the density matrix can be reconstructed in a
real time together with an estimation of the statistical error. We note that this method may also lead to non-positive
density operators.
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the third is a rectangular state

ρ̂3 = |ψ〉〈ψ| (229)

with

ψ(x) =


1√
4α1

for x ∈ [−2α1, 2α1]

0 elsewhere,
(230)

and the last one is a Fock state

ρ̂4 = |n〉〈n|. (231)

All calculations were carried out in the Fock representation, where the projection operators

Ôlm = |x(l)θm
〉〈x(l)θm

| (232)

read (
Ôlm

)
n1,n2

= ψ?n1
(xl)ψn2(xl) exp(iθm(n1 − n2)), (233)

and θm is the quadrature phase and xl is the eigenvalue of the operator. In the numerical examples
we chose α1 = 1.25 and α2 = 1.25 i for the first three states and n = 4 for the Fock state.

Our numerical approach forces us to truncate the Hilbert space at a finite value nmax and we
must insure that an increase of this cut-off does not change our results significantly. On the other
hand the number Nθ of different angles θ and the number Nx and separation ∆x of different x
is given by the experiment. The error of any reconstruction scheme goes to zero when all x for
all angles θ are covered, i.e. when our knowledge about the state is complete. On the other hand
for incomplete knowledge the different reconstruction schemes give different results and in this
sense we want to compare the schemes.

As a representation of the state and its reconstruction we show the Wigner function (see
Fig. 6). The plots in the upper line show the Wigner functions as surface plots, whereas the lower
line shows the same functions as grey scale plots. The uniform grey background corresponds
to the value zero whereas darker areas indicate positive values of the Wigner function. In (a)
we show the state ρ̂1 itself as defined in (227) and in (b) the reconstruction ˆ̃ρ1 as obtained via
the maximum entropy principle. For the reconstruction we used only 4 different angles and 13
points on each axis. Despite this extremely small number the graphical representation of the
state ˆ̃ρ1 reveals no difference to the original state ρ̂1. For completeness we include (c) the state
as obtained via projection onto pattern functions as described in [15]. Contrary to (a) and (b)
we also obtain white areas which correspond to a negative value of the Wigner function.

Already from this plot it is obvious that the reconstruction via maximum entropy principle
matches much better the original state. For a quantitative comparison we calculated

∆ =
∑

n1,n2

[
(ρ1)n1,n2 − (ρ̃1)n1,n2

]2 (234)

as a measure for the error of the reconstruction. We vary the number Nθ of different angles
and Nx of different values on each angle, their separation is chosen in such a way that they
cover uniformly the integral [−2, 2], where—as can be seen in Fig. 6—almost the whole state is
located. The numerical cut-off for the Hilbert space was nmax = 30.

Whereas the errors ∆ (Table 1) for usual quantum tomography are of the order of one (thus
on average of the order of 10−3 per matrix element) the inclusion of the maximum entropy
principle reduces the errors by several orders of magnitudes. We want to add that the large errors
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Fig. 6. Wigner function of an incoherent superposition of two coherent states (a), its reconstruction via the maximum
entropy principle (b) and its reconstruction via projection onto pattern functions (c). The upper line shows the Wigner
function as surface plots, whereas the lower line shows the same functions as a grey scale plot, where dark areas
correspond to higher values and bright areas to lower values. We see that the reconstruction via the MaxEnt principle

is much more reliable then a straightforward application of direct sampling via pattern functions.

Table 1. Deviation ∆ of the reconstructed state from the incoherent superposition of two coherent states for
reconstruction via the maximum entropy principle and for reconstruction via projection onto pattern functions.

number of observables maximum entropy principle direct sampling

N� = 3 ; Nx = 11 1:0 � 10�3 4.39

N� = 4 ; Nx = 11 2:8 � 10�5 3.41

N� = 4 ; Nx = 13 3:0 � 10�5 1.18

N� = 5 ; Nx = 15 1:0 � 10�5 0.76

of usual quantum tomography of course decrease significantly when increasing the amount of
measurement data, i.e. increasing Nθ and Nx. On the other hand, the reconstruction via projection
onto pattern function is in general not positive definite which reflects some fundamental problems
associated with this reconstruction scheme.

One might suspect that the superiority of the reconstruction via the maximum entropy princi-
ple might be a speciality of the selected state, an incoherent superposition of two coherent states.
Therefore we want to give some more examples, e.g. the corresponding coherent superposition,
as defined in (228). As in the previous example the values of α1 and α2 were chosen to be 1.25
and 1.25 i, respectively (see Fig. 7).

Surprisingly enough the reconstruction turns out to be simplified by the quantum interferences
apparent in the cat state: the deviations for both reconstruction schemes are smaller than for the
incoherent superposition (Table 2). Apart from this the overall picture remains the same: The
reconstruction with the maximum entropy principle is many orders of magnitudes better than
the reconstruction via pattern functions. Moreover, the reconstruction via pattern functions may
again result in density operators which are not positive definite.
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Fig. 7. Wigner function of a coherent superposition of two coherent states given by eqn (228) (a), its reconstruction
via the maximum entropy principle (b) and its reconstruction via the projection onto pattern functions (c). Again

the upper line shows the state as surface plot and the lower line the corresponding grey scale plots.

Table 2. Deviation ∆ of the reconstructed state from the coherent superposition of two coherent states for reconstruction
via the maximum entropy principle and for reconstruction via projection onto pattern functions.

number of observables maximum entropy principle direct sampling

N� = 3 ; Nx = 11 1:74 � 10�3 6.90

N� = 4 ; Nx = 11 7:8 � 10�6 4.33

N� = 4 ; Nx = 13 1:3 � 10�21 1.00

N� = 5 ; Nx = 15 1:5 � 10�11 0.377

Next, we discuss the reconstruction of the rectangular state as defined in (229). Though this
state is of less relevance in quantum optics it can be easily realized for atomic beams by an
aperture. The reason, why we include this state into our discussion is twofold: on one hand,
the oscillations in its Wigner function (see below) represent a serious difficulty for quantum
tomography, so it is interesting to check, whether other reconstruction schemes do not have this
difficulty. On the other hand the smoothening character of our reconstruction by selecting the
state with maximum entropy may smooth out just these oscillations and therefore this state is a
critical test of the maximum entropy reconstruction.

The overall picture (Fig. 8) is the same as for the previous two examples: the reconstruction
via the maximum entropy principle gives a deviation (see also Table 3) from the original state
many orders of magnitude lower than conventional quantum tomography does. Once more we
want to stress that the bad reconstruction by usual quantum tomography is due to the extremely
small number of angles and grid points. Increasing the amount of measurement data makes this
reconstruction scheme working.

Finally, we turn to a state, which is relatively easy to reconstruct via quantum tomography: a
number state (231) with n = 4. This state can be obtained almost exactly with a finite number of
phases Nθ provided that Nθ = n+1 and that each quadrature is measured completely, i.e. covering
densely the whole axis. Since our examples do not and cannot fulfill the latter condition, we
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Fig. 8. Wigner function of a rectangular state given by [see eqn (229)] (a), its reconstruction via the maximum entropy
principle (b) and its reconstruction via the projection onto pattern functions (c).

Table 3. Deviation ∆ of the reconstructed state from the rectangular state for reconstruction via the maximum entropy
principle and for reconstruction via projection onto pattern functions.

number of observables maximum entropy principle direct sampling

N� = 3 ; Nx = 11 4:11 � 10�2 11.2

N� = 4 ; Nx = 11 2:6 � 10�15 7.88

N� = 4 ; Nx = 13 3:8 � 10�14 2.89

N� = 5 ; Nx = 15 1:9 � 10�12 2.17

Table 4. Deviation ∆ of the reconstructed state from the Fock state for reconstruction via the maximum entropy
principle and for reconstruction via projection onto pattern functions.

number of observables maximum entropy principle direct sampling

N� = 3 ; Nx = 11 6:2 � 10�21 0.135

N� = 4 ; Nx = 11 1:3 � 10�20 0.135

N� = 4 ; Nx = 13 3:7 � 10�31 0.45

N� = 5 ; Nx = 15 1:6 � 10�31 0.125

encounter again a situation where the reconstruction via quantum tomography suffers from too
few measurement data. To allow for a fair comparison we restrict the Hilbert space to N = n = 4,
otherwise quantum tomography adds additional errors in the higher density matrix elements.

All errors (Table 4) are smaller than their counterparts for the other states considered so far,
which is also due to the smaller Hilbert space under consideration. For this state the conventional
reconstruction also gives a very good estimate of the state (see Fig. 9),

though the absolute values of the oscillations in the Wigner function (Fig. 9) are not completely
correct due to the finite number of measurements on each axis. But even for this state, which
is advantageous for quantum tomography, the errors of the reconstruction via the maximum
entropy principle are much smaller.
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Fig. 9. Wigner function of a Fock state (a), its reconstruction via the maximum entropy principle (b) and its
reconstruction via the projection onto pattern functions (c).

6.2. Measurement errors and incompatible measurement results

We want to discuss briefly the influence of measurement errors. Including measurement errors
we encounter a new problem: we cannot guarantee that there is any state with positive definite
density matrix compatible with all measurement results (8). In other words, the set C as defined
by eqn (8) is empty. Practically this means that our numerical procedure to solve numerically
the equations for the Lagrange parameters cannot converge. Fortunately it turns out that the
set of Lagrange parameters minimizing the deviation(

n̄− Tr {ρ̃n̂})2 +
∑
lm

(
o′lm − Tr

{
ρ̃Ôlm

})2
(235)

gives generally an excellent estimate for the state to be reconstructed. To illustrate this we take
our state and spoil artificially our measurement results by

o′lm = olm + ηξlm
√

olm. (236)

o′lm is the result of the measurement with errors, whereas olm = Tr(ρ̂Ôlm) is the corresponding
result one would obtain in an ideal measurement. The error was chosen to be proportional to the
square root of olm since this quantity is obtained by measuring xθ several times and counting how
much results fall into a certain interval. The proportionality factor η characterizes the quality
of our measurement and depends on the number of single measurements made. ξlm represent
independent Gaussian random numbers with

〈ξlm〉= 0

〈ξlmξl ′m′ 〉 = δl l ′δmm′ . (237)
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Fig. 10. Wigner function as grey-scale plots of the reconstruction of the incoherent superposition shown in Fig. 6.
Here we assume measurement results with errors. The errors are proportional to a factor η, which is 10−2 (a), 5 ·10−2

(b), 10−1 (c) and 5 · 10−1 (d).

With these olm and various parameters η we started again the reconstruction of the incoherent
superposition (227), the cat state (228), the rectangular state and the Fock state already discussed
in the last paragraph. For all reconstructions we used Nθ = 4 different axes and Nx = 13 points
at each axis, covering the interval [−2, 2] as before.

Fig. 10 shows the Wigner functions of the reconstruction of the incoherent superposition for
η = 10−2, 5 · 10−2, 10−1 and 5 · 10−1. Despite the relative large values of η—corresponding to
a large error—the reconstruction is very good. We also calculated the error as defined in (234)
and obtained ∆ = 4 · 10−3 for η = 10−2, ∆ = 4 · 10−2 for η = 5 · 10−2, ∆ = 5 · 10−2 for η = 0.1
and ∆ = 0.3 for η = 0.5. For η = 0.05 we recognize a slight asymmetry between the two spots,
which becomes more pronounced for the highest value of η. But still the two dots are easily
distinguishable. Due to the random character of our calculation these numbers will vary when
varying the random numbers—as the results of a measurements will vary from run to run.

Next, we present the corresponding plots for the cat state (Fig. 11). As in the previous figure
the values for η are 10−2, 5 · 10−2, 10−1 and 5 · 10−1 for (a), (b), (c) and (d), respectively. The
obtained errors ∆ are 3 · 10−3, 3 · 10−2, 7 · 10−2 and 2 · 10−1. We want to emphasize that for
both states even for the largest value of η the reconstruction is better than the usual quantum
tomography without errors.

Now we discuss the influence of measurement errors for the rectangular state. Fig. 12 shows
the Wigner functions of the reconstruction with an error parameter η = 10−2 (a), 5 · 10−2 (b),
10−1 (c) and 5 · 10−1 (d). As for the previous states only for the highest error parameter η
we recognize an asymmetry not present in the original state (Fig. 8 (a)). The resulting errors
were 2 · 10−3, 2 · 10−2, 6 · 10−2 and 3 · 10−1, respectively. Despite the relatively large errors
the reconstruction is as in the previous examples very good. Only for the largest value of η we
recognize a qualitative difference to the original state Fig. 8 (a).
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Fig. 11. Wigner function as grey-scale plots of the reconstruction of the cat state shown in Fig. 7 on the basis of
measurement results with errors. The errors are proportional to a factor η, which is 10−2 (a), 5 · 10−2 (b), 10−1 (c)

and 5 · 10−1 (d).

Finally, we turn to the influence of measurement errors on the reconstruction of the Fock state.
The errors ∆ for the various error parameters η are ∆ = 8 · 10−4 for η = 1 · 10−2, ∆ = 1 · 10−2

for η = 5 · 10−2, ∆ = 4 · 10−2 for η = 0.1, and ∆ = 0.7 for η = 0.5. Also the plots of the
corresponding Wigner functions (Fig. 13) reveal that the reconstruction is very good and shows
the ring-shaped structure of the original Fig. 9 (a). Only for the η = 0.5 the reconstruction is
not good enough to show clearly this feature.

Usually this kind of measurement results into a very good reconstruction of Wigner functions
(such that the corresponding entropy is close to zero for pure states). Nevertheless, a certain
attention has to be paid for highly squeezed states, such as the Vogel–Schleich phase states [69],
for which the measurement of distributions wρ̂(xθ j ) can be problematic. Namely, wρ̂(xθ j ) can
be very “wide”, so that the normalization condition is not fulfilled in a domain of physically
accessible values of xθ j .

In this Section we have presented a numerical application of the reconstruction scheme via
the MaxEnt principle for a reconstruction of Wigner functions of quantum-mechanical states
of light from incomplete tomographic data. We have shown that when the tomographic data are
incomplete, then the reconstruction via the MaxEnt principle is much more reliable than the
standard inversion Radon transformation scheme or the pattern-function scheme.

7. RECONSTRUCTION OF SPIN STATES VIA MAXENT PRINCIPLE

In the following sections we will apply the Jaynes principle for the reconstruction of pure
spin states (see also [70]). Firstly, for illustrative purposes we present the simple example of
the reconstruction of states of a single spin-1/2 system with the help of the maximum-entropy
principle. Then we will discuss the partial reconstruction of entangled spin states. In particular,
we will analyze the problem how to identify incomplete observation levels on which the complete
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Fig. 12. Wigner function as grey-scale plots of the reconstruction of the rectangular state shown in Fig. 8 on the
basis of measurement results with errors. The errors are proportional to a factor η, which is 10−2 (a), 5 · 10−2 (b),

10−1 (c) and 5 · 10−1 (d).

reconstruction can be performed for the Bell and the Greenberger–Horne–Zeilinger states (i.e.,
the corresponding entropy is equal to zero and the generalized canonical density operator is
identical to ρ̂0).

7.1. Single spin-1/2

Firstly we illustrate the application of the maximum-entropy principle for the partial quantum-
state reconstruction of single spin-1/2 system. Let us consider an ensemble of spins-1/2 in an
unknown pure state |ψ0〉. In the most general case this unknown state vector |ψ0〉 can be
parameterized as

|ψ0〉 = cosθ/2|1〉 + eiϕ sinθ/2|0〉, (238)

where |0〉, |1〉 are eigenstates of the z-component of the spin operator ŝz = 1
2 σ̂z with eigenvalues

− 1
2 , 1

2 , respectively. The corresponding density operator ρ̂0 = |ψ0〉〈ψ0| can be written in the
form

ρ̂0 = 1
2

(
Î + n.σ̂

)
, (239)

where Î is the unity operator, n = (sinθ cosϕ, sinθ sinϕ, cosθ); σ̂ = (σ̂x, σ̂y, σ̂z) are the Pauli
spin operators which in the matrix representation in the basis |0〉, |1〉 read

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (240)

To determine completely the unknown state one has to measure three linearly independent
(e.g., orthogonal) projections of the spin. After the measurement of the expectation value of
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Fig. 13. Wigner function as grey-scale plots of the reconstruction of the Fock state shown in Fig. 9 on the basis of
measurement results with errors. The errors are proportional to a factor η, which is 10−2 (a), 5 · 10−2 (b), 10−1 (c)

and 5 · 10−1 (d).

Table 5. In this table we present three observation levels O(1)A ; O(1)B , and O(1)comp associated with a measurement of the
particular spin-1/2 operators. Bullets (•) in the table indicate which observables constitute a given observation level.

We also present explicit expressions for the reconstructed density operators ρ̂A; ρ̂B and ρ̂comp.

OL �̂z �̂x �̂y reconstructed density operator

O
(1)
A � �̂A =

1
2

�
Î + nz�̂z

�

O
(1)
B � � �̂B =

1
2

�
Î + nz�̂z + nx�̂x

�

O
(1)
comp � � � �̂comp =

1
2

�
Î + nz�̂z + nx�̂x + ny�̂y

�

each observable, a reconstruction of the generalized canonical density operator (11) according
to the maximum-entropy principle can be performed. In Table 5 we consider three observation
levels defined as O(1)A = {σ̂z}, O(1)B = {σ̂z, σ̂x} and O(1)C = {σ̂z, σ̂x, σ̂y} ≡ Ocomp [the superscript
of the observation levels indicates the number of spins-1/2 under consideration].

Using algebraic properties of the σ̂ν-operators, the generalized canonical density operator
(11) can be expressed as

ρ̂O = 1
Z

exp(−λ.σ̂) = 1
Z

[
cosh |λ|Î − sinh |λ|λ.σ̂

|λ|
]

, Z = 2 cosh |λ|, (241)

with λ = (λx,λy,λx) and |λ|2 = λ2
x+λ2

y+λ2
z . The final form of the ρ̂O on particular observation

levels is given in Table 5. The corresponding entropies can be written as

SO = −pO ln pO − (1− pO) ln(1− pO), (242)

where pO is one eigenvalue of ρ̂O [the other eigenvalue is equal to (1− pO)] which reads as
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Table 6. We present a set of observation levels on which the density operators of two spins-1/2 can be partially
reconstructed. Bullets (•) in the table indicate which observables constitute a given observation level while empty
circles (◦) denote unmeasured observables (i.e., these observables are not included in the given observation level) for

which the maximum-entropy principle ‘predicts” nonzero mean values.

