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Universal Optimal Cloning of Arbitrary Quantum States: From Qubits to Quantum Registers
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We present the universal cloning transformation of states in arbitrary-dimensional Hilbert spaces.
This unitary transformation attains the optimal fidelity of cloning as specified by Werner [Phys. Rev. A
58, 1827 (1998)]. With this cloning transformation, pure as well as impure states can be optimally
copied, and the quality of the copies does not depend on the state being copied. We discuss the
properties of quantum clones. In particular, we show that in the limit of high dimension the fidelity of
clones does not converge to zero but attains the limit1y2. We also show that our cloning transformation
is most suitable for cloning of entanglement. [S0031-9007(98)07854-5]

PACS numbers: 03.67.–a, 03.65.Bz, 89.70.+c
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Suppose Alice has anunknownpure state of a quantum
system,jFla, and that she would like to send information
about this state to Bob. The two different ways she ca
proceed are what could be termed the classical meth
and the quantum method.

(1) Classical method.—Alice can perform an optimal
measurement on her system (see Ref. [1] and referen
therein), and this allows her to estimate the state. T
quality of this estimation is characterized by the mea
fidelity f̄ [1]. Taking into account the fact that Alice
has only a single quantum object, the maximum valu
of the mean fidelity of the estimated state vector in a
M-dimensional Hilbert space is [1]

f̄ 
2

M 1 1
. (1)

After the measurement is performed Alice can commun
cate her result to Bob who can recreate the estimated st
Note that as soon as Alice performs the measurement
statejFla is “lost,” so that no further information can be
gained.

(2) Quantum method.—Alice does not perform a mea-
surement on her quantum system, but “swaps” the st
jFla with Bob. An unknownpure state of a quantum
system can be swapped between two parties by a unit
transformation. To be specific, let us assume that Alice
quantum object is initially prepared in a pure quantum sta
jFla given by

jFla 
MX

i1

aijCila , (2)

which lies in anM-dimensional Hilbert spaceHa spanned
by M orthonormal basis vectorsjCila (i  1, . . . , M).
The complex amplitudesai are normalized to unity, i.e.,P

jaij
2  1. Simultaneously Bob has the same quantu

system but it is initially prepared in a specific (i.e., known
statej0lb which is a vector in theM-dimensional Hilbert
spaceHb . From the general rules of quantum mechanic
it follows that there is aunitary transformation̂S acting on
Ha ≠ Hb which swaps Alice’s and Bob’s states, i.e.,
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jFlaj0lb
Ŝ
! j0lajFlb . (3)

In the case of qubits (M  2) the swapping can be per-
formed with the help of a simple quantum logic networ
composed of twoC-NOT operations with thea (b) qubit be-
ing first the control (target) and then the target (contro
Alternatively, one can utilize a nonunitary quantum tele
portation protocol [2] to realize the swapping.

Comparing the two methods, we note three thing
The first is that the quantum method transfers quantu
information far better than the classical one. At the en
of the quantum transfer, Bob actually has Alice’s origin
state, while at the end of the classical procedure, he h
only a pale imitation. The second point is that with th
classical method, both Alice and Bob have informatio
about the state. In fact, Alice can send the result of h
measurement to as many people as she wishes, and
of them can make a very imperfect copy of her origin
quantum state. In the swapping scenario, however, o
one person has the statejFl, Alice at the beginning of the
procedure and Bob at the end. Third, it is worth notin
that the quantum scenario requires shared entanglem
(in the case of the teleportation) or the ability to perform
nonlocal operations in the total Hilbert space of Alice an
Bob (for the swapping). These requirements might
difficult to realize practically.

