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Dynamics of open systems governed by the Milburn equation
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Within the framework of the Milburn model of intrinsic decoherence@G. J. Milburn, Phys. Rev. A44, 5401
~1991!#, which is based on an assumption of an existence of the fundamental time step, we study the dynamics
of open systems. We show that evolution of an open system governed by the Milburn equation can be
significantly modified compared to the standard Schro¨dinger quantum mechanics. This modification is most
pronounced when an open system is strongly coupled to its environment.@S1050-2947~98!06209-X#

PACS number~s!: 03.65.Bz, 42.50.2p
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I. INTRODUCTION

The problem of decoherence in quantum mechanics
attracts a lot of attention. Several conceptually different
proaches have been proposed to explain why quantum co
ences cannot be observed on a ‘‘macroscopic’’ level. O
explanation of why quantum coherences are deteriorated
difficult to observe is based on a hypothesis thatclosedquan-
tum systems do not evolve unitarily according to the Sch¨-
dinger equation, but are governed by more generalized e
tions that include intrinsic decoherence. In particula
Milburn @1# has recently proposed an elegant model of
trinsic decoherence based on a simple modification of auni-
tary Schrödinger evolution. This model is based on an a
sumption that on sufficiently short time scales theclosed
system evolves by arandom sequence of unitary phas
changes generated by the system Hamiltonian. Based on
assumption Milburn has derived the equation for the ti
evolution density operatorsr(t) of closed quantum system
@1#,

d

dt
r~ t !5gH expF2

i

\g
HGr~ t !expF i

\g
HG2r~ t !J ,

~1.1!

where g is the mean frequency of the unitary~minimum!
time step. This equation formally corresponds to the assu
tion that on a very short time scalet the probability that the
system evolves isp(t)5gt. In the limit g→` ~i.e., when
the fundamental time step goes to zero!, Eq. ~1.1! reduces to
the ordinary von Neumann equation describing the Sch¨-
dinger dynamics of closed quantum systems. If the fun
mental time step is nonzero, but still very small, then
Milburn equation~1.1! describes an intrinsic decay of qua
tum coherences in theenergybasis. Simultaneously, all con
stants of the motion associated with the standard Schro¨dinger
dynamics remain constants of the motion in the Milbu
model and thus stationary states remain stationary state

Milburn in his paper has discussed in detail a number
testable consequences of his model of intrinsic decohere
Nevertheless, he has studied only closed systems gove
by Eq. ~1.1!. In the present paper we analyze dynamics
open quantum systems of the typesystem1 environment
governed by the Milburn equation. To be specific, ifHS
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denotes the Hilbert space of the systemS, andHE the Hilbert
space associated with the environmentE, then the formal
Hamiltonian of the composite systemS1E is

HSE5HS^ 1E1H int11S^ HE , ~1.2!

onHS^HE , whereH int is some interaction term, 1S and 1E
are unity operators associated withHS andHE, respectively,
and ^ denotes direct product of two operators. Suppose
at t50 the state of the composite system isrS(0)^ rE(0).
We assume that the staterSE(t) of the composite system i
governed by the Milburn Eq.~1.1!. If TrE denotes the partia
trace of the environment, then thereduceddynamicsLS(t)
of the open systemS is defined by

rS~ t !5LS~ t !rS~0!5TrE@rSE~ t !#. ~1.3!

By definitionLS(t) is linear, so that the state of the systemS
is always mapped onto a state. In what follows we will stu
how this mapping depends on the value of the parameteg.
To make our discussion physical we will model the syst
of interest as a two-level atom and the environment as
electromagnetic field. We will study a coupling of this two
level atom to a single-mode field as well as to a multimo
field ~we will present results of numerical calculations wi
the atom coupled to 500 modes of the electromagnetic fie!.
The paper is organized as follows. In Sec. II we presen
formal solution of the Milburn equation~1.1! for Hamilto-
niansHSE with discrete spectra. This solution is then used
Sec. III for a description of the dynamics of a single tw
level atom coupled to a single-mode electromagnetic field
Sec. IV we study the ‘‘decay’’ of a two-level atom couple
to a multimode electromagnetic field. The paper is conclud
with a discussion.