OL �̂
(1)
z

^I
(2)

�̂
(1)
x

^I
(2)

�̂
(1)
y

^I
(2)

^I
(1)

�̂
(2)
z

^I
(1)

�̂
(2)
x

^I
(1)

�̂
(2)
y �̂

(1)
z �̂

(2)
z �̂

(1)
z �̂

(2)
x �̂

(1)
z �̂

(2)
y �̂

(1)
x �̂

(2)
z �̂

(1)
x �̂

(2)
x �̂

(1)
x �̂

(2)
y �̂

(1)
y �̂

(2)
z �̂

(1)
y �̂

(2)
x �̂

(1)
y �̂

(2)
y

O
(2)
A � � �

O
(2)
B0 � � �

O
(2)
B � � �

O
(2)
C � � � � �

O
(2)
D � � � � � � �

O
(2)
E � � �

O
(2)
F � � �

O
(2)
G � � � � �

O
(2)
H � � � � �

O
(2)
I � � � � � � � �

O
(2)
J � � � � � � � � �

O
(2)
comp � � � � � � � � � � � � � � �

pA = 1+ |〈σ̂z〉|
2

, pB = 1+
√
〈σ̂x〉2 + 〈σ̂z〉2

2
, pcomp =

1+
√
〈σ̂x〉2 + 〈σ̂y〉2 + 〈σ̂z〉2

2
.(243)

It is seen that the entropy SO is equal to zero if and only if pO = 1. From here follows that on
O(1)A only the basis vectors |0〉 and |1〉 with |〈σ̂z〉| = 1 can be fully reconstructed. Nontrivial
is O(1)B , on which a whole set of pure states (238) with 〈σ̂y〉 = 0 (i.e., ϕ = 0) can be uniquely
determined. For such states SB = 0 and further measurement of the σ̂y on Ocomp represents
redundant (useless) information.

7.2. Two spins-1/2

Now we assume a system composed of two distinguishable spins-1/2. If we are performing
only local measurements of observables such as σ̂(1)µ ⊗ Î (2) and Î (1)⊗ σ̂(2)ν (here superscripts label
the particles) which do not reflect correlations between the particles then the reconstruction
of the density operator reduces to an estimation of individual (uncorrelated) spins-1/2, i.e.,
the reconstruction reduces to the problem discussed in the previous section. For each spin-1/2
the reconstruction can be performed separately and the resulting generalized canonical density
operator is given as a tensor product of particular generalized canonical density operators, i.e.,
ρ̂ = ρ̂(1) ⊗ ρ̂(2). In this case just the uncorrelated states |ψ0〉 = |ψ(1)0 〉 ⊗ |ψ(2)0 〉 can be fully
reconstructed. Nevertheless, the correlated (nonfactorable) states |ψ0〉 ≠ |ψ(1)0 〉 ⊗ |ψ(2)0 〉 are of
central interest.

In general, any density operator of a system composed of two distinguishable spins-1/2 can
be represented by a 4 × 4 Hermitian matrix and 15 independent numbers are required for its
complete determination. It is worth noticing that 15 operators (observables)

{σ̂µ(1) ⊗ Î (2), Î (1)⊗ σ̂ν(2), σ̂(1)µ ⊗ σ̂(2)ν }; (µ,ν = x, y, z), (244)

together with the identity operator Î (1) ⊗ Î (2) form an operator algebra basis in which any
operator can be expressed. In this “operator” basis each density operator can be written as

ρ̂ = 1
4

Î (1) ⊗ Î (2) + n(1). σ̂(1) ⊗ Î (2)+ n(2). Î (1)⊗ σ̂(2) +
∑
µ,ν
ξµνσ̂(1)µ ⊗ σ̂(2)ν

 , (245)

with ξµν = 〈σ̂(1)µ ⊗ σ̂(2)ν 〉 (µ,ν = x, y, z).
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Table 7. We present explicit expressions for the reconstructed density operators ρ̂X of two spins-1/2 on the observation
levels denoted in Table 2. We use the notation n(p)µ = 〈σ̂(p)µ 〉 (µ = z, x, y; p = 1, 2) and ξµν = 〈σ̂(1)µ ⊗ σ̂(2)ν 〉 with
µ,ν = z, x, y. The signs ⊕ and 	 are used to indicate unmeasured observables for which nontrivial information can

be obtained with the help of the maximum-entropy principle.

OL reconstructed density operator

O
(2)
A �̂A = 1

4

�
Î(1)Î(2) + n

(1)
z �̂

(1)
z Î(2) + n

(2)
z Î(1)�̂

(2)
z � n

(1)
z n

(2)
z �̂

(1)
z �̂

(2)
z

�
= 1

4

�
Î(1) + n

(1)
z �̂

(1)
z

��
Î(2) + n

(2)
z �̂

(2)
z

�

O
(2)
B0 �̂B0 = 1

4

�
Î(1)Î(2) + n

(1)
z �̂

(1)
z Î(2) + n

(1)
z �zz Î

(1)�̂
(2)
z + �zz�̂

(1)
z �̂

(2)
z

�

O
(2)
B �̂B = 1

4

�
Î(1)Î(2) + n

(1)
z �̂

(1)
z Î(2) + n

(2)
z Î(1)�̂

(2)
z + �zz�̂

(1)
z �̂

(2)
z

�

O
(2)
C �̂C = 1

4

�
Î(1)Î(2) + n

(1)
z �̂

(1)
z Î(2) + n

(2)
z Î(1)�̂

(2)
z + n

(2)
x Î(1)�̂

(2)
x + �zz�̂

(1)
z �̂

(2)
z + �zx�̂

(1)
z �̂

(2)
x

�

O
(2)
D �̂D = 1

4

�
Î(1)Î(2) + n

(1)
z �̂

(1)
z Î(2) + n

(2)
z Î(1)�̂

(2)
z + n

(2)
x Î(1)�̂

(2)
x + n

(2)
y Î(1)�̂

(2)
y + �zz�̂

(1)
z �̂

(2)
z + �zx�̂

(1)
z �̂

(2)
x + �zy�̂

(1)
z �̂

(2)
y

�

O
(2)
E �̂E = 1

4

�
Î(1)Î(2) + �zz�̂

(1)
z �̂

(2)
z + �xx�̂

(1)
x �̂

(2)
x 	 �zz�xx�̂

(1)
y �̂

(2)
y

�

O
(2)
F �̂F =

1
4

�
Î(1)Î(2) + �zz�̂

(1)
z �̂

(2)
z + �xx�̂

(1)
x �̂

(2)
x + �yy�̂

(1)
y �̂

(2)
y

�

O
(2)
G �̂G = 1

4

�
Î(1)Î(2) + �zz�̂

(1)
z �̂

(2)
z + �xx�̂

(1)
x �̂

(2)
x + �yy�̂

(1)
y �̂

(2)
y + �xy�̂

(1)
x �̂

(2)
y + �yx�̂

(1)
y �̂

(2)
x

�

O
(2)
H �̂H = 1

4

�
Î(1)Î(2) + �xx�̂

(1)
x �̂

(2)
x + �yy�̂

(1)
y �̂

(2)
y + �xy�̂

(1)
x �̂

(2)
y + �yx�̂

(1)
y �̂

(2)
x � t�̂

(1)
z �̂

(2)
z

�
; t = �xy�yx � �xx�yy

O
(2)
I �̂I =

1
4

�
Î(1)Î(2) + n

(1)
z �̂

(1)
z Î(2) + n

(2)
x Î(1)�̂

(2)
x + �zz�̂

(1)
z �̂

(2)
z + �xx�̂

(1)
x �̂

(2)
x � n

(2)
x �xx�̂

(1)
x Î(2) � n

(1)
z �zz Î

(1)�̂
(2)
z � n

(1)
z n

(2)
x �̂

(1)
z �̂

(2)
x 	 �zz�xx�̂

(1)
y �̂

(2)
y

�

O
(2)
J �̂J =

1
4

�
Î(1)Î(2) + n

(1)
z �̂

(1)
z Î(2) + n

(1)
x �̂

(1)
x Î(2) + n

(2)
z Î(1)�̂

(2)
z + n

(2)
x Î(1)�̂

(2)
x + �zz�̂

(1)
z �̂

(2)
z + �xx�̂

(1)
x �̂

(2)
x � u�̂

(1)
z �̂

(2)
x � v�̂

(1)
x �̂

(2)
z � w�̂

(1)
y �̂

(2)
y

�

Using the maximum-entropy principle we can (partially) reconstruct an unknown density
operator ρ̂0 on various observation levels. Conceptually the method of maximum entropy is
rather straightforward: one has to express the generalized canonical density operator (11) for
two spins-1/2 in the form (245) from which a set of nonlinear equations for Lagrange multipliers
λν is obtained.

Due to algebraic properties of the operators under the consideration the practical realization
of this programme can be technically difficult (see Appendix A). In Table 6 we define some non-
trivial observation levels. Measured observables which define a particular observation level are
indicated in Table 6 by bullets (•) while the empty circles (◦) indicate unmeasured observables
(i.e., these observables are not included in the given observation level) for which the maximum-
entropy principle “predicts” nonzero mean values. This means that the maximum-entropy prin-
ciple provide us with a nontrivial estimation of mean values of unmeasured observables. The
generalized canonical density operators which correspond to the observation levels considered
in Table 6 are presented in Table 7. The signs “⊕,	” are used to indicate unmeasured observ-
ables for which nontrivial information can be obtained with the help of the maximum-entropy
principle.

7.3. Reconstruction of Bell states

In what follows we analyze a partial reconstruction of the Bell states (i.e., the most correlated
two particle states) on observation levels given in Table 6. One of our main tasks will be to
find the minimum observation level (i.e., the set of system observables) on which the complete
reconstruction of these states can be performed. Obviously, if all 15 observables are measured,
then any state of two spins-1/2 can be reconstructed precisely. Nevertheless, due to the quan-
tum entanglement between the two particles, measurements of some observables will simply be
redundant. To find the minimal set of observables which uniquely determine the Bell state one
has to perform either a sequence of reductions of the complete observation level, or a systematic
extension of the most trivial observation level O(2)A .

Let us consider particular examples of Bell states, of the form

|Ψ(Bel l)
ϕ 〉 = 1√

2

[|1, 1〉+ eiϕ|0, 0〉] , ρ̂(Bel l)
ϕ = |Ψ(Bel l)

ϕ 〉〈Ψ(Bel l)
ϕ |, (246)
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(other Bell states are discussed later). These maximally correlated states have the property that
the result of a measurement performed on one of the two spins-1/2 uniquely determines the state
of the second spin. Therefore, these states find their applications in quantum communication
systems [23,52]. In addition, they are suitable for testing fundamental principles of quantum
mechanics [1] such as the complementarity principle or local hidden-variable theories [71].

Let us analyze now a sequence of successive extensions of the observation level O(2)A

O(2)A ⊂ O(2)B ⊂ O(2)C ⊂ O(2)D . (247)

The observation level O(2)A (see Table 6) is associated with the measurement of σ̂z observables of
each spin individually, i.e., it is insensitive with respect to correlations between the spins. On O(2)B
both z-spin components of particular spins and their correlation have been recorded (simultane-
ous measurement of these observables is possible because they commute). Further extension to
the observation level on O(2)C corresponds to a rotation of the Stern–Gerlach apparatus such that
the x-spin component of the second spin-1/2 is measured. The observation level O(2)D is associ-
ated with another rotation of the Stern–Gerlach apparatus which would allow us to measure the
y-spin component. The generalized canonical density operators on the observation levels O(2)B ,
O(2)C and O(2)D predict zero mean values for all the unmeasured observables (244) (see Table 7).

In general, successive extensions (247) of the observation level O(2)A should be accompanied
by a decrease in the entropy of the reconstructed state which should reflect increase of our
knowledge about the quantum-mechanical system under consideration. Nevertheless, we note
that there are states for which the entropy remains constant when O(2)B is extended towards O(2)C

and O(2)D , i.e., the performed measurements are in fact redundant. For instance, this is the case
for the maximally correlated state (246). Here entropies associated with given observation levels
read

SA = 2 ln 2, SB = SC = SD = ln 2, (248)

respectively, which mean that these observation levels are not suitable for reconstruction of the
Bell states. The reason is that the Bell states have no “preferable” direction for each individual
spin, i.e., 〈σ̂(p)µ 〉 = 0 for µ = x, y, z and p = 1, 2.

From the above it follows that, for a nontrivial reconstruction of Bell states, the observables
which reflect correlations between composite spins also have to be included into the observation
level. Therefore let us now discuss the sequence of observation levels

O(2)E ⊂ O(2)F ⊂ O(2)G (249)

associated with simultaneous measurement of spin components of the two particles [see Table 6].
The corresponding generalized canonical density operators are given in Table 7. To answer
the question of which states can be completely reconstructed on the observation level O(2)E we
evaluate the von Neumann entropy of the generalized canonical density operator ρ̂E . For the
Bell states we find that SE = −pE ln pE − (1 − pE) ln(1 − pE ) where pE = (1 − cosϕ)/2. We
can also compare directly ρ̂(Bel l)

ϕ with ρ̂E . The density operator ρ̂(Bel l)
ϕ in the matrix form can be

written as

ρ̂(Bel l)
ϕ = 1

2


1 0 0 e−iϕ

0 0 0 0
0 0 0 0

eiϕ 0 0 1

 , (250)

while the corresponding operator reconstructed on the observation level O(2)E reads
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ρ̂E = 1
2


1 0 0 cosϕ
0 0 0 0
0 0 0 0

cosϕ 0 0 1

 . (251)

We see that ρ̂(Bel l)
ϕ = ρ̂E and S[ρ̂E] = 0 only if ϕ = 0 or π which means that the Bell states

|Ψϕ=0,π〉 = 1√
2 [|1, 1〉± |0, 0〉] are completely determined by mean values of two observables

σ̂(1)z ⊗σ̂(2)z and σ̂(1)x ⊗σ̂(2)x and that these states can be completely reconstructed on O(2)E . We note
that two other maximally correlated states |Φ±〉 = 1√

2
[|0, 1〉± |1, 0〉] can also be completely

reconstructed on O(2)E .
The extension of O(2)E to O(2)F does not increase the amount of information about the Bell

states (246) with ϕ ≠ 0,π. For this reason we have to consider further extension of O(2)F to the
observation level O(2)G (see Table 6 and Appendix A). In what follows we will show that this is an
observation level on which all Bell states (246) can be completely reconstructed. To see this one
has to realize two facts. Firstly, the generalized canonical density operator ρ̂G given by eqn (11)
can be expressed as a linear superposition of observables associated with the given observation
level, i.e.:

ρ̂G = 1
ZG

exp

− ∑
µ=x,y,z

λµµσ̂(1)µ ⊗ σ̂(2)µ − λxyσ̂(1)x ⊗ σ̂(2)y − λyxσ̂(1)y ⊗ σ̂(2)x


= 1

4

1̂−
∑

µ=x,y,z

ξµµσ̂(1)µ ⊗ σ̂(2)µ − ξxyσ̂(1)x ⊗ σ̂(2)y − ξyxσ̂(1)y ⊗ σ̂(2)x

 , (252)

where the parameters ξµν are functions of the Lagrange multipliers λµν . Secondly, for Bell states
(246) the only observables which have nonzero expectation values are those associated with
O(2)G . Namely, 〈σ̂(1)z ⊗ σ̂(2)z 〉 = 1, 〈σ̂(1)x ⊗ σ̂(2)x 〉 = −〈σ̂(1)y ⊗ σ̂(2)y 〉 = cosϕ and 〈σ̂(1)x ⊗ σ̂(2)y 〉 =
〈σ̂(1)y ⊗ σ̂(2)x 〉 = sinϕ. It means that all coefficients in the generalized canonical density operator
ρ̂G given by eqn (245) are uniquely determined by the measurement, i.e., ρ̂G = ρ̂ϕ.

From the above it follows that Bell states can be completely reconstructed on the observation
level O(2)G . On the other hand, O(2)G is not the minimum observation level on which these states
can be completely reconstructed. The minimum set of observables which would allow us to
reconstruct Bell states uniquely can be found by a reduction of O(2)G . Direct inspection of a finite
number of possible reductions reveals that Bell states can be completely reconstructed on those
observation level which can be obtained from O(2)G when one of the observables σ̂(1)ν ⊗ σ̂(2)ν (ν =
x, y, z) is omitted. As an example, let us consider the observation level O(2)H given in Table 6 which
represents a reduction of O(2)G when the observable σ̂(1)z ⊗ σ̂(2)z is omitted. Performing the Taylor
series expansion of the generalized canonical density operator ρ̂H defined by eqn (11) one can
find that the only new observable σ̂(1)z ⊗ σ̂(2)z enters the expression for the ρ̂H as indicated in
Table 7. The coefficient t in front of σ̂(1)z ⊗σ̂(2)z can either be found explicitly in a closed analytical
form (see Appendix A) or can be obtained from the following variational problem. Namely,
we remind ourselves that the expression (11) for ρ̂H helps us to identify those unmeasured
observables for which the Jaynes principle of the maximum entropy “predicts” nonzero mean
values. At this stage we still have to find the particular value of the parameter t for which the
density operator ρ̂H in Table 7 leads to the maximum of the von Neumann entropy. To do so we
search through the one-dimensional parametric space which is bounded as −1 ≤ t ≤ 1. To be
specific, first of all, for t ∈ 〈−1, 1〉 we have to exclude those operators which are not true density
operators (i.e., any such operators which have negative eigenvalues). Then we “pick” up from a
physical parametric subspace the generalized canonical density operator with the maximum von
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Neumann entropy. Direct calculation for Bell states shows that the physical parametric subspace
is reduced to an isolated “point” with t = 〈σ̂(1)z ⊗ σ̂(2)z 〉 = 1. Therefore we conclude that Bell
states can completely be reconstructed on OH . Two other minimum observation levels suitable
for the complete reconstruction of Bell states can be obtained by a reduction of O(2)G when either
σ̂(1)x ⊗ σ̂(2)x or σ̂(1)y ⊗ σ̂(2)y is omitted. On the other hand, direct inspection shows that a reduction

of O(2)G by exclusion of either σ̂(1)x ⊗ σ̂(2)y or σ̂(1)y ⊗ σ̂(2)z leads to an incomplete observation level
with respect to Bell states.

In what follows we discuss briefly two other observation levels O(2)I andO(2)J which are defined
in Table 6. The observation level O(2)I serves as an example when one can find an analytical
expression for the Taylor series expansion of the canonical density operator ρ̂I (see Table 7)
in the form (245). The coefficients (functions of the original Lagrange multipliers) in front of
particular observables in eqn (245) can be identified and are given in Table 7. Problems do appear
when O(2)I is extended towards O(2)J . In this case we cannot simplify the exponential expression
for ρ̂J and rewrite it analytically in the form (245) as a linear combination of the observables
(244). In this situation one should apply the following procedure: firstly, by performing the
Taylor-series expansion of the ρ̂J to the lowest orders one can identify the observables with
nonzero coefficients in the form (245). Namely, for ρ̂J the additional observables σ̂(1)z ⊗ σ̂(2)x ,
σ̂(1)x ⊗ σ̂(2)z and σ̂(1)y ⊗ σ̂(2)y appear in addition to those which form O(2)J [see Table 7]. The
corresponding coefficients u, v, w ∈ 〈−1, 1〉 form a bounded three-dimensional parametric space
(u, v, w). In the second step one can use constructively the maximum-entropy principle to choose
within this parametric space the density operator with the maximum von Neumann entropy. The
basic procedure is to scan the whole three-dimensional parametric space. At the beginning, one
has to select out those density operators (i.e., those parameters u, v, w) which possess negative
eigenvalues and do not represent genuine density operators. Finally, from a remaining set of
“physical” density operators which are semi-positively defined the canonical density operator ρ̂J

with maximum von Neumann entropy has to be chosen. For a completeness, let us notice that
for Bell states the observation levels O(2)I and O(2)J are equivalent to O(2)E , i.e., ρ̂I = ρ̂J = ρ̂E .