At this point, one can ask whether it is possible to fin
a procedure which combines the desirable aspects of b
of these methods. In particular, can one find a unita
transformation (unitary so that no quantum information
lost) which would result in both Alice and Bob having th
statejFl simultaneously?This unitary transformation,̂U,
would act in such a way that

jFlaj0lb
Û
! jFlajFlb , (4)

for an arbitrary (unknown) input statejFl. Generalizing
the proof of the Wootters-Zurek no-cloning theorem [3]
is easy to show that the linearity of quantum mechani
prohibits the existence of such a transformation (4).
© 1998 The American Physical Society 5003
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This represents a major difference between quantu
and classical information: it is possible to make perfe
copies of classical information, but quantum informatio
cannot be copied perfectly, i.e., quantum states cannot
perfectly cloned. Nevertheless, if the requirement that t
copies be perfect is dropped, then it is possible to ma
quantum copies. This was first shown in Ref. [4], where
transformation which produces two copies of an arbitra
input qubit state (M  2) was given. This transformation
was shown to be optimal, in the sense that it maximiz
the average fidelity between the input and output qubi
by Gisin and Massar [5] and by Brusset al. [6]. Gisin and
Massar have also been able to find copying transformatio
which producek copies froml originals (wherek . l) [5].
In addition, quantum logic networks for quantum copyin
machines of qubits have been developed [7], bounds h
been placed on how good the copies can be [8,9], a
asymmetric cloning has been proposed [10].

So far, all of the copying machines (transformation
which have been proposed copy qubits, which are tw
level systems. Suppose instead that we would like to co
an entangled state of two or more qubits. One approa
is to use the single-qubit cloners to individually copy eac
qubit. It is known that, in the case of two qubits, thi
will preserve some of the quantum correlations betwe
the particles [11], but, as we shall see, it does not mak
particularly good copy. The other alternative is to desig
a copy machine which copies higher-dimensional system
That is what we shall do here.

We are particularly interested in how the quality of th
copies scales with the dimensionality,M, of the system
being cloned. What we find is that the fidelity of th
copies decreases withM, as expected, but, somewha
surprisingly, does not go to zero asM goes to infinity.

Even though ideal cloning, i.e., the transformation (4
is prohibited by the laws of quantum mechanics for a
arbitrary state (2), it is still possible to design quantum
cloners which operate reasonably well. Here we no
that for the swapping of quantum states it is enough
perform a unitary transformation on the Hilbert spac
Ha ≠ Hb. However, quantum cloning is best realize
when the original and the copy quantum systems inter
with an additional quantum system, the quantum clon
and this is, in fact, what happens in the universal quantu
cloning machine (UQCM) [4]. It can be specified by th
following conditions.

(i) The state of the original system and its quantu
copy at the output of the quantum cloner, described
density operatorŝr

soutd
a andr̂

soutd
b , respectively, are identi-

cal, i.e.,

r̂soutd
a  r̂

soutd
b . (5)

The reduced density operatorr̂
soutd
a ( r̂

soutd
b ) is obtained via

tracing over the copier and the cloneb (a) after the cloning
is performed.
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(ii) If no a priori information about thein state of the
original system is available, then it is reasonable to requi
that all pure states should be copied equally well. On
way to implement this assumption is to design a quantu
copier so that the distances between density operators
each system at the output̂r

soutd
j (where j  a, b) and

the ideal density operator̂r
sidd
j which describes thein

state of the original mode are input state independe
Quantitatively this means that if we employ the Bure
distance [12,13]

dBsr̂1, r̂2d 
p

2 s1 2 Tr
q

r̂
1y2
1 r̂2r̂

1y2
1 d1y2, (6)

as a measure of distance between two operators, then
quantum copier should be such that

dBs r̂
soutd
j ; r̂

sidd
j d  const, j  a, b . (7)

Here we note that other measures of the distance betwe
two density operators (e.g., Hilbert-Schmidt norm) can b
used to specify the universal cloning transformation. Th
final form of the transformation does not depend on th
choice of the measure.

(iii) Finally, we would also like to require that the
copies are as close as possible to the ideal output sta
which is, of course, just the input state. This means th
we want our quantum copying transformation to minimiz
the distance between the output stater̂

soutd
j of the copied

qubit and the ideal statêr
sidd
j .

In looking for a universal cloning transformation which
generates two imperfect copies from the original stat
jFla, we note that the quality of the cloning will not
depend on the particular state (in the given Hilbert spac
which is going to be copied if and only if the output
reduced density matrix is of the form

r̂
soutd
j  sr̂

sidd
j 1

1 2 s
M

1̂ , (8)

wherer̂
sidd
j  jFl kFj is the density operator describing

the original state which is going to be cloned. This scalin
form of Eq. (8) guarantees that the Bures distance (
between the input and the output density operators is inp
state independent.

