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via Realizable Generalized Measurement

R. Derka,1 V. Buz̆ek,2,3 and A. K. Ekert1
1Department of Physics, Oxford University, Parks Road, OX1 3PU Oxford, United Kingdom

2Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 842 28 Bratislava, Slovakia
3Optics Section, The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

(Received 14 July 1997)

We present a universal algorithm for the optimal quantum state estimation of an arbitrary finite
dimensional system. The algorithm specifies aphysically realizable(i.e., finite) positive operator valued
measurement on a finite number of identically prepared systems. We illustrate the general formalism
by applying it to different scenarios of the state estimation ofN independent and identically prepared
two-level systems (qubits). [S0031-9007(98)05400-3]
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Suppose we haveN quantum objects, each prepared i
an unknownpure quantum state described by a densi
operator r̂  jcl kcj. The question is: What kind of
measurement provides the best possible estimation ofr̂?
Clearly, if we have an unlimited supply of particles in th
stater̂, i.e., whenN approaches infinity, we can estimat
r̂ with an arbitrary precision. In practice, howeve
only finite and usually small ensembles of identicall
prepared quantum systems are available. This leads
an important problem of the optimal state estimatio
with limited physical resources. It is a generic problem
common to many areas of quantum physics ranging fro
the ultraprecise quantum metrology to eavesdropping
quantum cryptography.

Within a framework of an elementary group theory th
problem of the state estimation can be reformulated a
more general problem of estimating an unknown unita
operation from a group of transformations acting on
given quantum system (i.e., the state estimation follows
a special case). Holevo [1] has shown that this proble
can be solved via thecovariant measurement(CM)
approach. Unfortunately, the covariant measureme
corresponds to aninfinite (i.e., consisting of an infinite
continuous set of operators) and therefore physica
nonrealizable positive operator valued measureme
(POVM). We note that from the logic of the CM it
follows that if any optimal measurement (finite or infinite
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does exist then using a simple formal construction o
can generate from the original optimal measureme
another measurement which is covariant and which, at
same time, conserves optimality of the original solutio
In the present Letter we address the question of how
find finite optimal generalized measurements if they exis
This is a fundamental question because onlyfinite POVM
schemes are experimentally realizable. We propose
universal algorithm about how to look for these POVM
schemes and we apply it explicitly in two physically
interesting cases of the state estimation ofN identically
prepared two-level systems (qubits).

In order to set up the scene, let us assume that statr̂

is generated from a reference stater̂0  jc0l kc0j by a
unitary operationUsxd which is an element of a particular
unitary finite dimensional representation of a compa
Lie group G. Different x denote different points of the
group [e.g., different angles of rotation in the case of th
SU(2)] and we assume that all values ofx are equally
probable.

Our task is to design the most general POVM, math
matically described as a sethÔrjR

r1 of positive Hermitian
operators such that

P
r Ôr  1̂ [2,3], which when applied

to thecombinedsystem ofall N copies provides us with
the best possible estimation ofr̂ [and therefore also of
Usxd]. We quantify the quality of the state estimation i
terms of themeanfidelity
© 1998 The American Physical Society 1571
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N timesz }| {
Usxdr̂0Uysxd ≠ · · · ≠ Usxdr̂0Uysxdg

3 TrfUsxdr̂0UysxdUr r̂0Uy
r g , (1)

which corresponds to a particular choice of a cost functi
[3] used in a context of detection and estimation theo
The mean fidelity (1) can be understood as follows:
order to assess how good a chosen measurement is
apply it many timessimultaneouslyon all N particles each
in stateUsxdr̂0Uysxd. The parameterx varies randomly
and isotropically [4] over all points of the groupG during
many runs of the measurement.

For each resultr of the measurement, i.e., for eac
operator Ôr , we prescribe the statejcr l  Ur jc0l
representing our guess (i.e., estimation) of the origin
state. The probability of the outcomer is equal to
Tr fÔrUsxdr̂0Uysxd ≠ · · · ≠ Usxdr̂0Uysxdg, while the
corresponding fidelity of our estimation is TrfUsxdr̂0 3

UysxdUr r̂0Uy
r g. This fidelity is then averaged ove

all possible outcomes and over many independent ru
of the measurement with randomly and isotropical
distributed parametersx. We want to find the generalized
measurement whichmaximizesthe mean fidelityf given
by Eq. (1).