In this section we have found the minimum observation levels [e.g., O(2)H ] which are suitable
for the complete reconstruction of Bell states. These observation levels are associated with the
measurement of two-spin correlations σ̂(1)x ⊗σ̂(2)z , σ̂(1)y ⊗σ̂(2)z and two of the observables σ̂(1)ν ⊗σ̂(2)ν
(ν = x, y, z). Once this problem has been solved, it is interesting then to find a minimum set of
observables suitable for a complete reconstruction of maximally correlated spin states systems
consisting of more than two spins-1/2. In the following section we will investigate the (partial)
reconstruction of Greenberger–Horne–Zeilinger states of three spins-1/2 on various observation
levels.

7.4. Three spins-1/2

Even though the Jaynes principle of maximum entropy provides us with general instructions
on how to reconstruct density operators of quantum-mechanical systems practical applications
of this reconstruction scheme may face serious difficulties. In many cases the reconstruction
scheme fails due to insurmountable technical problems (e.g. the system of equations for Lagrange
multipliers cannot be solved explicitly). We have illustrated these problems in the previous section
when we have discussed the reconstruction of a density operator of two spins-1/2. Obviously, the
general problem of reconstruction of density operators describing a system composed of three
spins-1/2 is much more difficult. Nevertheless a (partial) reconstruction of some states of this
system can be performed. In particular, in this section we will discuss a reconstruction of the
maximally correlated three spin-1/2 states—the so-called Greenberger–Horne–Zeilinger (GHZ)
state [71]:
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|Ψ(GHZ)
ϕ 〉 = 1√

2

[
|1, 1, 1〉+ eiϕ|0, 0, 0〉

]
, ρ̂(GHZ)

ϕ = |Ψϕ〉〈Ψϕ|. (253)

Our main task will be to identify, with the help of the Jaynes principle of maximum entropy, the
minimum observation level on which the GHZ state can be completely reconstructed.

We start with a relatively simple observation level O(3)B such that only two-particle correlations
of the neighboring spins are measured, i.e.

O(3)B = {σ̂(1)z ⊗ σ̂(2)z ⊗ Î (3), Î (1) ⊗ σ̂(2)z ⊗ σ̂(3)z }. (254)

The generalized density operator associated with this observation level reads

ρ̂B =
1
8

[
Î (1)⊗ Î (2)⊗ Î (3) + 〈σ̂(1)z ⊗ σ̂(2)z ⊗ Î (3)〉σ̂(1)z ⊗ σ̂(2)z ⊗ Î (3)

+ 〈Î (1) ⊗ σ̂(2)z ⊗ σ̂(3)z 〉Î (1) ⊗ σ̂(2)z ⊗ σ̂(3)z

⊕ 〈σ̂(1)z ⊗ σ̂(2)z ⊗ Î (3)〉〈Î (1) ⊗ σ̂(2)z ⊗ σ̂(3)z 〉σ̂(1)z ⊗ Î2 ⊗ σ̂(3)z

]
. (255)

where ‘⊕” indicates a prediction for the unmeasured observable. In particular, for the GHZ
states (253) we obtain the following generalized canonical density operator

ρ̂(GHZ)
B = 1

8

[
Î (1) ⊗ Î (2)⊗ Î (3)

+ σ̂(1)z ⊗ σ̂(2)z ⊗ Î (3) + Î (1) ⊗ σ̂(2)z ⊗ σ̂(3)z ⊕ σ̂(1)z ⊗ Î2 ⊗ σ̂(3)z

]
= 1

2
|1, 1, 1〉〈1, 1, 1| + 1

2
|0, 0, 0〉〈0, 0, 0|. (256)

The reconstructed density operator ρ̂(GHZ)
B describes a mixture of three-particle states and it

does not contain any information about the three-particle correlations associated with the GHZ
states. In other words, on O(3)B the phase information which plays essential role for a description
of quantum entanglement cannot be reconstructed. This is due to the fact that the density
operator ρ̂(GHZ)

B is equal to the phase-averaged GHZ density operator, i.e.

ρ̂(GHZ)
B = 1

2π

π∫
−π
ρ̂(GHZ)
ϕ dϕ. (257)

Because of this loss of information, the von Neumann entropy of the state ρ̂(GHZ)
B is equal to

ln 2. We note, that when the GHZ states are reconstructed on the observation levels O(3)B′ =
{σ̂(1)µ ⊗ σ̂(2)µ ⊗ Î (3), Î (1)⊗ σ̂(2)µ ⊗ σ̂(3)µ } (µ = x, y), then the corresponding reconstructed operators
are again given by eqn (256). These examples illustrate the fact that three-particle correlation
cannot be in general reconstructed via the measurement of two-particle correlations.

To find the observation level on which the complete reconstruction of the GHZ states can be
performed we recall the observables which may have nonzero mean values for these states. Using
abbreviations

ξµ1ν2 = 〈σ̂(1)µ ⊗ σ̂(2)ν ⊗ Î (3)〉, ξµ2ν3 = 〈Î (1) ⊗ σ̂(2)µ ⊗ σ̂(3)ν 〉, ξµ1ν3 = 〈σ̂(1)µ ⊗ Î (2) ⊗ σ̂(3)ν 〉,
ζµ1ν2ω3 = 〈σ̂(1)µ ⊗ σ̂(2)ν ⊗ σ̂(3)ω 〉, (µ,ν,ω = x, y, z), (258)

we find the nonzero mean values to be

ξz1z2 = ξz2z3 = ξz1z3 = 1,

ζx1x2y3 = ζy1x2x3 = ζx1y2x3 = sinϕ,
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ζy1y2x3 = ζx1y2y3 = ζy1x2y3 = − cosϕ,

ζx1x2x3 = cosϕ,

ζy1y2y3 =− sinϕ. (259)

We see that for arbitrary ϕ there exist non-vanishing three-particle correlations ζµ1ν2ω3 . The
observation level which consists of all the observables with nonzero mean values is the complete
observation level with respect to the GHZ states. Our task now is to reduce this set of observables
to a minimum observation level on which the GHZ states can still be uniquely determined. In
practice it means that each observation level which is suitable for the detection of the existing
coherence and correlations should incorporate some of the observables with nonzero mean
values. The other observables of these observation levels should result as a consequence of mutual
tensor products which appear in the Taylor series expansion of the generalized canonical density
operator (11). It can be seen by direct inspection of the finite number of possible reductions that
the minimum set of the observables which matches these requirements consists of two two-spin
observables and two three-spin observables. For the illustration we consider the observation level

O(3)C = {σ̂(1)z ⊗ σ̂(2)z ⊗ Î (3), Î (1) ⊗ σ̂(2)z ⊗ σ̂(3)z , σ̂(1)x ⊗ σ̂(2)x ⊗ σ̂(3)x , σ̂(1)y ⊗ σ̂(2)y ⊗ σ̂(3)y }. (260)

In this case the exponent Ĉ of the generalized canonical density operator ρ̂C = exp(−Ĉ)/ZC

can be rewritten as Ĉ = Ĉ1 + Ĉ2 with Ĉ1 = γ12σ̂(1)z ⊗ σ̂(2)z ⊗ Î (3) + γ23Î (1) ⊗ σ̂(2)z ⊗ σ̂(3)z and
Ĉ2 = ασ̂(1)x ⊗ σ̂(2)x ⊗ σ̂(3)x + βσ̂(1)y ⊗ σ̂(2)y ⊗ σ̂(3)y . The operators Ĉ1, Ĉ2 commute and further
calculations are straightforward. After some algebra the generalized density operator ρ̂C can be
found in the form

ρ̂C =
1
8

[
Î (1) ⊗ Î (2) ⊗ Î (3) + ξz1z2σ̂

(1)
z ⊗ σ̂(2)z ⊗ Î (3) + ξz2z3 Î

(1) ⊗ σ̂(2)z ⊗ σ̂(3)z (261)

+ζx1x2x3σ̂
(1)
x ⊗ σ̂(2)x ⊗ σ̂(3)x + ζy1y2y3σ̂

(1)
y ⊗ σ̂(2)y ⊗ σ̂(3)y ⊕ ξz1z2ξz2z3σ̂

(1)
z ⊗ Î (2) ⊗ σ̂(3)z

	ζx1x2x3

(
ξz1z2σ̂

(1)
y ⊗ σ̂(2)y ⊗ σ̂(3)x + ξz2z3 σ̂

(1)
x ⊗ σ̂(2)y ⊗ σ̂(3)y + ξz1z2ξz2z3σ̂

(1)
y ⊗ σ̂(2)x ⊗ σ̂(3)y

)
	 ζy1y2y3

(
ξz1z2σ̂

(1)
x ⊗ σ̂(2)x ⊗ σ̂(3)y + ξz2z3 σ̂

(1)
y ⊗ σ̂(2)x ⊗ σ̂(3)x + ξz1z2ξz2z3σ̂

(1)
x ⊗ σ̂(2)y ⊗ σ̂(3)x

)]
.

For the GHZ states the von Neumann entropy of the generalized canonical density operator ρ̂C

is equal to zero, from which it follows that ρ̂C = ρ̂(GHZ)
ϕ [see eqn (253)], i.e., the GHZ states can

be completely reconstructed onO(3)C . Moreover, the observation level OC represents the minimum
set of observables for complete determination of the GHZ states.

8. QUANTUM BAYESIAN INFERENCE

The exact meanvalue of an arbitrary observable can only be obtained when a very large (in
principle, infinite) number of measurements on individual elements of an ensemble is performed.
On the other hand, it is a very legitimate question to ask “What is the best a posteriori estimation
of a quantum state when a measurement is performed on a finite (arbitrarily small) number of
elements of the ensemble?” . To estimate the state of the system based on an incomplete set
of data, one has to utilize more powerful estimation schemes such as the quantum Bayesian
inference.

The general idea of the Bayesian reconstruction scheme (see for instance [43]) is based on
manipulations with probability distributions in parametric state spacesΩ and A of the measured
system and the measuring apparatus, respectively. The quantum Bayesian method as discussed
in the literature [30,31,42] is based on the assumption that the reconstructed system is in a
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pure state described by a state vector |Ψ〉, or equivalently by a pure-state density operator ρ̂ =
|Ψ〉〈Ψ|. The manifold of all pure states is a continuum which we denote as Ω. The state space
A of reading states of a measuring apparatus associated with the observable Ô is assumed to be
discrete. These states are intrinsically related to the projectors P̂λi,Ô, where λi are the eigenvalues
of the observable Ô.

The Bayesian reconstruction scheme is formulated as a three-step inversion procedure:
(1) As a result of a measurement a conditional probability

p(Ô,λi|ρ̂) = Tr
(

P̂λi,Ôρ̂
)

, (262)

on the discrete space A is obtained. This conditional probability distribution specifies the prob-
ability of finding the result λi if the measured system is in a particular state ρ̂.
(2) To perform the second step of the inversion procedure we have to specify an a priori distribu-
tion p0(ρ̂) defined on the space Ω. This distribution describes our initial knowledge concerning
the measured system. Using the conditional probability distribution p(Ô,λi|ρ̂) and the a priori
distribution p0(ρ̂) we can define the joint probability distribution p(Ô,λi; ρ̂)

p(Ô,λi; ρ̂) = p(Ô,λi|ρ̂)p0(ρ̂), (263)

on the space Ω⊗A. We note that if no initial information about the measured system is known,
then the prior p0(ρ̂) has to be assumed to be constant (this assumption is related to the Laplace
principle of indifference [72]).
(3) The final step of the Bayesian reconstruction is based on the well known Bayes rule
p(x|y)p(y) = p(x; y) = p(y|x)p(x), with the help of which we find the conditional probability
p(ρ̂|Ô,λi) on the state space Ω:

p(ρ̂|Ô,λi) = p(Ô,λi, ρ̂)∫
Ω p(Ô,λi, ρ̂)dΩ

, (264)

from which the reconstructed density operator can be obtained [see eqn (265)].
In the case of the repeated N-trial measurement, the reconstruction scheme consists of an

iterative utilization of the three-step procedure as described above. After the N-th measurement
we use as an input for the prior distribution the conditional probability distribution given by
the output of the (N − 1)-st measurement. However, we can equivalently define the N-trial
measurement conditional probability p({ }N |ρ̂) =

∏N
i=1 p(Ôi,λ j|ρ̂) [the so-called likelihood

function, which is also denoted as L(ρ̂) ] and applying the three-step procedure just once to
obtain the reconstructed density operator

ρ̂({ }N) =
∫
Ω p(ρ̂|{ }N)ρ̂ dΩ∫
Ω p(ρ̂|{ }N)dΩ

, (265)

where ρ̂ in the r.h.s. of eqn (265) is a properly parameterized density operator in the state space
Ω. We note that in general, the reconstructed density operator (265) corresponds to a mixed
state inspite of the fact that an a priori assumption is that the system is in a pure state. This
deviation from the purity (let say expressed in terms of the von Neumann entropy) may serve
as a measure of fidelity of the estimatimation procedure†

At this point we should mention one essential problem in the Bayesian reconstruction scheme,
which is the determination of the integration measure dΩ. The integration measure has to be

†We note that Hradil [73] has recently proposed another statistical quantum-state-reconstruction method related to
the Bayesian scheme considered in this Section. His method is based on the maximization of the likelihood function
L(ρ̂).
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invariant under unitary transformations in the space Ω. This requirement uniquely determines
the form of the measure. However, this is no longer valid when Ω is considered to be a space
of mixed states formed by all convex combinations of elements of the original pure state space
Ω. Although the Bayesian procedure itself does not require any special conditions imposed on
the space Ω, the ambiguity in determination of the integration measure is the main obstacle in
generalization of the Bayesian inference scheme for reconstruction of a priori impure quantum
states. We will show in later in this Section that this problem can be solved with the help of a
purification ansatz. We will also discuss in detail how to apply the quantum Bayesian inference
for a reconstruction of states of a spin-1/2 when just a finite number of elements of an ensemble
have been measured. Before we do this we will analyze the limit of large number of measurements.

8.1. Bayesian inference in limit of infinite number of measurements

The explicit evaluation of an a posteriori estimation of the density operator ρ̂{ }N is signifi-
cantly limited by technical difficulties when integration over parametric space is performed [see
eqn (265)]. Even for the simplest quantum systems and for a relatively small number of mea-
surements, the reconstruction procedure can present technically insurmountable problems.

On the other hand let us assume that the number of measurements of observables Ôi ap-
proaches infinity (i.e. N → ∞). It is clear that in this case the mean values of all projectors
〈P̂λ j ,Ôi

〉 associated with the observables Ôi are precisely known (measured): i.e.

〈P̂λ j ,Ôi
〉 = αi

j , (266)

where
∑

j αi
j = 1. In this case the integral in the right-hand side of eqn (265) can be significantly

simplified with the help of the following lemma:

Lemma 1. Let us define the integral expression

I(α1, . . . ,αn−1) ≡
1∫
0

dx1

y2∫
0

dx2 . . .

yn−1∫
0

dxn−1 F (x1, . . . , xn−1|α1, . . . ,αn−1). (267)

where

F (x1, . . . , xn−1|α1, . . . ,αn−1) = 1
B

xα1N
1 xα2N

2 . . . xαn−1N
n−1 (1− x1 . . .− xn−1)αnN. (268)

and αi satisfy condition
∑n

i αi = 1. The integration boundaries yk are given by relations:

yk = 1−
k−1∑
j=1

x j; k = 2, . . . , n− 1. (269)

and B equals to the product of Beta functions B(x, y):

B ≡ B(an + 1, an−1+ 1)B(an + an−1 + 1, an−2+ 2) . . . B(an + an−1 . . . a2 + 1, a1+ n− 1).(270)

(i) The function F (x1, . . . , xn−1|α1, . . . ,αn−1) in the integral (267) is a normalized probability
distribution in the (n− 1)-dimensional volume given by integration boundaries.

(ii) For N → ∞, this probability distribution has the following properties:

〈xi〉 → αi 〈x2
i 〉 → α2

i i = 1, 2, 3, . . . , n− 1, (271)

i.e., this probability density tends to the product of delta functions:
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lim
N→∞

F (x1, . . . , xn−1|α1, . . . ,αn−1) = δ(x1 −α1)δ(x2 −α2) . . .δ(xn−1 −αn−1). (272)

PROOF. Statement (i) can be derived by the successive application of the equation [see for
example [74], eqns (3.191)]

u∫
0

xν−1(u− x)µ−1 dx = uµ+ν−1B(µ,ν). (273)

Statement (ii) can be obtained as a result of straightforward calculation of limits of certain
expressions containing Beta functions with integer-number arguments. In our calculations we
have used the identity

B(n+ 1, m)
B(n, m)

= n
n+m

, (274)

which is satisfied by Beta functions with integer-number arguments.

8.2. Conditional density distribution

Let us start with the expression for conditional probability distribution p({ }N |ρ̂) for the N-
trial measurement of a set of observables Ôi. If we assume that the number of measurements of
each observable Ôi goes to infinity then we can write:

p({ }N |ρ̂) =
∏

i

[ ni∏
j=1

Tr
(

P̂
λ j ,Ôi
ρ̂
)αi

j N ]
. (275)

The first product on the right-hand side (r.h.s.) of eqn (275) is associated with each measured
observable Ôi on a given observation level. The second product runs over eigenvalues ni of each
observable Ôi.

In what follows we formally rewrite the r.h.s. of eqn (275): we insert in it a set of δ-functions
and we perform the following integration

p({ }N |ρ̂) =
∏

i


1∫
0

dxi
1

yi
2∫

0

dxi
2 . . .

yi
ni−1∫
0

dxi
ni−1 δ

[
xi

1 − Tr
(

P̂
λ1,Ôi
ρ̂
)]

. . .

× δ
[
xi

ni−1 − Tr
(

P
λni−1 ,Ôi

ρ
)] ni−1∏

j=1

(xi
j)
αi

j N (1− xi
1 . . . xi

ni−1)
αi

ni
N

 . (276)

In eqn (276) we perform an integration over a volume determined by the integration boundaries
yi

k [see eqn (269)], i.e., due to the condition
∑ni

j=1 Tr(P̂λ j ,Ôi
ρ̂) = 1, there is no need to perform

integration from −∞ to ∞.
At this point we utilize our Lemma. To be specific, firstly we separate in eqn (276) the term,

which corresponds to the function I given by eqn (267). Then we replace this term by its limit
expression (272). After a straightforward integration over variables xi

j we finally obtain an explicit
expression for the conditional probability p(ρ̂|{ }N ) which we insert into eqn (265), from which
we obtain the expression for an a posteriori estimation of the density operator ρ̂({ }N→∞) on
the given observation level:
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ρ̂({ }N→∞) =
1
N

∫
Ω

∏
i


ni−1∏
j=1

δ
[

Tr
(

P̂λ j ,Ôi
ρ̂
)
− αi

j

] ρ̂dΩ. (277)

Here N is a normalization constant determined by the condition Tr
[
ρ̂({ }N→∞)

] = 1.
The interpretation of eqn (277) is straightforward. The reconstructed density operator is equal

to the sum of equally weighted pure-state density operators on the manifold Ω, which satisfy
the conditions given by eqn (266) [these conditions are guaranteed by the presence of the δ-
functions in the r.h.s. of eqn (277)]. In terms of statistical physics eqn (277) can be interpreted as
an averaging over the generalized microcanonical ensemble of those pure states which satisfy the
conditions on the mean values of the measured observables. Consequently, eqn (277) represents
the principle of the “maximum entropy” associated with the generalized microcanonical ensemble
which fulfills the constraint (266).