The quantum cloning machine we consider is itse
an M-dimensional quantum system, and we shall le
jXilx (i  1, . . . , M) be an orthonormal basis of the
cloning machine Hilbert space. This cloner is initially
prepared in a particular statejXlx . The action of the
cloning transformation can be specified by a unitar
transformation acting on the basis vectors of the tens
product space of the original quantum systemjCila, the
copier, and an additionalM-dimensional system which
becomes the copy (which is initially prepared in a specifi
state j0lb). Let us consider the transformation of the
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e
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basis vectors

jCilaj0lbjXlx °! cjCilajCilbjXilx 1 d
MX

jfii

sjCilajCjlb

1 jCjlajCilbd jXjlx , (9)

with real coefficientsc and d. From the unitarity of
the transformation (9) it follows thatc and d satisfy the
relation

c2 1 2sM 2 1dd2  1 . (10)

Using the transformation (9) we find that the particlesa
and b at the output of the cloner are in the sam
state (have the same reduced density matrixes), whic
described by the density operator
r̂soutd
a  r̂

soutd
b 

MX
i1

jaij
2fc2 1 sM 2 2dd2g jCil kCij 1

MX
i,j1
ifij

aia
p
j f2cd 1 sM 2 2dd2g jCil kCjj 1 d21̂ . (11)
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Now our task is to find the values forc and d such that
the density operator in Eq. (11) takes the scaled form
Eq. (8). This directly guarantees the universality of th
transformation (9).

Comparing Eqs. (8) and (11) we find thatc andd must
satisfy the equation

c2  2cd . (12)

Taking into account the normalization condition in
Eq. (10), we find that

c2 
2

sM 1 1d
, d2 

1
2sM 1 1d

, (13)

from which it follows that the scaling factors is

s  c2 1 sM 2 2dd2 
sM 1 2d
2sM 1 1d

. (14)

If M  2, the transformation (9) then reduces to th
cloning transformation for qubits introduced in Ref. [4]
For this case the optimality of the cloning transformatio
(i.e., thats  2y3 is the maximum possible value of the
scaling factor) has been proven by Gisin and Massar
(see also later work by Brusset al. [6]). We have numeri-
cally tested the optimality of the cloner described by th
unitary transformation (9). Werner [14] has recently an
lyzed general limits on the fidelity of universal cloning
His results independently confirm that the transformatio
(9) is optimal.

We note that the scaling factor, which describes t
quality of the copy, is a decreasing function ofM. This
is not surprising, because a quantum state in a lar
dimensional space contains more quantum informati
than one in a small-dimensional space (e.g., a state i
4-dimensional space contains information about two qub
while a state in a 2-dimensional space describes only
single qubit), so that, asM increases, one is trying to copy
more and more quantum information. On the other han
it is interesting to note that in the limitM ! `, i.e., in
the case where the Hilbert space of the given quantu
system is infinite dimensional (e.g., a quantum-mechani
harmonic oscillator), the cloning can still be performe
efficiently with the scaling factor equal to1y2.

In order to confirm that the quality of the copies whic
the cloning transformation (9) produces is input state ind
of
e
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n
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pendent (i.e., all states are cloned equally well), we eva
ate the Bures distance (6) between the density opera
describing the output of the cloner and the ideal clone.
our particular case, we find that the distance betweenr̂

soutd
a

and r̂
sidd
a depends only on the dimension of the Hilbe

spaceM, but not on the state which is cloned, i.e.,

dBs r̂soutd
a , r̂sidd

a d 
p

2

√
1 2

s
M 1 3

2sM 1 1d

!1y2

. (15)

The Bures distance in Eq. (15) is maximal when sta
in an infinite-dimensional Hilbert space are cloned, a
in that case we find limM!` dBs r̂

soutd
ak , r̂

sidd
ak d 

p
2 2

p
2 .

This means that, even for an infinite-dimensional syste
reasonable cloning can be performed, which is reflec
in the fact that the corresponding scaling factors is equal
to 1y2.