The combined system ofN identically prepared ref-
erence states always remains within thetotally sym-
metric subspaceof Hk ≠ Hk ≠ · · · Hk , where Hk is
k-dimensional Hilbert space of the reference state
which the corresponding unitary representationUsxd acts.
Thus the dimensionalityd of the space in which we con-
struct the POVMhÔr j is d  s N1k21

k21 d. In this case the
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first trace in Eq. (1) can be rewritten as

f 
X

r

Z
G

TrfÔr UN sxdV̂0UNysxdg

3 Tr fUsxdr̂0UysxdUr r̂0Uy
r g dx , (2)

whereUN sxd is a new representation of the same grou
G; it is equivalent to theN-fold symmetrized direct prod-
uct [5] of the original representationUsxd. HereUN sxd
transforms thes N1k21

k21 d-dimensional reference state de-
noted asV̂0.

We can insert the identity operatorUN
r UNy

r into the first
trace in Eq. (2) and, taking into account that in Eq. (2
we integrate over the whole groupG parametrized byx,
we can substituteUN sxdUNy

r ! UN sxd and UsxdUy
r !

Usxd. Now, using the linearity of the trace operation a
well as the linearity of the representation of the grou
G (Ur̂Uy is a linear adjoint representation) we rewrite
Eq. (2) as

f 
X

r
Tr fÔr UN

r F̂UNy
r g , (3)

where

F̂ 
Z

G
UN sxdV̂0UNysxd Tr fUsxdr̂0Uysxdr̂0g dx ,

(4)

is a positive Hermitian operator.
Let us now derive an upper bound on the mean fidelit

Taking into account positivity of the operatorF̂ (i.e., F̂ P
i lijfil kfij; li $ 0) and the completeness condition

for POVM (i.e.,
P

r Ôr  1̂) we obtain
f 
X

r
Tr fÔrUN

r F̂UNy
r g 

X
ir

li TrfÔr UN
r jfil kfijU

Ny
r g # lmax

X
ir

TrfÔr UN
r jfil kfijU

Ny
r g

 lmax

X
r

Tr fÔrUN
r 1̂UNy

r g  lmax Tr f1̂g  lmaxd .
(5)
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From Eq. (5) it clearly follows that the upper boun
can be achieved if and only if all operatorsÔr forming
the POVM satisfy the following conditions: (i) Each
Ôr is proportional to a suitably rotated (by someUN

r )
projector on the eigenvector of̂F with the highest
eigenvalue, i.e., for allÔr there existsUN

r , such that
Ôr  crUN

r jfmaxl kfmaxjUNy
r . This UN

r , or more pre-
cisely Ur jc0l, is our guess associated with the result “r.”
(ii) All cr are real and positive, to assure that a
Ôr are positive operators. (iii) Finally, the opera
tors Ôr have to satisfy the completeness criterioP

r crUN
r jfmaxl kfmaxjUNy

r  1̂. As shown by Holevo
[1] in the case of theinfinite POVM condition (iii) is
fulfilled for covariant measurements, providing the repr
sentationUN of the groupG is irreducible (see example
B below). This statement follows from the Shur lemma
However, in the general case of reducible representat
ll
-
n

-

.
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and specifically forfinite realizable POVMs this argument
cannot be used and we have to proceed differently.

To find the solution of the problem we start with
the following observation. Let us assume that we ha
some POVMhÔr jR

r1 and the corresponding guessesUN
r

which maximize the mean fidelityf. We can always
construct another POVM with more elements whic
is also optimal. For example, let us consider a on
parametric subgroupUsfd  expsiX̂fd of our original
group G and choose a basishjmljd

m1 in which the
action of this subgroup is equivalent to multiplication b
a factor eivmf [i.e., the operatorUsfd is diagonal in
this basis andvm are eigenvalues of the generatorX̂].
Then we taked points fs ss  1, . . . , dd and generate
from each original operator̂Or a set of d operators
Ô,

rs 
1
d UN sfsdÔr UNysfsd. In this way we obtain a

new set ofsd ? Rd operators such that the mean fidelity fo
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this new set of operators,f 
P

r,s Tr fÔ,
r ,sUN

r ,sF̂UNy
r ,s g, is

equal to the mean fidelity of the original POVMhÔr j
because we ascribe to each eventual resultfr , sg a new
guessUr ,s  UsfsdUr. However, in order to guarantee
that the new set of operatorŝO,

rs is indeed a POVM we
have to satisfy the completeness condition

1̂ 
X

s

X
r

Ô,
rs 

X
s

X
r

1
d

UN sfsdÔr UNysfsd


X

s

X
m,n

eifssvm2vnd

d

X
r

sÔrdmnjml knj .
(6)

Let us notice that, by the appropriate choice offs, the
sum

P
s

eifs svm2vn d

d can always be made equal todm,n

providing all eigenvalues are nondegenerate [6] (this
basically a discrete Fourier transform and we illustra
this point in detail in example A). In this case, th
conditions (6) for the off-diagonal terms in the bas
jml are trivially satisfied whereas the diagonal terms a
equal to unity because the original POVMhÔrj guarantees
that

P
r sÔrdmm  1. Moreover, even if the original set

of operatorshÔr j does not satisfy the full completenes
condition and the conditions for the off-diagonal term
are not satisfied (i.e., these operators do not constitu
a POVM) we can, using our extension ansatz, alwa
construct aproper POVM hÔr ,sj. This provesthat when
we maximize the mean fidelity (3) it is enough to assum
d diagonal conditions rather than the original complete s
of d2 constraints for diagonalandoff-diagonal elements.