8.3. Bayesian reconstruction of impure states

In classical statistical physics a mixed state is interpreted as a statistical average over an
ensemble in which any individual realizations is in a pure state. This is also true in quantum
physics, but here a mixture can also be interpreted as a state of a quantum system, which can not
be completely described in terms of its own Hilbert space. That is the system under consideration
is a nontrivial part of a larger quantum system. When we say nontrivial, we mean that the
system under consideration is quantum-mechanically entangled [1] (see also [75]) with the other
parts of the composite system. Due to the lack of information about other parts of this complex
system, the description of the subsystem is possible only in terms of mixtures.

Let assume that the quantum system P is entangled with another quantum system R (a
reservoir). Let us assume that the composed system S (S = P×R) itself is in a pure state |Ψ〉. The
density operator ρ̂P of the subsystem P is then obtained via tracing over the reservoir degrees
of freedom:

ρ̂P = TrR
[
ρ̂S
]

; ρ̂S = |Ψ〉〈Ψ|. (278)

Once the system S is in a pure state, then we can determine an invariant integration measure on
the state space of the composite system S and then we can safely apply the Bayesian reconstruc-
tion scheme as described in Section III. The reconstruction itself is based only on data associated
with measurements performed on the system P. When the density operator ρ̂S is a posteriori
estimated, then by tracing over the reservoir degrees of freedom, we obtain the a posteriori es-
timated density operator ρ̂P for the system P (with no a priori constraint on the purity of the
state of the system P). These arguments are intrinsically related to the “purification” ansatz as
proposed by Uhlmann [76].

To make our reconstruction scheme for impure states consistent, we have to chose the reservoir
R uniquely. This can be done with the help of the Schmidt theorem (see Ref.[1,77]) from which
it follows that if the composite system S is in a pure state |Ψ〉 then its state vector can be written
in the form:

|Ψ〉 =
M∑

i=1

ci|αi〉P ⊗ |βi〉R , (279)

where |αi〉P and |βi〉R are elements from two specific orthonormalized bases associated with
the subsystems P and R, respectively, and ci are appropriate complex numbers satisfying the
normalization condition

∑ |ci|2 = 1. The maximal index of summation (M) in eqn (279) is given
by the dimensionality of the Hilbert space of the system P. In other words, when we apply the
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Bayesian method to the case of impure states of M-level system, it is sufficient to “couple” this
system to an M-dimensional “reservoir”. In this case the dimensionality of the Hilbert space
of the composite system is 2M. Using the standard techniques (see Appendix B) we can then
evaluate the invariant integration measure on the manifold of pure states and we can apply the
quantum Bayesian inference as discussed above. We stress once again, that using the purification
procedure we have determined the invariant integration measure on the space of pure states of
the composite system.

Concluding this Section we note that there also exists another approach to the problem of
the integration measure on the space of impure states. Namely, Braunstein and Caves [78] used
statistical distinguishability between neighboring quantum states to define the Bures metric [79]
on the space of all (pure and mixed) states of the original system S (see also recent work by Slater
[80]). The two approaches differ conceptually in understanding what is an impure quantum-
mechanical state. That is, in our approach we assume that impurity results as a consequence of
the fact that the system under consideration is entangled with some other system. The other
approach accepts the possibility that an isolated quantum system can be in a statistically mixed
state (we will not discuss consequences of these two conceptually different approaches here, but
this problem definitely deserves due attention).

9. RECONSTRUCTION OF SPIN STATES VIA BAYESIAN INFERENCE

We start this section with the Bayesian reconstruction of spin-1/2 states on various observation
levels. That is, we investigate how the best a posteriori estimation of the density operator of the
spin-1/2 system based on an incomplete set of data (in this case the exact mean values of the
spin observables are not available) can be obtained. We have already stressed the fact that the
Bayesian inference scheme as introduced by Jones [42] is suitable only for pure states. This means
that the completely reconstructed density operator has to fulfill the purity condition

|〈σ̂x〉|2 + |〈σ̂y〉|2 + |〈σ̂z〉|2 = 1. (280)

We start our example with a definition of the parametric state space associated with the spin-
1/2. The rigorous way to determine this parametric state spaceΩ is based on the diffeomorphism
between Ω and the quotient space SU(n)|U(n−1), where n is the dimensionality of the Hilbert
space of the measured quantum system. In a particular case of the spin-1/2 we work with the
commutative group U (1) and the construction of Ω is very simple. The space Ω can be mapped
on to the Poincaré sphere and the parameterized density operator (i.e. the point on the Poincaré
sphere) is given by eqn (239). The topology of the Poincaré sphere determines also the integration
measure for which we have dΩ = sinθ dθdφ (for more details see Appendix B).

The observables associated with the spin-1/2 are spin projections for three orthogonal direc-
tions represented by Hermitian operators ŝ j = σ̂ j/2. These observables have spectra equal to
± 1

2 . In what follows we distinguish between these two possible measurement results by the sign,
i.e. s = ±1. The projectors P̂s,ŝi on to the corresponding eigenvectors are

P̂s,ŝi =
1̂+ sσ̂i

2
; i = x, y, z , (281)

and the conditional probabilities associated with this kind of measurement can be written as

p(s, ŝi|ρ̂(θ,φ)) = 1+ s ri

2
; i = x, y, z, (282)
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Table 8. Results of a posteriori Bayesian estimation of density operators of the spin-1/2 are presented for two different
cases: (1) when it is a priori assumed that the spin is in a pure state and (2) when no a priori constraint on the
state is imposed. In this second case the generalized Bayesian scheme has been applied. We also present values
of von Neumann entropy [see eqn (242)] associated with the given estimated density operator. In the case of a

reconstruction of pure states, the value of the von Neumann entropy reflects the fidelity of the estimation.

�̂z �̂x �̂y �̂ via pure-state reconstruction S �̂ via mixture-state reconstruction S

1. " 1

2
[1̂ + 1

3
�̂z ] 0.637 1

2
[1̂ + 1

5
�̂z ] 0.673

2. "4 1

2
[1̂ + 2

3
�̂z ] 0.451 1

2
[1̂ + 1

2
�̂z ] 0.562

3. "5# 1

2
[1̂ + 1

2
�̂z ] 0.562 1

2
[1̂ + 2

5
�̂z ] 0.611

4. "10#2 1

2
[1̂ + 4

7
�̂z ] 0.520 1

2
[1̂ + 1

2
�̂z ] 0.562

5. "15#3 1

2
[1̂ + 3

5
�̂z ] 0.501 1

2
[1̂ + 6

11
�̂z ] 0.536

6. " # 1

2
[1̂� 1

3
�̂x + 1

3
�̂z ] 0.578 1

2
[1̂� 1

5
�̂x + 1

5
�̂z] 0.653

7. "4 "3# 1

2
[1̂ + 10

37
�̂x + 26

37
�̂z ] 0.374 1

2
[1̂ + 68

309
�̂x + 158

309
�̂z ] 0.529

8. "5# "4#2 1

2
[1̂ + 704

2601
�̂x + 1460

2601
�̂z ] 0.484 1

2
[1̂ + 218

1105
�̂x + 464

1105
�̂z ] 0.581

9. "10#2 "8#4 1

2
[1̂ + 1599844

5073971
�̂x + 3143928

5073971
�̂z ] 0.427 1

2
[1̂ + 513984

2093401
�̂x + 1083360

2093401
�̂z ] 0.519

10. " # " 1

2
[1̂� 1

3
�̂x + 1

3
(�̂y + �̂z)] 0.518 1

2
[1̂� 1

5
�̂x + 1

5
(�̂y + �̂z)] 0.632

11. "4 "3# "4 1

2
[1̂ + 831

3503
�̂x + 2026

3503
(�̂y + �̂z)] 0.264 1

2
[1̂ + 1051

5253
�̂x + 2382

5253
(�̂y + �̂z)] 0.446

12. "5# "4#2 "5# 1

2
[1̂+ 47109

169636
�̂x+

99310

169636
(�̂y + �̂z)] 0.236 1

2
[1̂+ 279193

1446325
�̂x+

593708

1446325
(�̂y + �̂z)] 0.492

13. "10#2 "8#4 "10#2 1

2
[1̂+ 1222748838

4026213681
�̂x + 2532792812

4026213682
(�̂y + �̂z)] 0.135 1

2
[1̂+ 250224710127

1073523481830
�̂x + 531888078934

1073523481830
(�̂y + �̂z)] 0.388

14. "3# "2#2 "2#2 1

2
[1̂ + 101

161
�̂z ] 0.481 1

2
[1̂ + 413

1389
�̂z ] 0.648

15. "6#2 "4#4 "4#4 1

2
[1̂ + 88

117
�̂z ] 0.374 1

2
[1̂ + 3125918

8023325
�̂z] 0.615

16. "9#3 "6#6 "6#6 1

2
[1̂ + 10642815

13619371
�̂z] 0.345 1

2
[1̂ + 57056845292

134078568484
�̂z ] 0.600

17. "12#4 "8#8 "8#8 1

2
[1̂ + 10875098376

13696058161
�̂z ] 0.332 1

2
[1̂ + 3073000318516432

6928263111521097
�̂z ] 0.591

where we use the parameterization ρ̂(θ,φ) = (1̂+rσ̂)/2 [see eqn (239)]. Now using the procedure
described in Section 8, we can construct an a posteriori estimation of the density operator ρ̂({ }N)
based on a given sequence of measurement outcomes on different observation levels.

9.1. Estimation based on results of fictitious measurements

In Table 8 we present results of an a posteriori estimation of density operators based on data
obtained from “experiments” performed with three Stern–Gerlach devices oriented along the
axes x, y, and z. We first discuss in detail reconstruction of a single spin-1/2 state under the a
priori assumption that the system is in a pure state.

9.1.1. Observation level O(1)A = {ŝz}
The first five lines in Table 8 describe results of a fictitious measurement of the spin component

ŝz and the corresponding estimated density operators. In particular, let us assume that just one
detection event (spin “up”, i.e. ↑) is registered in the given Stern–Gerlach apparatus (associated
with the measurement of ŝz). Taking into account the parameterization of the single spin-1/2
density operator expressed by eqn (239) we find for the corresponding conditional probability
distribution p(s, ŝi|ρ̂(θ,φ)) (282) the expression

p(s, ŝi|ρ̂(θ,φ)) = 1+ cosθ
2

. (283)

Using eqn (265) we can express the estimated density operator based on the registration of just
one result (spin “up”) as
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ρ̂= 1
8π

π∫
0

sinθ dθ

2π∫
0

dφ(1+ cosθ)(1̂+ sinθ cosφσ̂x + sinθ sinφσ̂y + cosθσ̂z)

= 1
2

(
1̂+ 1

3
σ̂z

)
. (284)

We stress that we started our estimation procedure with an a priori assumption that the measured
system is in a pure state, for which the von Neumann entropy S (242) has to be equal to zero.
But the estimated density operator (284) describes a statistical mixture with the von Neumann
entropy S ' 0.637 (see Table 8). There is no contradiction here. In the reconstruction of pure
states, a nonzero value of the von Neumann entropy of the estimated density operator reflects
the fidelity with which the reconstruction is performed. That is, before any measurement is
performed, the “estimated” density operator is ρ̂ = 1̂/2, for which the von Neumann entropy
takes the maximal value S = ln 2 ' 0.693. As soon as the first measurement is performed,
some information about the state of the system is acquired, which is reflected by the decrease
of the entropy and a better estimation of the density operator. The estimated density operator
is expressed as a statistical mixture because it is equal to a specifically weighted sum of a set of
pure states [see the reconstruction formula (265)] which also reflects our incomplete knowledge
about the state of the measured system. Obviously, the more measurements we perform, the
better the estimation can be performed (compare lines 2–5 in Table 8). Nevertheless, we have to
stress that the von Neumann entropy is not a monotonically decreasing function of a number of
measurements. To be specific, in the case when just a small number of measurements is performed,
the estimation is very sensitive with respect to the outcome of any additional measurement.
Comparing the lines 2 and 3 in Table 8, we see that the entropy “locally” increases in spite
of the fact that more measurements are performed. Nevertheless, in the limit of large number
of measurements, the entropy approaches its minimum possible value associated with a given
measurement. Providing the quorum of observables is measured, the entropy tends to zero and
the state is completely reconstructed.

In general, increasing the number of measurements improves the a posteriori estimation of
the density operator on the given observation level (see lines 2–5 in Table 8). Using the general
results of Section 8 we can evaluate the a posteriori estimation of the density operator of the
spin-1/2 system on the observation level O(1)A in the limit of infinite number of measurements of
the spin component ŝz. We note, that in this case, when observable has only two eigenvalues, the
information obtained in the spectral distribution (266) is equivalently given only by the mean
value of this observable. Once we know the spectral distribution eqn (266) corresponding to the
measurement of the spin projection ŝz of single spin-1/2, then with the help of eqn (277) we can
express the reconstructed density operator as

ρ̂ = 1
N

2π∫
0

dφ

π∫
0

sinθdθ δ(〈σ̂z〉 − cosθ)(1̂+ sinθ cosφ σ̂x + sinθ sinφ σ̂y + cosθ σ̂z), (285)

where N is the normalization constant such that Trρ̂ = 1. Integration over the variable φ in
eqn (285) cancels all terms in front of the operators σ̂x and σ̂y and we obtain

ρ̂ = 1
N

π∫
0

sinθ dθ δ(〈σ̂z〉 − cosθ)(1̂ + cosθ σ̂z). (286)

The right hand side of this equation suggests a simple geometrical interpretation of the quantum
Bayesian inference in the limit of infinite number of measurements. Namely, the density operator
(286) can be understood as an equally weighted average of all pure states with the same (i.e.,
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measured) mean value of the operator ŝz. These states are represented as points on a circle on the
Poincaré sphere. When we perform integration over θ in eqn (286) we obtain the final expression

ρ̂ = 1
2

(
1̂+ 〈σ̂z〉σ̂z

)
. (287)

for the density operator on the given observation level. Formally this is the same density operator
as that reconstructed with the help of the Jaynes principle [see Table 5]. But there is a difference:
the formula (287) is obtained as a result of averaging of the generalized microcanonical ensemble
of pure states, while the reconstruction via the MaxEnt principle is based on an averaging over
the generalized grand canonical ensemble of all states. The two reconstruction schemes differ by
the a priori assumptions about the possible states of the measured system. As we will see later,
these different assumptions result in different estimations (see below).

9.1.2. Observation level O(1)B = {ŝz, ŝx}
The results of a numerical reconstruction of the density operator of the spin-1/2 based on the

measurement of two spin components ŝz and ŝx are presented in Table 8 (lines 6–9). The lines
1–4 and 6–9 describe estimations based on the same data for the ŝz measurement, but they differ
in the data for the ŝx measurement. That is, the lines 1–4 describe the situation for which no
results for ŝx are available, while lines 6–9 describe the situation with specific outcomes for the ŝx

measurements. Comparing these two cases (i.e., if we compare the values of the von Neumann
entropy for pairs of lines {x, x+ 5}; x = 1, 2, 3, 4) we see that any measurement performed on
the additional observable (ŝx) can only improve our estimation based on the measurement of
the original observable (ŝz).

In the limit of infinite number of measurements, when we have information about the spectral
distribution corresponding to measurement of spin projections ŝx, ŝz the particular form of
eqn (277) reads

ρ̂= 1
N

2π∫
0

dφ

π∫
0

sinθdθδ(〈σ̂z〉 − cosθ)δ(〈σ̂x〉 − sinθ cosφ)

×(1̂+ sinθ cosφσ̂x + sinθ sinφ σ̂y + cosθ σ̂z). (288)

As seen from the right-hand side of eqn (288) in this case the reconstructed density operator is
represented by an equally weighted sum of points given by an intersection of two circles lying
on the Poincaré sphere. These two circles are specified by the two equations 〈σ̂z〉 = cosθ and
〈σ̂x〉 = sinθ cosφ.

With the help of the identity

δ( f (x)) =
∑

x0 , f (x0)=0

δ(x− x0)
| f ′(x0)|

, (289)

we can perform the integration over φ in eqn (288) and obtain

ρ̂ = 1
N

∫
L

dθ
∑
φ0

sinθ
| sinθ sinφ0|

δ(〈σ̂z〉 − cosθ)(1̂+ 〈σ̂x〉 σ̂x + sinθ sinφ0 σ̂y + cosθ σ̂z).(290)

The integration boundaries L on the right-hand side of eqn (290) are defined as

L := 0 ≤ θ ≤ π and | sinθ| ≥ |〈σ̂x〉|. (291)

The sum on the right-hand side of eqn (290) refers to two values of the parameter φ0 which
fulfill the condition cosφ0 = 〈σ̂x〉/ sinθ. We note that the function in front of the operator σ̂y
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disappears due to the fact that it is proportional to sinφ0/| sinφ0|, which is an odd function of
φ0. After we perform the integration over θ we obtain

ρ̂ = 1
2

(
1̂+ 〈σ̂x〉σ̂x + 〈σ̂z〉σ̂z

)
. (292)

What we see again is that in the limit of a large number of measurements the Bayesian inference
formally gives us the same result as the Jaynes principle of maximum entropy [see Table 5].

9.1.3. Observation level O(1)C = {ŝz, ŝx, ŝy}
Further extension of the observation levelO(1)B leads us to the complete observation level, when

all three spin components ŝx, ŝy and ŝz of the spin-1/2 are measured. Results of the numerical
reconstruction are presented in Table 8 (lines 10–13). Now we compare the a posteriori estimation
of density operators based on data presented in lines 6–9. The “experimental data” in line 10
are equal to those presented in line 6 except that now some additional knowledge concerning
the spin component ŝy is available. We note that this additional information about ŝy improves
our estimation of the density operator which is clearly seen when we compare values of the
von Neumann entropy presented in Table 8.

Providing that we have information concerning the spectral distribution associated with the
measurement of a complete set (i.e. the quorum) of operators ŝx, ŝy, ŝz (i.e., after an infinite
number of measurements of the three spin components have been performed), then we can
express the estimated density operator as [see eqn (277)]

ρ̂= 1
N

2π∫
0

dφ

π∫
0

sinθ dθ δ(〈σ̂z〉 − cosθ)δ(〈σ̂x〉 − sinθ cosφ)δ(〈σ̂y〉 − sinθ sinφ)

×(1̂+ sinθ cosφσ̂x + sinθ sinφσ̂y + cosθσ̂z). (293)

The integral on the right-hand-side of eqn (293) can only be performed if the purity condition
(280) is fulfilled, otherwise it simply does not exist. When the purity condition is fulfilled then
from eqn (293) we obtain

ρ̂ = 1
2

(
1̂+ 〈σ̂x〉σ̂x + 〈σ̂y〉σ̂y + 〈σ̂z〉σ̂z

)
. (294)

Here we can again utilize a simple geometrical interpretation of the limit formula (293) for the
Bayes inference. The three δ-functions in eqn (293) correspond to three specific orbits (circles)
on the Poincaré sphere each of which is associated with a set of pure states which possess the
measured value of a given observable ŝi. The reconstructed density operator then describes a point
on the Poincaré sphere which coincides with an intersection of these three orbits. Consequently,
if the three orbits have no intersection the reconstruction scheme fails, because there does not
exist a pure state with the given mean values of the measured observables.