II. GENERAL SOLUTION OF THE MILBURN EQUATION
FOR COMPOSITE SYSTEMS

We rewrite the Milburn equation~1.1! in the basis of
eigenvectorsu i &SE of the total Hamiltonian~1.2!,

d

dt
r i j ~ t !5gH expF2

i

\g
~Ei2Ej !G21J r i j ~ t !, ~2.1!
1735 © 1998 The American Physical Society
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wherer i j (t)[^ i ur(t)u j & andEi are eigenvalues ofHSE. The
solution of this equation reads

r i j ~ t !5r i j ~0!expS H expF2
i

\g
~Ei2Ej !G21J gt D ,

~2.2!

where the matrix elementsr i j (0) describe the initial state o
the composite systemSE. This initial state can be also
expressed in terms of eigenstatesum&SE5ua&Sub&E of the
‘‘free Hamiltonian’’ HS^ 1E11S^ HE , such thatHSua&S
5aua&S and HEub&E5bub&E . Taking into account
that u i &5(mcm

i um&SE[(a,bca,b
i ua&Sub&E , we haver i j (0)

5(m,nrmn(0)(cm
i )* cn

j and we can rewrite the solution~2.2!
in the basis$um&SE% as

rmn~ t !5(
i , j

cm
i ~cn

j !* expS H expF2
i

\g
~Ei2Ej !G21J gt D

3 (
m8,n8

rm8n8~0!~cm8
i

!* cn8
j . ~2.3!

Finally, by performing a trace over the environment, we o
tain the solution for the density operator of the system un
consideration in the basis$ua&S%.

III. MILBURN’S DYNAMICS OF TWO-LEVEL ATOM

Let us assume that a two-level atom~the system! interacts
with a single-mode cavity electromagnetic field~environ-
ment! that is initially in the vacuum state. The atom-fie
dynamics in the dipole and the rotating-wave approximati
are governed by the Jaynes-Cummings Hamiltonian@2#

H5
1

2
\vA~11sz!1\va†a1\G~s1a1s2a†!,

~3.1!

wheres6 and sz are Pauli matrices anda and a† are the
field-mode annihilation and creation operators, respectiv
vA is the atomic transition frequency andv is the field mode
frequency, whileG is the atom-mode coupling constant.
what follows we will consider that the field is initially in th
vacuum state, i.e.,uF&E5u0& and the atom in the superpos
tion uC&5aue&1bug& of the upper (ue&) and the lower
(ug&) states.

Taking into account that the excitation number is an in
gral of motion of the Jaynes-Cummings dynamics, it is cl
that with the given initial state the dynamics is restricted
the subspace of the total Hilbert space spanned by three
thonormal vectors$ue;0&,ug;1&,ug;0&%. In this basis we di-
agonalize the Hamiltonian~3.1! and we can write its
eigenenergies in the form~see@2#!

E65
1

2
\~vA1v!6\AS vA2v

2 D 2

1G2, ~3.2!

andE350. The corresponding eigenstates can be written

uF6&5e6ue;0&1g6ug;1&, ~3.3!

where the coefficientse6 are given by
-
r

s

y.

-
r

or-

s

e65
G

A~E6 /\2vA!21G2
,

~3.4!

g65
E6 /\2vA

A~E6 /\2vA!21G2
,

while uF3&5ug;0&. Now, using the results of Sec. II w
evaluate the atom-field density operatorrSE(t), which is the
solution of the Milburn equation with the Hamiltonian~3.1!.
After tracing over the field variables we obtain the atom
density operator from which we evaluate the probabil
Pee(t) that at timet the atom is in the excited state

Pee~ t !5uau2F112ue1u2ue2u2

3S expH FcosS E12E2

\g D21GgtJ
3cosFsinS E12E2

\g Dgt G21D G. ~3.5!

This probability is associated with the diagonal elements
the atomic density operator in the basis$ue&,ug&%. The off-
diagonal elements describe atomic quantum coherence
particular, from the general solution we find that the absol
value of these nondiagonal elementsPeg(t)5 z^gurA(t)ue& z
reads

Peg~ t !5AA1
2 1A2

2 12A1A2cos~f12f2!, ~3.6!

where

A65ab* ue6u2expH FcosS E62E3

\g D21GgtJ ~3.7!

and

f65gt sinS E62E3

\g D . ~3.8!