Using the transformation in Eq. (9), we can also fin
the state of the copy machine after the cloning has b
performed,

r̂soutd
x  2d2sr̂sidd

x dT 1 2d21̂ , (16)

i.e., the cloner is left in a state proportional to the tran
posed state of the original quantum system. The von N
mann entropy of the copier at the output reflects the deg
of entanglement between the copies and the copier.
expected, this entropy does not depend on the state t
copied and is just a function of the dimension of the Hilbe
space, i.e.,S  lnsM 1 1d 2 s2 ln 2dysM 1 1d. This is
again an increasing function ofM which reflects the fact
that the copies and the copier become increasingly co
lated asM increases.

We also note that the linearity of quantum mechan
implies not only that ideal cloning of the form given i
Eq. (4) does notexist but also that there is no univers
cloning transformation which would result in a separab
output of the form

r̂
soutd
ab  sr̂soutd

a ≠ r̂
soutd
b 1

1 2 s
M2 1̂a ≠ 1̂b , (17)

such that the reduced density operatorsr̂
soutd
a and r̂

soutd
b

have the scaled form (8). In other words, the cloni
transformation which satisfies the conditions (i)–(iii) pr
duces two clones which are entangled. From this one m
5005
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adopt the following interpretation of cloning: After the
cloning, the information is distributed in such a way tha
some of it is in the copies, some is in the entangleme
between the copies, some is in the copy machine, a
some is in the entanglement between the copies and
copy machine. The information in the entanglement an
in the copy machine is effectively lost if we just look a
the copies, and this is why the copies are not perfect.

Until now we have considered only the cloning of pur
states. Nevertheless, the cloning transformation (9) can
applied successfully for the universal cloning of arbitrar
impure states. To be specific, let us assume the mo
general density operator̂r

sind
a 

P
i,j AijjCil kCjj. It can

be directly shown that, with the cloning transformation
described above, one obtains the two clones at the out
with the reduced density operators given in the scale
form (8). The scaling factor is the same as for pur
states. This proves once again the universality of th
cloning transformation—arbitrary unknown states (pur
or impure) are universally cloned with the same fidelit
which does not depend on the input state.

Finally, we compare two methods of cloning quantum
registers. In particular, we shall consider cloning a
entangled state of two qubits. We assume that the tw
qubits are prepared in the state

jFla0b0  aj00la0b0 1 bj11la0b0 , (18)

where, for simplicity, we have takena andb to be real,
and a2 1 b2  1. First, we shall consider the case in
which each of the two qubitsa0 andb0 is copiedlocally
by two independent quantum copiers [4]. Each of thes
two copiers is described by the transformation (9) wit
M  2. Second, we shall consider anonlocal cloning
of the two-qubit state (18) when this system is clone
via the unitary transformation (9) withM  4, i.e., the
cloner in this case acts nonlocally on the two qubits. Ou
chief task will be to analyze how inseparability is clone
in these two scenarios, but we shall also examine t
quality of the copies which are produced. From the Pere
Horodecki theorem [15–17], it follows that the state (18
is inseparable for all values ofa2 such that0 , a2 , 1.

Comparing the results of the local and nonlocal clonin
we find that in the first case the two-qubit clones ar
inseparable if

1
2

2

p
39

16
# a2 #

1
2

1

p
39

16
, (19)

while in the case ofnonlocalcloning the two-qubit clones
are inseparable for a much wider range of the parame
a, i.e.,

1
2

2

p
2

3
# a2 #

1
2

1

p
2

3
. (20)

We conclude that quantum inseparability can be copie
better (i.e., for a much larger range of the parametera) by
5006
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using a nonlocal copier than when two local copiers a
used. Obviously, there is a price to be paid—nonloc
cloners are likely to be more difficult to implement i
practice than local cloners.

The quality of the copies which are produced by t
two different methods are also different. Local copyin
has the disadvantage that the quality of the copies
produces depends on the state being copied, so tha
general, the copies are not in the scaled form wh
appears in Eq. (8). However, in the special casea 
b  1y

p
2 they are, and the scaling factor is4y9. This

can be compared to the input-state-independent value
s  3y5 for the nonlocal copier. Thus, we see that th
nonlocal copier produces better copies.
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