We illustrate this failure of the Bayesian inference scheme in lines 14–17 of Table 8. Here we
present a numerical simulation of the measurement in which all three observables are measured.
It is assumed that the spin-1/2 is in the state with 〈σ̂z〉 = 1/2 and 〈σ̂x〉 = 〈σ̂y〉 = 0, which
apparently does not fulfill the purity condition (280). For a given set of measurement outcomes
(line 14) the Bayesian inference scheme provides us with an a posteriori estimation such that
〈σ̂z〉 = 101/161 which is above the expected mean value which is equal to 1/2. Moreover if we
increase the number of measurements (lines 15–17) the a posteriori estimation deviates more and
more from what would be a correct estimation (i.e., results presented in lines 14–17 correspond
to the following sequence of mean values of σ̂z: 0.481; 0.375; 0.345; 0.332) but simultaneously



1050 V. BUŽEK et al.

the von Neumann entropy S decreases, which should indicate that our estimation is better and
better. This clearly illustrates the intrinsic conflict in the estimation procedure.

The reason for this contradiction lies in the a priori assumption about the purity of the
reconstructed state, i.e. the mean values of the spin components do not fulfill the condition (280)
and so the Bayesian method cannot be applied safely in the present case. The larger the number
of measurement the more clearly the inconsistency is seen and, as follows from eqn (293), in the
limit of infinite number of measurements the Bayesian method fails completely. On the other
hand the Jaynes method can be applied safely in this case. The point is that this method is not
based on an a priori assumption about the purity of the reconstructed state. The Jaynes principle
is associated with maximization of entropy on the generalized grand canonical ensemble, which
means that all states (pure and impure) are taken into account.

In the present example the discrepancy between the a posteriori estimations of density oper-
ators based on the two different schemes has appeared only on the complete observation level.
For more complex quantum-mechanical systems the difference between the density operator re-
constructed with the help of the Jaynes principle of maximum entropy and the density operator
obtained via the Bayesian inference scheme may differ even on incomplete observation levels. To
see this we present in the following sections an example of reconstruction of density operators
describing states of two spins-1/2.

9.2. Quantum Bayesian inference of states of two spins-1/2

In order to apply the general formalism of quantum Bayesian inference as described in Sec-
tion 8 we have to properly parameterize the state space of the quantum system under consider-
ation. Once this is done we have to find the invariant integration measure dΩ associated with
the state space and only then can we effectively use the reconstruction formula (264). We start
this section with a description of how the state space of two spins-1/2 has to be parameterized
and we show how the integration measure can be found.

9.2.1. Parameterization of two-spins-1/2 state space
One way to determine the state spaceΩ of a given quantum-mechanical system is via a diffeo-

morphismΩ ≡ SU(n)|U(n−1). This directly provides us with information about the dimensionality
of Ω, which is (dimSU(n) − dimU(n−1)) = 2n − 2. This means that in our case of two spins-1/2
which are prepared in a pure state we need 6 coordinates which parameterize Ω (n = 4). Un-
fortunately, it is not very convenient to determine the state space via the given diffeomorphism
because then we have to work with noncommutative groups.

It is much simpler to parameterize the state space Ω utilizing the idea of the Schmidt decom-
position [1,77]. In this case we can represent any pure state |Ψ〉 describing two spins-1/2 as:

|Ψ〉 = A|↑1〉 ⊗ |↑2〉 + B|↓1〉 ⊗ |↓2〉, (295)

where |↓ j〉, |↑ j〉, are two general orthonormalized bases in H2 and A, B are two complex numbers
satisfying the condition |A|2 + |B|2 = 1. The corresponding density operator of a pure state in
Ω then reads

ρ̂ = |A|2|↑1〉〈↑1| ⊗ |↑2〉〈↑2| +AB∗|↑1〉〈↓1| ⊗ |↑2〉〈↓2|

+A∗B|↓1〉〈↑1| ⊗ |↓2〉〈↑2| + |B|2|↓1〉〈↓1| ⊗ |↓2〉〈↓2|. (296)

The projectors |↑ j〉〈↑ j | and |↓ j〉〈↓ j | ( j = 1, 2) are given by (1̂ + r( j)σ̂( j) ) and (1̂ − r( j)σ̂( j) ),
respectively [see eqn (281)], where r(1) and r(2) are two arbitrary unity vectors. The operators
|↓ j〉〈↑ j| and their Hermitian conjugates |↑ j〉〈↓ j| are determined as
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|↓ j〉〈↑ j|(1̂+ r( j)σ̂( j) )|↑ j〉〈↓ j| = (1̂− r( j)σ̂( j)), (297)

from which the relation

|↑ j〉〈↓ j| = eiψ j (k( j)σ̂( j) + il ( j)σ̂( j) ), (298)

follows. Here the vectors k( j) are two arbitrarily chosen unity vectors which satisfy the condition
k( j) ⊥ r( j) , and l ( j) are equal to vector products l ( j) = r( j) × k( j) . A particular choice of vectors
k j is not important because phase factors eiψ j [ ψ j ∈ (0, 2π)] rotate them along all possible
directions. We also note that the phase factors eiψ j can be always incorporated in the phase ψ
of a complex number AB∗. Using the parameterization |A| = cos(α/2) and |B| = sin(α/2) we
can parameterize ρ̂ as:

ρ̂(α,ψ,φ1,θ1,φ2,θ2)= 1̂⊗ 1̂
4
+ r(1)σ̂⊗ r(2)σ̂

4
+ cosα

[r(1)σ̂⊗ 1̂
4

+ 1̂⊗ r(2)σ̂
4

]
+ sinα cosψ

[k(1)σ̂⊗ k(2)σ̂
4

− l (1)σ̂⊗ l (2)σ̂
4

]
− sinα sinψ

[k(1)σ̂⊗ l (2)σ̂
4

+ l (1)σ̂⊗ k(2)σ̂
4

]
, (299)

where ψ,φ1,φ2 ∈ (0, 2π); α,θ1,θ2 ∈ (0,π) and

k( j) = (sinφ j ,− cosφ j , 0);

l ( j) = (cosθ j cosφ j , cosθ j sinφ j ,− sinθ j); (300)

r( j) = (sinθ j cosφ j , sinθ j sinφ j , cosθ j).

Once we have parameterized the state space Ω we can find the invariant integration measure dΩ
(see Appendix B) which reads

dΩ = cos2α sinα sinθ1 sinθ2 dα dψdφ1 dθ1 dφ2 dθ2. (301)

9.3. Quantum Bayesian inference of the state of two-spins-1/2

To perform the Bayesian reconstruction of density operators of the two-spins-1/2 system we
introduce a set of projectors associated with the observables

P̂s,ŝ(1)i
= (1̂+ sσ̂i)

2
⊗ 1̂; P̂s,ŝ(2)i

= 1̂⊗ (1̂+ sσ̂i)
2

; P̂s,ŝ(1)i ŝ(2)j
= 1̂⊗ 1̂

2
+ s
σ̂i ⊗ σ̂ j

2
. (302)

The corresponding conditional probabilities can be expressed as

p(s, ŝ(1)i |ρ̂(α . . .)) = 1
2
+ s

cos(α)
2

r(1)i ; p(s, ŝ(2)i |ρ̂(α . . .)) = 1
2
+ s

cos(α)
2

r(2)i ; (303)

p(s, ŝ(1)i ŝ(2)j |ρ̂(α . . .))= 1
2
+ s

r(1)i r(2j
2

(304)

+s
[

sin(α) cosψ
2

(k(1)i k(2)j − l (1)i l (2)j )−
sin(α) sinψ

2
(k(1)i l (2)j + l (1)i k(2)j )

]
,

where s is the sign of the measured eigenvalue. Here we comment briefly on the physical meaning
of the projectors defined by eqn (302). Namely, the single-particle projectors of the form P̂s,ŝ(1)i

are associated with a measurement of the spin component of the first particle in the i-direction
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Table 9. Results of a posteriori Bayesian estimation of density operators of the two-spin-1/2 system. We also present
explicit values of the von Neumann entropy associated with given measured data.

�̂z 
 ^1 1̂
 �̂z �̂z 
 �̂z reconstructed density operator �̂ S

1. " 1

4
[1̂
 1̂ + 1

5
�̂z 
 1̂] = 1

2
[1̂ + 1

5
�̂z ]


1

2
1̂ 1.366

2. "4 1

4
[1̂
 1̂ + 1

2
�̂z 
 1̂] = 1

2
[1̂ + 1

2
�̂z ]


1

2
1̂ 1.255

3. "5# 1

4
[1̂
 1̂ + 2

5
�̂z 
 1̂] = 1

2
[1̂ + 2

5
�̂z ]


1

2
1̂ 1.304

4. "10#2 1

4
[1̂
 1̂ + 1

2
�̂z 
 1̂] = 1

2
[1̂ + 1

2
�̂z ]


1

2
1̂ 1.255

5. " " 1

4
[1̂
 1̂ + 1

5
(�z 
 1̂ + 1̂
 �̂z) +

1

15
�̂z 
 �̂z] 1.346

6. "4 "4 1

4
[1̂
 1̂ + 799

1506
(�̂z 
 1̂ + 1̂
 �̂z) +

594

1506
�̂z 
 �̂z ] 1.078

7. "5# "5# 1

4
[1̂
 1̂ + 1175

2882
(�̂z 
 1̂ + 1̂
 �̂z) +

781

2882
�̂z 
 �̂z ] 1.207

8. "10#2 "10#2 1

4
[1̂
 1̂ + 17395923

33863032
(�̂z 
 1̂ + 1̂
 �̂z) +

13818228

33863032
�̂z 
 �̂z ] 1.091

9. " 1

4
[1̂
 1̂ + 1

5
�̂z 
 �̂z] 1.366

10. "4 1

4
[1̂
 1̂ + 1

2
�̂z 
 �̂z] 1.255

11. "6 1

4
[1̂
 1̂ + 3

5
�̂z 
 �̂z] 1.194

12. "12 1

4
[1̂
 1̂ + 3

4
�̂z 
 �̂z] 1.070

13. " " 1

4
[1̂
 1̂ + 1

5
�̂z 
 1̂ + 1

15
1̂
 �̂z +

1

5
�̂z 
 �̂z ] 1.346

14. "4 "4 1

4
[1̂
 1̂ + 799

1506
�̂z 
 1̂ + 594

1506
1̂
 �̂z +

799

1506
�̂z 
 �̂z ] 1.078

15. "5#1 "6 1

4
[1̂
 1̂ + 4509

10278
�̂z 
 1̂ + 3879

10278
1̂
 �̂z +

6221

10278
�̂z 
 �̂z ] 1.079

16. "10#2 "12 1

4
[1̂
 1̂ + 5787206

10556539
�̂z 
 1̂ + 5542104

10556539
1̂
 �̂z +

7953979

10556539
�̂z 
 �̂z ] 0.889

17. " " " 1

4
[1̂
 1̂ + 1

4
(�̂z 
 1̂ + 1̂
 �̂z) +

1

4
�̂z 
 �̂z] 1.303

18. "4 "4 "4 1

4
[1̂
 1̂ + 281501

441004
(�̂z 
 1̂ + 1̂
 �̂z) +

281501

441004
�̂z 
 �̂z] 0.883

19. "5# "5# "6 1

4
[1̂
 1̂ + 3126849

6044314
(�̂z 
 1̂ + 1̂
 �̂z) +

3873174

6044314
�̂z 
 �̂z] 0.988

20. "10#2 "10#2 "12 1

4
[1̂
 1̂ + 1372112265600137

2298883143280046
(�̂z 
 1̂ + 1̂
 �̂z) +

1766795516375970

2298883143280046
�̂z 
 �̂z ] 0.831

(i = x, y, z). Obviously this spin component can have only two values, i.e., “up” (s = 1) and
“down” (s = −1).

In Tables 8 and 9 we will denote outcomes of the measurements “up” and “down” as ↑
and ↓, respectively. The two-particle projectors P̂s,ŝ(1)i ŝ(2)j

are associated with measurements of
correlations between the two spin. Namely, if s = 1, the two spins are correlated, which means
that they both are registered in the same, yet unspecified, state (that is, both spins are registered
either in the state | ↑1↑2〉 or | ↓1↓2〉).

In Tables 8 and 9 we will denote this outcome of the measurement as ↑. On the contrary, if
the particles are registered as anticorrelated, that is after the measurement they are in one of the
two states | ↑1↓2〉 or | ↓1↑2〉, then s = −1. In Tables 8 and 9 we will denote the outcome of this
measurement for σ̂i ⊗ σ̂ j as ↓.

Now we can apply general rules of Bayesian inference presented in Section 8. for a two-
spin-1/2 system. We will consider three specific incomplete observation levels and we will derive
asymptotic expressions for the density operators in the limit of large number of measurements. We
stress here that we assume the measured system to be prepared in a pure state. To be specific, let
us suppose that the two spins are prepared in a state described by the state vector (obviously, this
can be determined only after an infinite number of measurements on the complete observation
level is performed)

|Ψ〉 = A|↑〉 ⊗ |↑〉 + B|↓〉 ⊗ |↓〉, (305)
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where |↑〉 and |↓〉 are eigenstates corresponding to the observable of the spin projection into the
z-direction (i.e., 〈σ̂z ⊗ 1̂〉 = 〈1̂ ⊗ σ̂z〉 = |A|2 − |B|2 and 〈σ̂z ⊗ σ̂z〉 = 1). When we assume the
coefficients |A| and B| to be real, then we can rewrite the density operator associated with the
state vector (305) in the form (299), i.e.

ρ̂ = 1̂⊗ 1̂
4
+ σ̂z ⊗ σ̂z

4
+ A2 − B2

4

(
σ̂z ⊗ 1̂+ 1̂⊗ σz

)
+ AB

2

(
σ̂x ⊗ σ̂x − σ̂y ⊗ σ̂y

)
, (306)

with ψ = 0,φ1 = π/2,θ1 = 0,φ2 = π/2,θ2 = 0 and sinα/2 = A. In what follows we perform
a posteriori estimation of the density operator based on incomplete data obtained from three
different fictitious measurement sequences.

9.3.1. Observation level O(2)A = {ŝ(1)z , ŝ(2)z }
In the first sequence of measurements we reconstruct a density operator from data which

refer to a measurement of the first spin-1/2 in the direction z, i.e., only the spin component
ŝ(1)z is measured (see lines 1–4 in Table 9). We see that if only one spin is measured, then the
reconstructed two-spin density operator can be factorized, while, as expected, the state of the
unmeasured spin is estimated as ρ = 1̂/2. Obviously, in this kind of measurement, correlations
between the two spins cannot be revealed, i.e., the estimated value of σ̂z⊗ σ̂z is equal to zero. As
in the case of the reconstruction of a single-spin-1/2 state, the reconstructed density operators
describe statistical mixtures and the corresponding von Neumann entropy is directly related to
the fidelity of the reconstruction. The maximum value of the von Neumann entropy is in the case
of two-spins-1/2 equal to S = ln 4 ' 1.386. This entropy is associated with the “total” mixture
of the two-spin-1/2 system and in our case it reflects a complete lack of information about the
state of the measured system (i.e., we have no knowledge about the state before a measurement
is performed). As soon as the first measurement is performed, we gain some knowledge about
the state of the system and the entropy of the estimated density operator is smaller than ln 4
(see line 1).

Let us assume now that data from the measurement of the spin components ŝ(1)z and ŝ(2)z of the
first and the second particle (spin-1/2), are available. In Table 9 (lines 5–8) we present results of a
reconstruction procedure based on the given “measured” data. We see that though correlations
between the two spins have not been measured directly our estimation procedure provides us
with a nontrivial estimation for this observable (i.e., the density operator cannot be factorized).
Obviously, this estimation is affected by the prior assumption about the purity of the recon-
structed state. We see that with the increased number of detected spins the von Neumann entropy
of the estimated density operator decreases (we note that it does not decrease monotonically as
a function of the number of measurements).

In the limit of large (infinite) number of measurements spectral distributions eqn (266) as-
sociated with observables on a given incomplete observation level are precisely determined by
the measured data. Using the parameterization introduced earlier in this section [see eqns (299)
and (301–303)] we can write down the expression (277) for the Bayesian a posteriori estimation
of the density operator in the limit of large number of measurements. After we perform some
trivial integrations and when the substitution cosα = x, cosθ1 = y, cosθ2 = z is performed we
can write the reconstructed density operator as

ρ̂= 1
N

1∫
−1

x2 dx

1∫
−1

dy (307)

×
1∫
−1

dzδ(〈σ̂ (1)
z 〉 − xy)δ(〈σ̂ (2)

z 〉 − xz)(1̂⊗ 1̂+ xyσ̂z ⊗ 1̂+ xz1̂⊗ σ̂z + yzσ̂z ⊗ σ̂z),
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The right-hand side of eqn (307) can easily be integrated over the variables y and z so we can
write

ρ̂ = 1
N

∫
L

dx

(
1̂⊗ 1̂+ 〈σ̂ (1)

z 〉 σ̂z ⊗ 1̂+ 〈σ̂ (2)
z 〉 1̂⊗ σ̂z + 〈σ̂

(1)
z 〉〈σ̂ (2)

z 〉
x2

σ̂z ⊗ σ̂z

)
, (308)

where the integration is performed over the interval L

L := {−1, 1} and |x| ≥ smax, (309)

with smax = max{ |〈σ̂ (1)
z 〉|, |〈σ̂ (2)

z 〉| }. After we perform the integration over the variable x we find

ρ̂ = 1
4

(
1̂⊗ 1̂+ 〈σ̂ (1)

z 〉 σ̂z ⊗ 1̂+ 〈σ̂ (2)
z 〉 1̂⊗ σ̂z +

〈σ̂ (1)
z 〉〈σ̂ (2)

z 〉
smax

σ̂z ⊗ σ̂z

)
. (310)

Comparing results presented in Table 7 and (310) we see that on the observation level O(2)A the
quantum Bayesian inference and the Jaynes principle of maximum entropy provides us with the
different a posteriori estimations of density operators. To be specific, the density operator ρ̂A

obtained with the help of the MaxEnt principle can be expressed in a factorized form while the
density operator ρ̂ cannot be factorized into a product of two density operators describing each
spin separately [the only exception is when smax = 1].

9.3.2. Observation level O(2)B′ = {ŝ(1)z , ŝ(1)z ŝ(2)z }
Here we start our discussion with an assumption that only correlations between the particles

are measured, while the state of the each individual particle after the measurement is unknown
(see lines 9–12 in Table 9). In this case we are not able to make any nontrivial estimation for
the mean values of the spin components of the individual particles. In order to have a better
estimation we have also to measure at least one of the spin components of the first or the second
spin.

Let us assume that the z-component of the first spin and the correlation ŝ(1)z ŝ(2)z are measured.
That is the z-component of the second spin ŝ(2)z is not directly observed. The question is what
is the estimation of the density operator on this observation level and in particular, what is the
estimation for the mean value of the observable ŝ(2)z . In Table 9 (lines 13–16) we present numerical
results for the a posteriori estimation of the density based on a finite set of “experimental” data.
We see that the Bayesian scheme provides us with a nontrivial (i.e., nonzero) estimation of the
mean value of ŝ(2)z . But the question is whether in the limit of a large number of measurements this
is equal to the mean value estimated with the help of the Jaynes principle of maximum entropy.
The expression for the a posteriori Bayes estimation of the density operator in the limit of infinite
number of measurements on the given observation level [for technicalities see Appendix C] reads

ρ̂ = 1
4

[
1̂⊗ 1̂+ 〈σ̂ (1)

z 〉σ̂z ⊗ 1̂+ 〈σ̂
(1)
z 〉〈σ̂ (1)

z σ̂ (2)
z 〉

smax
1̂⊗ σ̂z + 〈σ̂ (1)

z σ̂ (2)
z 〉σ̂z ⊗ σ̂z

]
, (311)

where smax = max
{ |〈σ̂ (1)

z 〉|, |〈σ̂ (1)
z σ̂ (2)

z 〉|
}
. Here again the Bayesian a posteriori estimation (311)

is in general different from the estimation obtained with the help of the Jaynes MaxEnt principle
[see ρ̂B′ in Table 7]. We see that these two results coincide only when smax = 1. For instance, if
〈σ̂z ⊗ σ̂z〉 = 1, then smax is equal to unity and the estimated density operators ρ̂B′ and ρ̂ given
by eqn (311) are equal and read

ρ̂ = 1
4

[
1̂⊗ 1̂+ 〈σ̂ (1)

z 〉σ̂z ⊗ 1̂+ 〈σ̂ (1)
z 〉1̂⊗ σ̂z + σ̂z ⊗ σ̂z

]
. (312)
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In the case when 〈σ̂ (1)
z 〉 = 1 the von Neumann entropy is equal to zero, i.e., the measured state

is completely reconstructed, and is described by the state vector |Ψ〉 = | ↑1↑2〉.