Now we turn back to our original problem of how to
construct the POVM which maximizes the mean fidelit
To do so we first express the operatorsÔr in the
form Ôr  crUN

r jCr l kCr jUNy
r , wherejCr l are general

normalized states in thed-dimensional space in which
the operatorŝOr act, andcr are positive constants. This
substitution is done without any loss of generality [7] an
it permits us to rewrite Eq. (3) so that the mean fidelityf
does not explicitly depend onUN

r , i.e.,

f 
X

r
cr TrfjCr l kCr jF̂g . (7)

Obviously, the completeness condition
P

r Ôr  1̂ is now
modified and it readsX

r
crUN

r jCr l kCr jU
Ny
r  1̂ . (8)

From our discussion above it follows that when max
mizing the mean fidelity (7) it is enough to apply onlyd
constraints

P
r cr jkmjUN ,r jCr lj2  1 (herem  1, . . . , d)

out of thed2 constraints (8). Therefore to accomplish ou
task we solve a set of Lagrange equations withd Lagrange
multipliers Lm. If we expressLm as eigenvalues of the
operatorL̂ 

P
m Lmjml kmj then we obtain the final very

compact set of equations determining the optimal POVM

fF̂ 2 UNy
r L̂UN

r g jCr l  0 ,X
r

cr jkmjUN
r jCr lj2  1 .

(9)
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From here it follows thatjCr l are determined as zero-
eigenvalue eigenstates. More specifically, they a
functions of d Lagrange multipliershLmjd

m1 and R
vectorshxr jR

r1 [wherexr determineUr asUr  Usxr d].
These free parameters are in turn related viaR conditions
DetfsF̂ 2 UNy

r L̂UN
r dg  0. The mean fidelity now is

equal to TrL̂. At this stage we solve a system ofd linear
equations [see the second formula in Eq. (9)] forR un-
known parameterscr . All solutions forcr parametrically
depend onLm and xr which are specified above. We
note that the number of free parameters in our proble
depends onR which has not been specified yet. We
chooseR such that there are enough free parameters
that the mean fidelity is maximized and simultaneously a
cr are positive. This freedom in the choice of the value o
R also reflects the fact that there is an infinite number o
equivalent (i.e., with the same value of the mean fidelity
optimal POVMs. The whole algorithm is completed by
finding fs from Eq. (6) which explicitly determine the
finite optimal POVMhÔ,

rsj. This is the main result of our
Letter.

In the following we will apply this general algorithm
into two physically important examples.

Example A.—Suppose we haveN identical copies of
spin1y2 all prepared in the same but unknown pure quan
tum state. If we choose the groupG to be U(2), i.e., the
complete unitary group transforming a two-level quantum
system, we can straightforwardly apply the optimal est
mation scheme as described above. To be more preci
due to the fact that there exist elements of the group U(
for which the reference state is the fixed point (i.e., it is in
sensitive to its action) we have to work only with the cose
spaceSUsndjUsn21d [5]. In the present case this is a subse
of the SU(2) group parametrized by two Euler anglesu, c

(the third Euler anglex is fixed and equal to zero). This
subset is isomorphic to the Poincaré sphere.

The unitary representationU is now the representation
s 1

2 d [we use a standard classification of SU(2) represe
tations, wheresjd is the spin number]. ItsN-fold sym-
metrized direct product (we denote this representation
UN ) is the representation classified ass N

2 d (which trans-
forms a spin-Ny2 particle). Choosing the standard ba-
sis jj, ml with m  2j, . . . , j in which the coordinate
expression forUsu, cd corresponds to standard rotation
matricesD

j
m,nsu, c , 0d  e2imcd

j
m,nsud [8], we obtain the

matrix expression for the operatorF̂

Fm,n 
Z 2p

0
df

Z p

0

sinsud du

8p
s1 1 cosud

3 D
N

2

m, N

2

su, fdD
N

2
p

n, N

2

su, fd (10)


Ny2 1 m 1 1

sN 1 2d sN 1 1d
dm,n .