9.3.3. Observation level O(2)B = {ŝ(1)z , ŝ(2)z , ŝ(1)z ŝ(2)z }
Finally, we will consider a measurement of both the spins projections ŝ(1)z , ŝ(2)z , as well as the

correlation ŝ(1)z ŝ(2)z . Results of an estimation of the density operator based on a sequence of data
associated with this observation level are given in Table 9 (lines 17–20). If an infinite number of
measurements on the given observation level is performed then we can evaluate the a posteriori
density operator analogously to that of the previous example [see Appendix C] and after some
algebra we find

ρ̂= 1
N

∫
L′′

x2

|x| dx

×
z2∫

z1

dz
δ(〈σ̂ (2)

z 〉 − xz)√
a+ bz+ cz2

[
1̂⊗ 1̂+ 〈σ̂ (1)

z 〉σ̂z ⊗ 1̂+ xz1̂⊗ σ̂z + 〈σ̂ (1)
z σ̂ (2)

z 〉σ̂z ⊗ σ̂z

]
. (313)

Due to the presence of the δ-function the integration over the parameter z on the right-hand
side of eqn (313) is straightforward and we obtain

ρ̂ = 1
N

∫
L′′

dx√
a+ bz0 + cz2

0

[
1̂⊗ 1̂+ 〈σ̂ (1)

z 〉σ̂z ⊗ 1̂+ 〈σ̂ (2)
z 〉1̂⊗ σ̂z + 〈σ̂ (1)

z σ̂ (2)
z 〉σ̂z ⊗ σ̂z

]
, (314)

where z0 = 〈σ̂ (2)
z 〉/x. From eqn (314) we directly obtain the reconstructed density operator which

reads

ρ̂ = 1
4

[
1̂⊗ 1̂+ 〈σ̂ (1)

z 〉σ̂z ⊗ 1̂+ 〈σ̂ (2)
z 〉1̂⊗ σ̂z + 〈σ̂ (1)

z σ̂ (2)
z 〉σ̂z ⊗ σ̂z

]
. (315)

We see that on the present observation level the density operator (315) estimated via Bayesian
inference is equal to the density operator ρ̂B estimated with Jaynes principle of maximum entropy
[see Table 7]. Nevertheless, we have to remember that the estimation (315) based on quantum
Bayesian inference is intrinsically related to an averaging over a generalized microcanonical
ensemble of pure states. On the other hand, the MaxEnt-estimation is associated with averaging
over the grand canonical ensemble.

9.4. Reconstruction of impure spin states

In this section we apply the purification ansatz as shown in Section 8.3 for a reconstruction
(estimation) of an impure state of a single spin-1/2. To do so, we apply the results of the
previous section where we have discussed the Bayesian estimation of pure two-spins-1/2 states.
In particular, in lines 1–4 of Table 9 we present results of the estimation of a two-spin density
operator based on “results” of measurements of the σ̂z-component of just one spin-1/2. We see
that in this case the two-spin density operator can be written in a factorized form, ρ̂ab = ρ̂a⊗ 1

2 1̂.
In this case we can easily trace over the unmeasured spin and we obtain the estimation for the
density operator of the first spin (compare with lines 1–4 in Table 8). This estimation is not
based on the a priori purity assumption.

Comparing results of two estimations which differ by the a priori assumption about the purity
of the reconstructed state we can conclude the following:
(1) In general, under the purity assumption the reconstruction procedure converges faster (simply
compare the two columns in Table 8) to a particular result. This is easy to understand, because
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in the case when the purity of measured states is a priori assumed, the state space of all possible
states is much smaller compared to the state space of all possible (pure and impure) states.
(2) When the measured data are inconsistent with an a priori purity assumption, then estimations
based on this assumption become incorrect. For instance, for the “measured” data presented in
lines 14–17 of Table 8 we find that the estimated mean values of σ̂z diverge from the expected mean
value 1/2 (i.e., this is the mean value of σ̂z when we detect in a sequence of 4N measurements
3N spins “up” and N spins “down”). As we have shown in Section 9.1.3 in the limit N →
∞ the reconstruction can completely fail when the purity condition is imposed. In the other
hand, if it is a priori assumed that the measured state can be in a statistical mixture, then the
Bayesian quantum inference provides us with estimations which in the limit N → ∞ coincide
with estimations based on the Jaynes principle of maximum entropy.

9.4.1. Observation level O(1)A = {ŝ(1)z }
Using the techniques which have been demonstrated in Section 8 we can express the esti-

mated density operator on the given observation level in the limit N →∞ as [see eqn (277)]. We
note that on the considered observation level, eqn (277) contains many terms, which are odd
functions of the corresponding integration variables. Therefore the integration over these pa-
rameters (θ2,φ2,ψ,φ1) is straightforward. Moreover, if we perform the trace over the “second”
(reservoir) spin we can express the density operator of the spin-1/2 under consideration as

ρ̂ = 1
N

1∫
−1

y2 dy

π∫
0

sinθ1 dθ1 δ(〈σ̂ (1)
z 〉 − y cosθ1)(1̂+ y cosθ1σ̂z), (316)

where the variable α is substituted by y = cosα. When we perform integration over y we obtain
the expression

ρ̂ = 2
N

∫
L

dθ1
sinθ1

cos2 θ1| cosθ1|
(1̂+ 〈σ̂ (1)

z 〉σ̂z), (317)

with L defined as

L := {0,π} such that | cosθ1| ≥ |〈σ̂ (1)
z 〉|. (318)

After we perform the integration over θ1 we obtain the expression for the density operator
identical to that obtained via the Jaynes principle of maximum entropy [see Table 5].

9.4.2. Observation level O(1)B = {ŝ(1)z , ŝ(1)x }
In the limit of infinite number of measurements one can express the Bayesian estimation of

the density operator of the spin-1/2 on the given observation level as (here the trace over the
“reservoir” spin has already been performed):

ρ̂= 1
N

1∫
−1

y2 dy

π∫
0

sinθ1 dθ1

2π∫
0

dφ1 δ(〈σ̂ (1)
z 〉 − y cosθ1)δ(〈σ̂ (1)

x 〉 − y sinθ1 cosφ1)

×
(

1̂+ y sinθ1 cosφ1σ̂x + y sinθ1 sinφ1σ̂y + y cosθ1σ̂z

)
. (319)

When we perform integration over the variable y we find

ρ̂= 1
N

2π∫
0

dφ1

∫
L′

dθ1
sinθ1

cos2 θ1| cosθ1|
δ(〈σ̂ (1)

x 〉 − tanθ1 cosφ1〈σ̂ (1)
z 〉)
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×
(

1̂+ 〈σ̂ (1)
z 〉 tanθ1 cosφ1σ̂x + 〈σ̂ (1)

z 〉 tanθ1 sinφ1σ̂y + 〈σ̂ (1)
z 〉σ̂z

)
. (320)

The integration over the variable φ1 in the right-hand side of eqn (320) gives us

ρ̂ = 1
N

∫
L′′

dθ1

2∑
j=1

1

cos2 θ1| sinφ( j)
1 |

(
1̂+ 〈σ̂ (1)

x 〉σ̂x + 〈σ̂ (1)
z 〉 tanθ1 sinφ( j)

1 σ̂y + 〈σ̂ (1)
z 〉σ̂z

)
,(321)

where the integration is performed over the interval

L′′ := {0,π} such that | cosθ1| ≥ |〈σ̂ (1)
z 〉|, and | tanθ1| ≥

〈σ̂ (1)
x 〉

|〈σ̂ (1)
z 〉| . (322)

The sum in eqn (321) is performed over two values φ( j)
1 of the variable φ1 which are equal to

the two solutions of the equation

cosφ1 = 〈σ̂ (1)
x 〉

〈σ̂ (1)
z 〉 tanθ1

. (323)

Due to the fact that the term in front of the operator σ̂ (1)
y is the odd function of φ( j)

1 , we can
straightforwardly perform in eqn (321) the integration over θ1 and we find the expression of the
reconstructed density operator which again is exactly the same as if we perform the reconstruction
with the help of the Jaynes principle [see Table 5].

9.4.3. Observation level O(1)C = {ŝ(1)z , ŝ(1)x , ŝ(1)y }
On the complete observation level, the expression for the Bayesian estimation of the density

operator of the spin-1/2 in the limit of infinite number of measurements can be expressed as
(here again we have already traced over the “reservoir” degrees of freedoms) [see eqn (319)]:

ρ̂= 1
N

1∫
−1

y2 dy

π∫
0

sinθ1 dθ1

2π∫
0

dφ1

×δ(〈σ̂ (1)
z 〉 − y cosθ1)δ(〈σ̂ (1)

x 〉 − y sinθ1 cosφ1)δ(〈σ̂ (1)
y 〉 − y sinθ1 sinφ1)

×
(

1̂+ y sinθ1 cosφ1σ̂x + y sinθ1 sinφ1σ̂y + y cosθ1σ̂z

)
. (324)

Performing similar calculations as in the previous subsection we can rewrite eqn (324) as

ρ̂ '
∫
L′′

dθ1

2∑
j=1

1

cos2 θ1| sinφ( j)
1 |
δ(〈σ̂ (1)

y 〉 − tanθ1 sinφ( j)
1 〈σ̂ (1)

z 〉)

×
(

1̂+ 〈σ̂ (1)
x 〉σ̂x + 〈σ̂ (1)

y 〉 tanθ1 sinφ( j)
1 σ̂y + 〈σ̂ (1)

z 〉σ̂z

)
⊗ 1̂, (325)

where L′′ and φ( j)
1 are defined by eqns (322) and (323), respectively. Now the integration over

θ1 can be easily performed and for the density operator of the given spin-1/2 system we find

ρ̂ = 1
2

[
1̂+ 〈σ̂ (1)

x 〉σ̂x + 〈σ̂ (1)
y 〉σ̂y + 〈σ̂ (1)

z 〉σ̂z

]
, (326)

where the mean values 〈σ̂ (1)
j 〉 do not necessarily satisfy the purity condition (280). In other

words the generalized Bayesian scheme provides us with a possibility of reconstruction of impure
quantum-mechanical states and the results in the limit of infinite number of measurements are
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equal to those obtained with the help of the Jaynes principle of maximum entropy. Moreover,
when the quorum of observables is measured, a complete reconstruction of the measured state
is performed.

10. OPTIMAL ESTIMATION OF QUANTUM STATES FROM FINITE ENSEMBLES

In the previous section we have analyzed how quantum states can be reliably estimated from the
data obtained in a given measurement performed on a finite ensemble of N identically prepared
objects in an unknown pure quantum state described by a density operator ρ̂ = |ψ〉〈ψ|. In
this section we will address the question—What kind of measurement provides the best possible
estimation of ρ̂? (see also [44,45]). This leads to an important problem of the optimal state
estimation with limited physical resources. It is a generic problem, common to many areas
of quantum physics ranging from the ultra-precise quantum metrology to eavesdropping in
quantum cryptography.

Within a framework of an elementary group theory the problem of the state estimation can
be reformulated as a more general problem of estimating an unknown unitary operation from
a group of transformations acting on a given quantum system (i.e., the state estimation follows
as a special case). Holevo [31] has shown that this problem can be solved via the covariant
measurement (CM) approach. Unfortunately, the covariant measurement corresponds to an
infinite (i.e. consisting of infinite continuous set of operators) and therefore physically non-
realizable positive operator-valued measure measurement (POVM). We note that from the logic
of the CM it follows that if any optimal measurement (finite or infinite) does exist then using
a simple formal construction one can generate from the original optimal measurement another
measurement which is covariant and which, in the same time conserves optimality of the original
solution. In the present Section we address the question how to find finite optimal generalized
measurements if they exist. This is a fundamental question because only finite POVM schemes
are experimentally realizable. We propose a universal algorithm how to look for these POVM
schemes and we apply it explicitly in two physically interesting cases of the state estimation of
N identically prepared two-level systems (qubits).

In order to set up the scene, let us assume that state ρ̂ is generated from a reference state
ρ̂0 = |ψ0〉〈ψ0| by a unitary operation U (x) which is an element of a particular unitary finite
dimensional representation of a compact Lie group G. Different x denote different points of the
group (e.g., different angles of rotation in the case of the SU (2)) and we assume that all values
of x are equally probable.

Our task is to design the most general POVM, mathematically described as a set {Ôr}R
r=1 of

positive Hermitian operators such that
∑

r Ôr = 1̂ [1,30], which when applied to the combined
system of all N copies provides us with the best possible estimation of ρ̂ (and therefore also of
U (x)). We quantify the quality of the state estimation in terms of the mean fidelity

f̄ =
∑

r

∫
G

dx Tr[Ôr

N times︷ ︸︸ ︷
U (x)ρ̂0U †(x)⊗ . . .⊗U (x)ρ̂0U †(x)]Tr[U (x)ρ̂0U †(x) Urρ̂0U †

r ], (327)

which corresponds to a particular choice of a cost function [30] used in a context of detection
and estimation theory. The mean fidelity (327) can be understood as follows: In order to assess
how good a chosen measurement is we apply it many times simultaneously on all N particles
each in state U (x)ρ̂0U †(x). The parameter x varies randomly and isotropically† over all points

†We note that this isotropy condition is equivalent to a “no a priori information” condition and is associated
with the specific integration measure in eqn (327). This measure has to be invariant under the action of all unitary
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of the group G during many runs of the measurement.
For each result r of the measurement, i.e., for each operator Ôr, we prescribe the state |ψr〉 =

Ur|ψ0〉 representing our guess (i.e., estimation) of the original state. The probability of the
outcome r is equal to Tr[Ôr U (x)ρ̂0U †(x)⊗. . .⊗U (x)ρ̂0U †(x)], while the corresponding fidelity
of our estimation is Tr[U(x)ρ̂0U †(x) Urρ̂0U †

r ]. This fidelity is then averaged over all possible
outcomes and over many independent runs of the measurement with randomly and isotropically
distributed parameters x. We want to find the generalized measurement which maximizes the
mean fidelity f̄ given by eqn (327).

The combined system of N identically prepared reference states always remains within the
totally symmetric subspace of Hk ⊗ Hk ⊗ . . . Hk, where Hk is k-dimensional Hilbert space
of the reference state in which the corresponding unitary representation U (x) acts. Thus the
dimensionality d of the space in which we construct the POVM {Ôr} is d = ( N+k−1

k−1 ). In this
case the first trace in eqn (327) can be rewritten as

f̄ =
∑

r

∫
G

Tr[Ôr U N(x)Ω̂0U N†(x)]Tr[U (x)ρ̂0U †(x) Urρ̂0U †
r ]dx, (328)

where U N(x) is a new representation of the same group G; it is equivalent to the N-fold sym-
metrized direct product [81] of the original representation U (x). Here U N(x) transforms the
( N+k−1

k−1 )-dimensional reference state denoted as Ω̂0.
We can insert the identity operator U N

r U N†
r into the first trace in eqn (328) and, taking into

account that in eqn (328) we integrate over whole the group G parameterized by x, we can
substitute U N(x)U N†

r → U N(x) and U (x)U †
r → U (x). Now, using the linearity of the trace

operation as well as the linearity of the representation of the group G (U ρ̂U † is a linear adjoint
representation) we rewrite eqn (328) as

f̄ =
∑

r

Tr[Ôr U N
r F̂U N†

r ], (329)

where

F̂ =
∫
G

U N(x)Ω̂0U N†(x) Tr[U (x)ρ̂0U †(x) ρ̂0]dx, (330)

is a positive Hermitian operator.
Let us now derive an upper bound on the mean fidelity. Taking into account positivity of the

operator F̂ (i.e., F̂ = ∑i λi|φi〉〈φi|; λi ≥ 0) and the completeness condition for POVM (i.e.,∑
r Ôr = 1̂) we obtain

f̄ =
∑

r
Tr[ÔrU N

r F̂U N†
r ]=

∑
i r

λiTr[ÔrU N
r |φi〉〈φi|U N†

r ]

≤ λmax

∑
i r

Tr[Ôr U N
r |φi〉〈φi|U N†

r ] (331)

= λmax

∑
r

Tr[Ôr U N
r 1̂U N†

r ]=λmax Tr[1̂] = λmax d.

From eqn (331) it clearly follows that the upper bound can be achieved if and only if all operators
Ôr forming the POVM satisfy the following conditions:

(i) Each Ôr is proportional to a suitably rotated (by some U N
r ) projector on the eigen-

vector of F̂ with the highest eigenvalue, i.e. for all Ôr there exists U N
r , such that Ôr =

transformations on the state space of pure states (for details see Appendix B).
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c2
r U N

r |φmax〉〈φmax|U N†
r . This U N

r , or more precisely Ur|ψ0〉, is our guess associated with the
result “r”.

(ii) All c2
r are real and positive, to assure that all Ôr are positive operators.

(iii) Finally, the operators Ôr have to satisfy the completeness criterion∑
r

c2
r U N

r |φmax〉〈φmax|U N†
r = 1̂.

As shown by Holevo [31] in the case of the infinite POVM the condition (iii) is fulfilled for
covariant measurements, providing the representation U N of the group G is irreducible (see
Example A below). This statement follows from the Shur lemma. However, in the general case
of reducible representation and specifically for finite realizable POVMs this argument cannot be
used and we have to proceed differently.

To find the solution of the problem we start with the following observation. Let us assume
that we have some POVM {Ôr}R

r=1 and the corresponding guesses U N
r which maximize the mean

fidelity f̄ . We can always construct another POVM with more elements which is also optimal. For
example, let us consider a one-parametric subgroup U (φ) = exp(iX̂φ) of our original group G
and choose a basis {|m〉}d

m=1 in which the action of this subgroup is equivalent to multiplication
by a factor eiωmφ (i.e., the operator U (φ) is diagonal in this basis and ωm are eigenvalues of the
generator X̂ ). Then we take d points φs (s = 1, . . . d) and generate from each original operator
Ôr a set of d operators Ô,

rs = 1
d U N(φs)ÔrU N†(φs). In this way we obtain a new set of (d ·R)

operators such that the mean fidelity for this new set of operators, f̄ =∑r,s Tr[Ô,
r,s U N

r,s F̂U N†
r,s ], is

equal to the mean fidelity of the original POVM {Ôr} because we ascribe to each eventual result
[r, s] a new guess Ur,s =U (φs)Ur. However, in order to guarantee that the new set of operators
Ô,

rs is indeed a POVM we have to satisfy the completeness condition

1̂ =
∑

s

∑
r

Ô,
rs =

∑
s

∑
r

1
d

U N(φs)ÔrU N†(φs) =
∑

s

∑
m,n

eiφs(ωm−ωn)

d

∑
r

(
Ôr

)
mn
|m〉〈n|. (332)

Let us notice that, by the appropriate choice of φs, the sum
∑

s
eiφs(ωm−ωn)

d can always be made
equal to δm,n providing all eigenvalues are non-degenerate† (this is basically a discrete Fourier
transform and we illustrate this point in detail in Example A). In this case, the conditions (332)
for the off-diagonal terms in the basis |m〉 are trivially satisfied whereas the diagonal terms are
equal to unity because the original POVM {Ôr} guarantees that

∑
r(Ôr)mm = 1. Moreover, even

if the original set of operators {Ôr} does not satisfy the full completeness condition and the
conditions for the off-diagonal terms are not satisfied (i.e., these operators do not constitute a
POVM) we can, using our extension ansatz, always construct a proper POVM {Ôr,s}. This proves
that when we maximize the mean fidelity (329) it is enough to assume d diagonal conditions
rather than the original complete set of d2 constraints for diagonal and off-diagonal elements.

Now we turn back to our original problem of how to construct the POVM which maximizes
the mean fidelity. To do so we first express the operators Ôr in the form Ôr=c2

r U N
r |Ψr〉〈Ψr|U N†

r ,
where |Ψr〉 are general normalized states in the d -dimensional space in which the operators Ôr

act, and c2
r are positive constants. This substitution is done without any loss of generality‡ and it

permits us to rewrite eqn (329) so that the mean fidelity f̄ does not explicitly depend on U N
r , i.e.

†In the case when the spectrum of the generator X̂ is degenerate, i.e., for some m and n we have ωm = ωn,
then our algorithm is still valid, provided we increase a number of Lagrange multipliers in eqn (335) to account for
off-diagonal elements Lmn and Lnm in the definition of the operator L̂ in eqn (335).
‡The most general choice of Ôr would be Ôr =

∑
i cr,i |Ψr,i〉〈Ψr,i|. However, from the point of view of optimality

of the POVM these operators are always less effective than operators Ôr=c2
r U N

r |Ψr〉〈Ψr|U N†
r which are proportional

to one-dimensional projectors.
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f̄ =
∑

r
c2

r Tr[|Ψr〉〈Ψr|F̂ ]. (333)

Obviously, the completeness condition
∑

r Ôr = 1̂ is now modified and it reads∑
r

c2
r U N

r |Ψr〉〈Ψr|U N†
r = 1̂. (334)

From our discussion above it follows that when maximizing the mean fidelity (333) it is
enough to apply only d constraints

∑
r c2

r

∣∣〈m|UN,r|Ψr〉
∣∣2 = 1 (here m = 1, . . . , d) out of the d2

constraints (334). Therefore to accomplish our task we solve a set Lagrange equations with d
Lagrange multipliers Lm. If we express Lm as eigenvalues of the operator L̂ = ∑

m Lm |m〉〈m|
then we obtain the final very compact set of equations determining the optimal POVM[

F̂ −U N†
r L̂U N

r

]
|Ψr〉=0,

∑
r

c2
r

∣∣〈m|U N
r |Ψr〉

∣∣2=1. (335)

From here it follows that |Ψr〉 are determined as zero-eigenvalue eigenstates. More specifi-
cally, they are functions of d Lagrange multipliers {Lm}d

m=1 and R vectors {xr}R
r=1 [where xr

determine Ur as Ur = U (xr)]. These free parameters are in turn related via R conditions
Det[(F̂ −U N†

r L̂U N
r )] = 0. The mean fidelity now is equal to TrL̂. At this stage we solve a sys-

tem of d linear equations [see the second formula in eqn (335)] for R unknown parameters c2
r .

All solutions for c2
r parametrically depend on Lm and xr which are specified above. We note that

the number of free parameters in our problem depends on R which has not been specified yet.
We choose R such that there are enough free parameters so that the mean fidelity is maximized
and simultaneously all c2

r are positive. This freedom in the choice of the value of R also reflects
the fact that there is an infinite number of equivalent (i.e., with the same value of the mean fi-
delity) optimal POVMs. The whole algorithm is completed by finding φs from eqn (332) which
explicitly determine the finite optimal POVM {Ô,

rs}.

10.1. Optimal reconstruction of spin-1/2 states

Suppose we have N identical copies of spin 1/2 all prepared in the same but unknown pure
quantum state. If we chose the group G to be U (2), i.e. the complete unitary group transforming
a two-level quantum system, we can straightforwardly apply the optimal estimation scheme as
described above. To be more precise, due to the fact that there exist elements of the group U (2)
for which the reference state is the fixed point (i.e., it is insensitive to its action) we have to work
only with the coset space SU(n)|U(n−1) [81]. In the present case this is a subset of the SU (2)
group parameterized by two Euler angles θ,ψ (the third Euler angle χ is fixed and equal to
zero). This subset is isomorphic to the Poincare sphere.

The unitary representation U is now the representation ( 1
2 ) (we use a standard classification

of SU (2) representations, where ( j) is the spin number). Its N-fold symmetrized direct prod-
uct (we denote this representation as U N) is the representation classified as (N

2 ) (which trans-
forms a spin-N/2 particle). Choosing the standard basis | j, m〉 with m = − j, . . . j in which the
coordinate expression for U (θ,ψ) corresponds to standard rotation matrices D j

m,n(θ,ψ, 0) =
e−imψ d j

m,n(θ) [82], we obtain the matrix expression for the operator F̂

Fm,n =
2π∫
0

dφ

π∫
0

sin(θ)dθ
8π

(1+ cosθ)D
N
2

m, N
2
(θ,φ) D

N
2 ∗

n, N
2
(θ,φ) = N/2+m+ 1

(N + 2)(N + 1)
δm,n. (336)

When we insert this operator in the eqn (331) we immediately find the upper bound on the mean
fidelity to be equal to N+1

N+2 .
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s=0,1,...N

{
{
|0
|0

U

input output
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r=0,1,..N

Fig. 14. The visualization of the optimal POVM for measurement of a quantum state of the spin-1/2 from N identical
copies as provided by the solution in Section 10.1. On the right the schematic picture of an quantum network (for
more information see Section 10.3) as a physical realization of the measuring apparatus which embodies the optimal

solution from the left part of the picture.

This is the main result of the paper by Massar and Popescu [44] who noted that this upper
bound can be attained using the special POVM which consists of an infinite continuous set
of operators proportional to isotropically rotated projector |N

2 , N
2 〉〈

N
2 , N

2 |. This result is closely
related to the covariant measurements of Holevo [31].

However, our aim is to construct an optimal and finite POVM. To do so, we have to find a
finite set of pairs of angles {(θr,ψr)} such that the completeness conditions (334) which now
take the form ∑

r
c2

r e−iψr(m−n)d
N
2

m, N
2
(θr) d

N
2

n, N
2
(θr) = δm,n, (337)

are fulfilled. Following our general scheme we first satisfy the completeness conditions (337) for
diagonal terms [compare with eqn (335)]∑

r

c2
r d

N
2

m, N
2
(θr)2 = 1; m = −N/2, . . . N/2. (338)

To satisfy these completeness conditions we choose N + 1 angles θr to be equidistantly dis-
tributed in the 〈0,π〉 (obviously, there are many other choices which may suite the purpose—see
discussion below eqn (335)). Then we solve the system of linear equations for N + 1 variables
cr. For this choice of θr the system (338) has non-negative solutions. Finally we satisfy the off-
diagonal conditions by choosing N+1 anglesψs = 2sπ

N+1 for each θr. In this case 1
N+1

∑N
s=0 eiψsy =

δy,0 for all y = −N/2, . . . N/2 and the off-diagonal conditions are satisfied straightforwardly. This
concludes the construction of the optimal and finite POVM for the spin-1/2 state estimation. In
Fig. 14 we present a schematic description of the optimal POVM performed on spin-1/2, while
in Fig. 15 the mean fidelity f̄ as a function of number N of measured spins (initially prepared
in the same state) is presented.

10.2. Optimal estimation of phase shifts

Consider a system of N effectively two level atoms (qubits), all initially prepared in the reference
state 1√

2(|0〉 + |1〉) by applying so called π
2 pulse to initially deexcited atoms. Then the atoms

undergo the free evolution effectively described by the U (1) group, i.e. the state of the single
qubit evolves as 1√

2(|0〉+ exp{iψ(t)}|1〉). Our task is to find a measurement which provides the
optimal estimation of the phase ψ(t) of the U (1) rotation which carries the information about
the interaction parameters.
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Fig. 15. The mean fidelity of the estimation of a quantum state of the spin-1/2 (lower line) and of a phase shift
(upper line) based on the optimal POVM (as discussed in this Section) performed on N identical copies of quantum

objects under consideration. As expected, for N large enough the fidelity in both cases becomes equal to unity.

In the standard classification of representations of the U (1) group the single isolated qubit
is described by the direct sum of two one-dimensional representations U = (0) ⊕ (1). The
representation U N transforming entire system of N qubits is then equal to the direct sum of
representations of the form (0)⊕(1)⊕ . . . (N). This acts in the N+1 dimensional space spanned
by basis vectors |m〉, m = 0, 1, . . .N. In this basis matrix elements F̂m,n of the operator F̂ given
by eqn (330) take the form

F̂m,n =
2π∫
0

dψ
2π

√
(NN−m)(

N
N−n)

2N+1
eiψ(n−m) (1+ cosψ)

=
√
(NN−m)(

N
N−n)

2N+2

(
2δm,n + δm,n+1 + δm+1,n

)
. (339)

The upper bound on the fidelity eqn (331) is now too conservative to be of any use (greater
than unity). We can, however, solve the system of eqns (335) which in this particular case of
the commutative group reads[

F̂ − L̂
]
|Ψ〉 = 0; |〈m|Ψ〉|2 = 1; ∀m. (340)

The condition Det(F̂ − L̂) = 0 now determines the eigenvector |Ψ〉 with the zero eigenvalue
as a function of Lagrange multipliers Lm. When we substitute this eigenvector into the second
equation in eqn (340) we obtain a set of equations for Lm from which the state |Ψ〉 can be
determined. The final POVM is then constructed by rotation of |Ψ〉 by N + 1 angles φs in
such a way that all off-diagonal elements of

∑
s(Ôs)m,n become equal to zero. This is done in

exactly the same way as in the example presented above. (see Section 10.1). The resulting POVM
corresponds to the von Neumann measurement performed on the composite system of all N ions
characterized by the set of orthogonal projectors

P̂s = |Ψs〉〈Ψs|; |Ψs〉 =
1√

N + 1

N∑
q=0

ei 2π
N+1 sq |q〉. (341)
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and the maximal mean fidelity f̄ is given as the sum: f̄ = 1/2+ 1/2N+1
∑N−1

i=0

√
( N

i )(
N
i+1). We

plot this fidelity in Fig. 15 (see upper line).
Finally, we note that the Hermitian operator Φ̂ constructed from the optimal POVM (341)

Φ̂ =
N∑

s−0

2π
N + 1

sP̂s, (342)

with the corresponding guesses as eigenvalues is identical to the Pegg–Barnett Hermitian phase
operator [83] originally introduced within completely different context.

In conclusion, we have presented a general algorithm for the optimal state estimation from
finite ensembles. It provides finite POVMs which, following the Neumark theorem [84], can, at
least in principle, be implemented as simple quantum computations.

10.3. Neumark theorem and realization of generalized measurements

Applicability of many ideas presented in previous parts of this Section critically relies on the
assumption that the generalized quantum measurements are in principle realizable. This is not
obvious, since the typical quantum measurements, e.g. measurements which may be performed
with the help of the Stern–Gerlach apparatus, a photo-detection, or a measurement of an atomic
population by means of photo-ionization, etc., are all orthogonal measurements.† Can we under
this conditions hope to perform a controlled generalized measurement?

To answer this question we start with the following consideration: Assume a quantum object
(S) in a state described by a density matrix ρ̂. Instead of directly measuring it we subject this
object to an interaction with another quantum object—the ancilla A (see Fig. 14). The ancilla
is initially prepared in a particular (fixed) quantum state |α〉. After some interaction time the
composite system (S +A) evolves into a nontrivial entangled quantum state U ρ̂⊗ |α〉〈α|U †.
The orthogonal measurement {P̂r} is then performed on the composite quantum system. In this
case the conditional probability distribution p(r|ρ̂) defined as

p(r|ρ̂)= TrS+A
[

P̂r U ρ̂⊗ |α〉〈α|U †
]

= TrS
[

TrA
[
U †P̂rU 1̂⊗ |α〉〈α|

]
ρ̂
]

= TrS
[

Ôrρ̂
]

. (343)

can be specified. It can be seen, that each projector P̂r is associated with a new operator Ôr =
TrA[P̂r U 1̂⊗ |α〉〈α|U †]. In addition, it is easy to check that the operators Ôr together com-
pose the nonorthogonal POVM. Therefore, the described procedure represents an orthogonal
realization of a nonorthogonal POVM.

Relation between the orthogonal and the nonorthogonal POVMs is actually even more close.
As showed by Neumark [84], not only any particular case of the procedure we have described
realizes an nonorthogonal POVM, but also the converse is true:

Theorem (Neumark) Any POVM Ô(x) dx defined in the Hilbert space H may arise as a
restriction of an orthogonal POVM Ê(x) dx in a larger Hilbert space H̄

Ô(x) dx = P̂Ê(x)P̂ dx, (344)

†This is, of course, an idealization. In practice, we never possess a perfect measuring apparatus. In other words, our
measurements are always subject of an external and uncontrollable noise. Therefore, in principle, we always perform
a randomized measurements corresponding to non-orthogonal POVMs.
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where P̂ is the projection from H̄ onto H . In what follows we present a construction which
proves the restricted version of this theorem. Namely, we will assume only a finite-component
POVMs {Ôr}R

r=1, where each component is of the form Ôr = c2
r |Ψr〉〈Ψr|. For this purpose the

following construction is suitable:
Proof (special case) We are looking for a unitary transformation U , which satisfies the condi-

tion

Ôr = TrA
[
U †P̂rU 1̂⊗ |α〉〈α|

]
; ∀r = 1, 2, . . . R. (345)

It turns out, that for the construction only R of the all d×a (a and d is the number of dimensions
of the ancilla and the measured system Hilbert spaces, respectively) dimensions of the space
HS+A are relevant. Therefore we will construct the unitary operation U only on a subspace
HR ⊂ HS+A. To have a suitable notation we also divide Hilbert spaceHR into two subspaces
HR = H d ⊕HR−d = H d ⊕H k, where the first coincides with the linear span of the vectors
|Ψr〉 ⊗ |α〉. By inspection, if the unitary operation U is of the form

U =
R∑

r=1

|pr〉〈ψr| +
R∑

r=1

|pr〉〈χr|, (346)

where |ψr〉 ≡ cr|Ψr〉 ⊗ |α〉 ∈ H d and |χr〉 are orthogonal to all |ψs〉 (i.e. |χr〉 ∈ Hk ), then
eqn (344) is satisfied. Therefore we need to find a proper set of vectors |χr〉, so that U is indeed
a unitary transformation, i.e.

UU † =
R∑

r,s=1

〈ψr|ψs〉|pr〉〈ps| +
R∑

r,s=1

〈χr|χs〉|pr〉〈ps| = Â+ B̂ = 1̂. (347)

The operators Â and B̂ are not diagonal in the basis |pr〉. However, a new basis | p̄r〉 can be
found in which both operators Â and B̂ are diagonal. This basis is found by diagonalization of
the matrix Ars = 〈ψr|ψs〉 using the suitable unitary matrix Vrs [i.e., | p̄r〉 =

∑R
s=1 Vsr|ps〉, Ārs =∑R

i, j=1 V †
ri Ai jVjs]. Moreover, since the following relations

(Â2)rs =
R∑

i=1

AriAis = (Â)rs, Tr[Â] =
R∑

s=1

Ass = d, (348)

are satisfied (both as the consequence of the completeness condition of the original POVM)

we know that the spectra of the operators Â and B̂ are: SpÂ = {
d︷ ︸︸ ︷

1, 1, . . . 1,

R−d︷ ︸︸ ︷
0, 0, . . .0}; SpB̂ =

{
d︷ ︸︸ ︷

0, 0, . . . 0,

R−d︷ ︸︸ ︷
1, 1, . . .1}. Therefore, if we use the basis | p̄r〉 instead of the basis |pr〉 we can write

the unitary transformation U in the eqn (344) in the form

U =
d∑

r=1

| p̄r〉〈ψ̄r| +
R∑

r=d+1

| p̄r〉〈χ̄r|. (349)

Because the matrices Ārs = 〈ψ̄r|ψ̄s〉 and B̄rs = 〈χ̄r|χ̄s〉 are diagonal only those |ψ̄r〉 =∑R
s=1〈ps| p̄r〉|ψs〉 =

∑R
s=1 Vsr|ψs〉 and |χ̄s〉 =

∑R
r=1 Vrs|χr〉 are nonzero for which r = 1, 2, . . . d

and s = d + 1, . . . R, respectively. Moreover, this also justifies our assumption about the exis-
tence of the vectors |χr〉 orthogonal to all |ψs〉. More exactly, as we know the vectors |ψ̄r〉,
r = 1, 2, . . . d we can complete them into an orthonormal basis in HR by choosing the set of
vectors |χ̄s〉, s = d + 1, . . . R. Because the vectors with bar are related to the vectors without
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bar via the unitary matrix Vsr, the vectors |χr〉 and |ψs〉 remain mutually orthogonal. This
concludes our proof.

We note, that there is a freedom in the way how we choose to complete the set of vectors |ψ̄r〉,
r = 1, 2, . . . d by the vectors |χ̄r〉, r = d + 1, . . . R, so that they together form an orthonormal
basis. The explicit form of the unitary operation U from eqn (344) is

U =
R∑

r=1

|pr〉〈ψr| +
R∑

r=1

|pr〉
R∑

s=d+1

Vrs〈χ̄s|. (350)

Therefore we conclude: If we can in the system composed of the original object and the auxiliary
system perform a particular von Neumann measurement characterized by a set of orthogonal
projectors |pr〉〈pr| and, in addition, we can transform this composed system by the unitary
transformation U [see eqn (350)], then we can realize a general POVM measurement {Ôr} (for
more details see [85]).