When we insert this operator in Eq. (5) we immediatel
1573
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2,
find the upper bound on the mean fidelity to be equ
to N11

N12 .
This is the main result of the paper by Massar an

Popescu [9] who noted that this upper bound can be
tained using the special POVM which consists of aninfinite
continuous set of operators proportional to isotropically r
tated projectorjN

2 , N
2 l k N

2 , N
2 j. This result is closely related

to the covariant measurements of Holevo [1].
However, our aim is to construct an optimal andfinite

POVM. To do so, we have to find a finite set of pairs o
angleshsur , crdj such that the completeness conditions (
which now take the formX

r
cre2icr sm2ndd

N

2

m, N

2

surdd
N

2

n, N

2

surd  dm,n (11)

are fulfilled. Following our general scheme we firs
satisfy the completeness conditions (11) for diagon
terms [compare with Eq. (9)]X

r
crd

N

2

m, N

2

surd2  1; m  2Ny2, . . . , Ny2 . (12)

To satisfy these completeness conditions we chooseN 1

1 anglesur to be equidistantly distributed in thek0, pl
[obviously, there are many other choices which may s
the purpose—see discussion below Eq. (9)]. Then w
solve the system of linear equations forN 1 1 vari-
ablescr . For this choice ofur the system (12) has non-
negative solutions. Finally we satisfy the off-diagona
conditions by choosingN 1 1 angles cs 

2sp

N11 for
eachur . In this case 1

N11

PN
s0 eicsy  dy,0 for all y 

2Ny2, . . . , Ny2 and the off-diagonal conditions are sat
isfied straightforwardly. This concludes the constructio
of the optimal and finite POVM for the spin-1y2 state
estimation.

Example B.—Consider a system ofN effectively two-
level atoms (qubits), all initially prepared in the referenc
state 1

p
2

sj0l 1 j1ld by applying so calledp

2 pulse to
initially deexcited atoms. Then the atoms undergo t
free evolution effectively described by the U(1) group
i.e., the state of the single qubit evolves as1p

2
sj0l 1

exphicstdj j1ld. Our task is to find a measurement whic
provides the optimal estimation of the phasecstd of the
U(1) rotation which carries the information about th
interaction parameters.

In the standard classification of representations of t
U(1) group the single isolated qubit is described b
the direct sum of two one-dimensional representatio
U  s0d © s1d. The representationUN transforming the
entire system ofN qubits is then equal to the direc
sum of representations of the forms0d © s1d © · · · sNd.
This acts in theN 1 1 dimensional space spanned b
basis vectorsjml, m  0, 1, . . . , N . In this basis matrix
elementsF̂m,n of the operator̂F given by Eq. (4) take the
form
1574
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F̂m,n 
Z 2p

0

dc

2p

q
s N

N2m d s N
N2n d

2N11
eicsn2mds1 1 coscd



q
s N

N2m d s N
N2n d

2N12
s2dm,n 1 dm,n11 1 dm11,nd .

(13)

The upper bound on the fidelity Eq. (5) is now too
conservative to be of any use (greater than unity). W
can, however, solve the system of Eqs. (9) which in th
particular case of the commutative group reads

fF̂ 2 L̂g jCl  0; jkm j Clj2  1; ;m . (14)

The condition DetsF̂ 2 L̂d  0 now determines the
eigenvectorjCl with the zero eigenvalue as a function
of Lagrange multipliersLm. When we substitute this
eigenvector into the second equation in Eq. (14) w
obtain a set of equations forLm from which the statejCl
can be determined. The final POVM is then constructe
by rotation ofjCl by N 1 1 anglesfs in such a way that
all off-diagonal elements of

P
ssÔsdm,n become equal to

zero. This is done in exactly the same way as in examp
A. The resulting POVM corresponds to thevon Neumann
measurementperformed on thecompositesystem ofall
N ions characterized by the set of orthogonal projectors

P̂s  jCsl kCsj; jCsl 
1

p
N 1 1

NX
q0

ei 2p

N11
sq

jql ,

(15)

and the maximal mean fidelityf is given as the sum:

f  1y2 1 1y2N11
PN21

i0

q
s N

i d s N
i11 d.

Finally, we note that the Hermitian operatorF̂ con-
structed from the optimal POVM (15)

F̂ 
NX

s0

2p

N 1 1
sP̂s , (16)

with the corresponding guesses as eigenvalues, is ident
to the Pegg-Barnett Hermitian phase operator [11] orig
nally introduced within a completely different context.

In conclusion, we have presented a general algorith
for the optimal state estimation from finite ensemble
It provides finite POVMs which, following the Neumark
theorem [10], can, at least in principle, be implemented
simple quantum computations. We discuss these aspe
in detail elsewhere [12].
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