11. INSTEAD OF CONCLUSIONS

We conclude this paper by a citation from the Jaynes’ Brandeis lectures (see p. 183 of Ref.[86]):
“Conventional quantum theory has provided an answer to the problem of setting up initial state
descriptions only in the limiting case where measurements of a “complete set of commuting ob-
servables” have been made, the density matrix ρ̂(0) then reducing to the projection operator onto
a pure state ψ(0) which is the appropriate simultaneous eigenstate of all measured quantities. But
there is almost no experimental situation in which we really have all this information, and before
we have a theory able to treat actual experimental situations, existing quantum theory must be sup-
plemented with some principle that tells us how to translate, or encode, the results of measurements
into a definite state description ρ̂(0). Note that the problem is not to find ρ̂(0) which correctly de-
scribes “true physical situation”. That is unknown, and always remains so, because of incomplete
information. In order to have a usable theory we must ask the much more modest question: What
ρ̂(0) best describes our state of knowledge about the physical situation? ”.
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J.Peřina, J.Křepelka, R.Horák, Z.Hradil, and J.Bajer, Czech. J. Phys. B 37, 1161 (1987).
55. U. Leonhardt, H. Paul, and G.M. D’Ariano, Phys. Rev. A 52, 4899 (1995);
56. Th. Richter, Phys. Lett. A 211, 327 (1996);

Th. Richter, Phys. Rev. A 53, 1197 (1996);
57. G.M. D’Ariano, U. Leonhardt, and H. Paul, Phys. Rev. A 52, R1801 (1995);
58. R.Loudon and P.L.Knight; J. Mod. Opt. 34, 709 (1987);

K.Zaheer and M.S.Zubairy, in: Advances in Atomic, Molecular, and Optical Physics, Vol.28, eds. D.Bates and
B.Bederson (Academic Press, New York, 1991), p.143;
S.M. Barnett and P.M. Radmore: Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997).
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APPENDIX A

Conceptually the reconstruction scheme based on the Jaynes principle of the maximum entropy is very simple.
On the other hand particular analytical calculations can be difficult and in many cases cannot be performed. In
this appendix we present explicit calculations of generalized canonical density operators (GCDO) and corresponding
entropies for two observation levels O(2)G and O(2)H defined in Table 6.

A. 1. Observation level O(2)G

Let as assume the observation level O(2)G given by the set of observables {σ̂(1)z ⊗ σ̂(2)z ; σ̂(1)x ⊗ σ̂(2)x ; σ̂(1)x ⊗ σ̂(2)y ; σ̂(1)y ⊗
σ̂(2)x ; σ̂(1)y ⊗ σ̂(2)y }. In this case the GCDO reads

ρ̂G =
1

ZG
exp

(
−Ê

)
, (A.1)
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where
ZG = Tr

[
exp

(
−Ê

)]
, (A.2)

is the partition function. Here we have used the abbreviation

Ê = λzzσ̂(1)z ⊗ σ̂(2)z + λxxσ̂(1)x ⊗ σ̂(2)x + λxyσ̂(1)x ⊗ σ̂(2)y + λyxσ̂(1)y ⊗ σ̂(2)x + λyyσ̂(1)y ⊗ σ̂(2)y . (A.3)

The corresponding entropy has the form

SG = ln ZG + λzzξzz + λxxξxx + λxyξxy + λyxξyx + λyyξyy, (A.4)

Using the algebraic properties of the operators associated with the given observation level we find the GCDO (A.1)
to read

ρ̂G = 1
4

[
Î (1) ⊗ Î (2) + ξzzσ̂(1)z ⊗ σ̂(2)z + ξxxσ̂(1)x ⊗ σ̂(2)x

+ξxyσ̂(1)x ⊗ σ̂(2)y + ξyxσ̂(1)y ⊗ σ̂(2)x + ξyyσ̂(1)y ⊗ σ̂(2)y

]
, (A.5)

where we use the notation
ξµν ≡

〈
σ̂(1)µ ⊗ σ̂(2)ν

〉
, (µ,ν = x, y, z). (A.6)

Now we express the entropy as a function of expectation values of operators associated with the observation level
O(2)G . With the help of this entropy function we can perform reductions of O(2)G to the observation levels O(2)H , O(2)F

and O(2)E . In order to perform this reduction we express λµν in eqn (A.4) as functions of the expectation values ξµν.
To do so we utilize the relation

ξµν = −
∂ ln ZG

∂λµν
. (A.7)

The partition function ZG can be found when we rewrite the operator Ê in eqn (A.4) as a 4×4 matrix:

Ê =


a 0 0 d∗
0 −a b∗ 0
0 b −a 0
d 0 0 a

 , (A.8)

where we used the abbreviations

a = λzz, b = λxx + λyy − i(λxy − λyx), d = λxx − λyy + i(λxy + λyx). (A.9)

The powers of the operator Ê can be written as

Ên =


E(n)11 0 0 E(n)14

0 E(n)22 E(n)23 0
0 E(n)32 E(n)33 0

E(n)41 0 0 E(n)44

 , (A.10)

with the matrix elements given by the relations

E(n)11 = E(n)44 =
1
2

[
(a+ |d|)n + (a− |d|)n] ,

E(n)14 = 1
2

[
(a+ |d|)n − (a− |d|)n] d∗

|d| ,

E(n)22 = E(n)33 =
1
2

[
(−a+ |b|)n + (−a− |b|)n] ,

E(n)23 = 1
2

[
(−a+ |b|)n − (−a− |b|)n] b∗

|b| ,

E(n)32 = E(n)∗23 ,
E(n)41 = E(n)∗14 .

(A.11)

Now we find

exp−Ê =



e−a cosh |d| 0 0 − e−a sinh(|d|) d∗

|d|
0 ea cosh |b| −ea sinh(|b|) b∗

|b| 0

0 − ea sinh(|b|) b
|b| ea cosh |b| 0

− e−a sinh(|d|) d
|d| 0 0 e−a cosh |d|


, (A.12)
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from which we obtain the expression for the partition function ZG

ZG = 2e−a cosh |d| + 2ea cosh |b| . (A.13)

For the expectation values given by eqn (A.7) we obtain

ξzz =
1

ZG

[
2e−a cosh |d| − 2ea cosh |b|] ;

ξxx = −
1

ZG

[
2e−a sinh(|d|) 1

|d|
(
λxx − λyy

)
+ 2ea sinh(|b|) 1

|b|
(
λxx + λyy

)]
;

ξxy = − 1
ZG

[
2e−a sinh(|d|) 1

|d|
(
λxy + λyx

)
+ 2ea sinh(|b|) 1

|b|
(
λxy − λyx

)]
;

ξyx = − 1
ZG

[
2e−a sinh(|d|) 1

|d|
(
λxy + λyx

)
− 2ea sinh(|b|) 1

|b|
(
λxy − λyx

)]
;

ξyy = −
1

ZG

[
−2e−a sinh(|d|) 1

|d|
(
λxx − λyy

)
+ 2ea sinh(|b|) 1

|b|
(
λxx + λyy

)]
.

(A.14)

If we introduce the abbreviations

B = ξxx + ξyy − i
(
ξxy − ξyx

)
, D = ξxx − ξyy + i

(
ξxy + ξyx

)
, (A.15)

then with the help of eqn (A.14) we obtain

B = − 4
ZG

ea sinh(|b|) b
|b| , D = − 4

ZG
e−a sinh(|d|) d

|d| . (A.16)

Taking into account that

|B| = 4
ZG

ea sinh(|b|) , |D| = 4
ZG

e−a sinh(|d|), (A.17)

we find
B
|B| = −

b
|b| ,

D
|D| = −

d
|d| . (A.18)

Now we introduce four new parameters Mi

M1 = 1+ ξzz + |D| , M2 = 1+ ξzz − |D| ,

M3 = 1− ξzz + |B| , M4 = 1− ξzz − |B| , (A.19)

in terms of which we can express the von Neumann entropy on the given observation level. Using eqns (A.13), (A.14)
and (A.17) we obtain

M1 =
4

ZG
exp (−a+ |d|) , M2 =

4
ZG

exp (−a− |d|) ,

M3 =
4

ZG
exp(a+ |b|) , M4 =

4
ZG

exp (a− |b|) .
(A.20)

The Lagrange multipliers λkl can be expressed as functions of the expectation values ξkl :

exp(a) =
(

M3M4

M1M2

) 1
4

, exp (|b|) =
(

M3

M4

) 1
2

, exp(|d|) =
(

M1

M2

) 1
2

. (A.21)

After inserting these expressions into eqn (A.13) we obtain for the partition function

ZG = 4

(M1M2M3M4)
1
4

. (A.22)

When we insert eqns (A.18), (A.21) and (A.22) into eqns (A.1), (A.4) and (A.12) then we find both the entropy

SG = −
4∑

i=1

Mi

4
ln
(

Mi

4

)
, (A.23)

and the GCDO

ρ̂G =
1
4


1+ ξzz 0 0 D∗
0 1− ξzz B∗ 0
0 B 1− ξzz 0
D 1+ ξzz

 , (A.24)

as functions of the expectation values ξkl . Finally, we can rewrite the reconstructed density operator (A.24) in terms
of the spin operators (see Table 7).
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A. 2. Observation level O(2)H

The GCDO on the O(2)H can be obtained as a result of a reduction of the observation level O(2)G . The difference
between these two observation levels is that the O(2)H does not contain the operator σ̂(1)z ⊗ σ̂(2)z , i.e., the corresponding
mean value is unknown from the measurement.

According to the maximum-entropy principle, the observation level O(2)H can be obtained from O(2)G by setting the
Lagrange multiplier λzz equal to zero. With the help of the relation [see eqn (A.7)]

λzz = ∂SG

∂ξzz
= − 1

4
ln
(

M1M2

M3M4

)
= 0, (A.25)

we obtain
M1M2 =M3M4. (A.26)

From this equation we find the “predicted” mean value of the operator σ̂(1)z ⊗ σ̂(2)z (i.e., the parameter t in Table 7)

ξzz = 1
4

(
|D|2 − |B|2

)
≡ t. (A.27)

Taking into account that the parameters |B| and |D| read

|B|2 =
(
ξxx + ξyy

)2 +
(
ξxy − ξyx

)2
, |D|2 =

(
ξxx − ξyy

)2 +
(
ξxy + ξyx

)2
, (A.28)

we can express the predicted mean value ξzz as a function of the measured mean values ξxx, ξxy, ξyx and ξyy:

ξzz =
(
ξxyξyx − ξxxξyy

)
. (A.29)

When we insert eqn (A.27) into eqn (A.19) we obtain:

M1 = N1N2 , M2 = N3N4 , M3 = N1N3 , M4 = N2N4 , (A.30)

where the parameters Ni are defined as

N1 = 1+ 1
2
(|D| + |B|) , N2 = 1+ 1

2
(|D| − |B|) ,

N3 = 1− 1
2
(|D| − |B|) , N4 = 1− 1

2
(|D| + |B|) . (A.31)

In addition, from eqns (A.30) and (A.23) we obtain the expression for the von Neumann entropy of the density
operator reconstructed on the observation level O(2)H :

SH = −
4∑

i=1

Ni

2
ln
(

Ni

2

)
. (A.32)

Finally, from eqns (A.28) and (A.24) we find the expression for the GCDO on the observation levelO(2)H (see Table 7):

ρ̂H = 1
4
[Î (1) ⊗ Î (2) +

(
ξxyξyx − ξxxξyy

)
σ̂(1)z ⊗ σ̂(2)z

+ ξxxσ̂(1)x ⊗ σ̂(2)x + ξxyσ̂(1)x ⊗ σ̂(2)y + ξyxσ̂(1)y ⊗ σ̂(2)x + ξyyσ̂(1)y ⊗ σ̂(2)y ] .
(A.33)

APPENDIX B: INVARIANT INTEGRATION MEASURE

In differential geometry the integration measure is a global object—the so called invariant volume form ω. The
condition that dΩ is invariant under the action of each group element U ∈ SU (n) is equivalent to the requirement

dΩ = d
UΩU−1 ⇐⇒ LViω = 0 i = 1, . . . , n2 − 1, (B.1)

that the Lie derivative of ω with respect to the fundamental field Vi of action of the group SU (n) in the space Ω is
zero. The vector fields

Vi = V b
i (x1, . . . , x(2n−2) )

∂
∂xb

; b = 1, 2 . . . (2n− 2), (B.2)

are defined via the actions of one-parametric subgroups exp(itŜi) ⊂ SU (n), t ∈ R (one action for each generator
Ŝi). On the other hand the elements of the space Ω [see eqn (299)]xxx have a structure

ρ̂(x1, . . . , x(2n−2) ) =
1̂
n
+ f i(x1, . . . , x(2n−2) )Ŝi, (B.3)
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where Ŝi are n2 − 1 linearly independent, zero-trace, Hermitian, n× n matrixes, i.e. they are generators of the SU (n)
group. Due to this we can express the vector fields Vi

V b
i
∂
∂xb

ρ̂ = ∂
∂t

[
exp(itŜi)ρ̂ exp(−itŜi)

]∣∣∣
t=0

, (B.4)

as the solutions of the following equation:

V b
i
∂
∂xb

f k = ick
i j f j . (B.5)

The complex numbers ck
i j are the coefficients in commutation relations [Ŝi, Ŝ j] = ck

i j Ŝk. We note, that eqn (B.5)
represents for each fixed index i an overdetermined system of n2 − 1 linear equations for 2n− 2 unknown functions
V b

i (the fact that this system is consistent confirms the correctness of our parameterization of the state space Ω).
Finally, we present an explicit coordinate form of eqn (B.1), which determines the invariant volume form ω =
m(x1, . . . , x(2n−2) )∧ dx1 ∧ . . .∧ dx(2n−2) as the solution of a system of partial differential equations:

∂
∂xb

(mV b
i ) = 0. (B.6)

Here we note, that mV i in eqn (B.6) has the meaning of a “flow” of the density of states generated by unitary
transformations associated with the i-th generator. From the physical point of view eqn (B.6) means that the divergence
of this flow is zero, i.e. the number of states in each (confined) volume element is constant.

As an illustration of the above discussion we firstly evaluate the invariant measure for the state space of a single
spin-1/2. Using the definition (B.5) we find the fundamental field of action Vi (i = 1, 2, 3) for the three generators of
the SU (2) group:

V1 = cos(φ) cot(θ)∂φ + sin(φ)∂θ;
V2 = sin(φ) cot(θ)∂φ − cos(φ)∂θ;
V3 = −∂φ.

(B.7)

We substitute these generators into eqn (B.6) and after some algebra we obtain the system of differential equations:

∂
∂φ

m = 0
∂
∂θ

m = m cot(θ), (B.8)

which can be easily solved,
m(θ,φ) = const sin(θ). (B.9)

The multiplicative factor is given by the normalization condition. This is the route to derive the integration measure
of the Poincaré sphere. Analogously we evaluate the invariant integration measure for a state space of two spins-1/2.
The calculations are technically more involved, but the result is simple see eqn (301).

APPENDIX C: BAYESIAN INFERENCE ON O′(2)B IN THE LIMIT OF INFINITE NUMBER OF
MEASUREMENTS

On the given observation level we can express the estimated density operator in the limit of infinite number of
measurements as

ρ̂ = 1
N

2π∫
0

dψ

1∫
−1

x2 dx

1∫
−1

dy

1∫
−1

dzδ
(
〈σ̂ (1)z 〉 − xy)δ(〈σ̂ (1)z σ̂ (2)z 〉 − yz+

[
(1− x2)(1− y2)(1− z2)

]1/2
cosψ

)

×
{

1̂⊗ 1̂+ xyσ̂z ⊗ 1̂+ xz1̂⊗ σ̂z +
[

yz−
(
(1− x2)(1− y2)(1− z2)

)1/2
cosψ

]
σ̂z ⊗ σ̂z

}
. (C.1)

When we integrate eqn (C.1) over the variable y and we obtain

ρ̂ = 1
N

2π∫
0

dψ
∫
L′

x2

|x| dx

1∫
−1

dzδ

〈σ̂ (1)z σ̂ (2)z 〉 − 〈σ̂ (1)z 〉 z
x
+
[
(1− x2)(1− z2)

(
1− 〈σ̂

(1)
z 〉2
x2

)]1/2

cosψ



×
{

1̂⊗ 1̂+ 〈σ̂ (1)z 〉σ̂z ⊗ 1̂+ xz1̂⊗ σ̂z +
[
〈σ̂ (1)z 〉 z

x
−
(
(1− x2)(1− z2)

(
1− 〈σ̂

(1)
z 〉2
x2

))1/2

cosψ)

 σ̂z ⊗ σ̂z

 ,

(C.2)
where the integration boundaries are defined as

L′′ := {−1, 1} and |x| ≥ |〈σ̂ (1)z 〉|. (C.3)
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Now we will integrate eqn (C.2) over the variable ψ. There are two values ψ( j)
0 ( j = 1, 2) of ψ, such that

cosψ0 = 〈σ̂ (1)z σ̂ (2)z 〉 − 〈σ̂ (1)z 〉z/x[
(1− x2)(1− z2)(1− (〈σ̂ (1)z 〉/x)2)

]1/2 , (C.4)

providing that inequality

1 ≥

∣∣∣∣∣∣∣ 〈σ̂ (1)z σ̂ (2)z 〉 − 〈σ̂ (1)z 〉z/x[
(1− x2)(1− z2)(1− (〈σ̂ (1)z 〉/x)2)

]1/2

∣∣∣∣∣∣∣ . (C.5)

holds. The last relation can be rewritten as the condition a+ bz+ cz2 ≥ 0, where the explicit forms of the coefficients
a, b, and c are:

a = 1− 〈σ̂ (1)z 〉2/x2 + 〈σ̂ (1)z 〉2 − 〈σ̂ (1)z σ̂ (2)z 〉2 − x2; b = 2〈σ̂ (1)z 〉〈σ̂ (1)z σ̂ (2)z 〉/x; c = x2 − 〈σ̂ (1)z 〉2 − 1. (C.6)

The coefficient c is always negative, which means that we have a new condition for the parameter z, that is z ∈ 〈z1, z2〉,
where z1 and z2 are two roots of the quadratic equation a+ bz+ cz2 = 0. However, these roots exist only providing
the discriminant b2 − 4ac ≥ 0 is nonnegative. Taking into account eqn (C.6) we see that the last relation is a cubic
equation with respect to the variable x2, which imposes a new condition on the integration parameter x. That is, the
interval L′′ through which the integration over x in eqn (C.2) is performed is defined as

L′′ :=


{
|〈σ̂ (1)z 〉|, 1

}
for |〈σ̂ (1)z σ̂ (2)z 〉| ≤ |〈σ̂ (1)z 〉|;{

|〈σ̂ (1)z 〉|,
√

1+ 〈σ̂ (1)z 〉2 − 〈σ̂ (1)z σ̂ (2)z 〉2
}

for |〈σ̂ (1)z σ̂ (2)z 〉| ≥ |〈σ̂ (1)z 〉|.
(C.7)

Taking into account all conditions imposed on parameters of integration we can rewrite eqn (C.2) as

ρ̂ = 1
N

∫
L′′

x2

|x| dx

z2∫
z1

dz√
a+ bz+ cz2

(1̂⊗ 1̂+ 〈σ̂ (1)z 〉σ̂z ⊗ 1̂+ xz1̂⊗ σ̂z + 〈σ̂ (1)z σ̂ (2)z 〉σ̂z ⊗ σ̂z). (C.8)

Using standard formulas [see, for example, [74], eqn (2.261) and eqn (2.264)] the integration over parameter z in
eqn (C.8) can now be performed and we obtain

ρ̂ = 1
N

∫
L′′

dx
x2

|x|
1

(1+ 〈σ̂ (1)z 〉2 − x2)
1
2

(1̂⊗ 1̂+ 〈σ̂ (1)z 〉σ̂z ⊗ 1̂+ 〈σ̂ (1)z σ̂ (2)z 〉σ̂z ⊗ σ̂z)

+
∫
L′′

dx
x2

|x|
〈σ̂ (1)z 〉〈σ̂ (1)z σ̂ (2)z 〉
(1+ 〈σ̂ (1)z 〉2 − x2)

3
2

(1̂⊗ σ̂z). (C.9)

After performing integration over x in eqn (C.9) we obtain the final expression (311) for the a posteriori estimation

of the density operator on the given observation level.