We start our analysis of the atom dynamics with the c
when the atom does not interact with the cavity field, i.
G50. From the general solution~3.5! for the population of
the excited statePee(t) we find that it is constant, i.e.
Pee(t)5uau2, which illustrates the fact that the diagonal e
ements of the density operator of the closed system in
energy basis are not affected by Milburn’s modification
the quantum dynamics. On the other hand, for the abso
value of off-diagonal matrix elementsPeg(t) in the limit
G→0 we find

Peg~ t !5uab* uexpH FcosS vA

g D21GgtJ . ~3.9!

In the limit v/g!1 this expression can be approximat
as Peg(t).uab* uexp@2v2t/(2g)#, which clearly describes
the effect of intrinsic decoherence@3#. From Eq.~3.9! it is
also seen that with the decrease of the parameterg the de-
coherence is more pronounced. The effect becomes m
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transparent forg/vA.0.43. With the further decrease ofg
the decoherence becomes smaller and forg/vA51/(2p) the
oscillatory behavior of the atomic coherence becomes froz
Then for even smaller values ofg the functionPeg(t) again
exhibits intrinsic decoherence. Nevertheless, it is not as
nounced as forg/vA.0.43. In the limitg→0 the evolution
of the atom is totally ‘‘frozen,’’ which is associated with th
introduction of the minimum time step, that is, one cann
produce an atomic oscillator with a period shorter than
minimum time step~see the discussion below and Fig. 2!.

We turn our attention back to the dynamics of the co
posite atom-field system. For simplicity we assume that
field mode is on resonance with the atomic transition f
quencyvA5v. This allows us to see how the dynamics
an open system is modified by the Milburn equation. In Fi
1 and 2 we plot the time evolution ofPee(t) and Peg(t)
given by Eqs.~3.5! and ~3.6!, respectively. Here we firs
consider weak coupling, i.e.,G5vA/100. The atom is ini-
tially prepared in the superposition stateuC(0)&

FIG. 1. The population of the excited atomic levelPee(t) given
by Eq. ~3.5! as a function of the scaled timeGt/p. The field mode
is initially in the vacuum state and the atom is in the st
uC(0)&5221/2(ue&1ug&). We assumev5vA andG5vA/100.

FIG. 2. The time evolution of the atomic coherencePeg(t)
given by Eq.~3.6! as a function of the scaled timeGt/p. All con-
ditions are the same as in Fig. 1.
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5221/2(ue&1ug&). From Fig. 1 we see that for large value
of g ~i.e., a very small fundamental time step! the atom ex-
hibits the usual vacuum Rabi oscillations as predicted by
standard Schro¨dinger equation. Nevertheless, with the d
crease ofg not only the intrinsic decoherence of the initi
atom coherence becomes transparent~see Fig. 2!, but also
the atomic population becomes affected by modification
the dynamics. As seen from Fig. 1, for small values ofG the
frequency of Rabi oscillations does not depend ong, but the
amplitude of these oscillations become smaller. Forg small
enough~in our pictureg/vA50.01, i.e., in this caseg5G)
the Rabi oscillations become completely suppressed and
atom ‘‘collapses’’ very rapidly to the mixturer5 1

4 ue&^eu
1 3

4 ug&^gu. Obviously, this is a completely different situatio
compared to the Schro¨dinger picture. This means that th
Milburn dynamics leads to changes in populations in ene
eigenstates of an open system~i.e., a sub-system of the com
posite system!. In fact, the larger the couplingG between the
subsystems, the larger is the deviation from the Schro¨dinger
dynamics. This property of the Milburn dynamics is clear
seen from Fig. 3, in which we plot the time evolution of th
function Pee(t) for the fixed value ofg ~we take g/vA
510) and for various values ofG.

We note that in the limit of very strong couplingG the
Milburn dynamics can be significantly different from th
Schödinger evolution even for very large values ofg ~small
fundamental time steps!. To be specific, let us introduce
parameterj52G/g. If jÞ2pn, then in the strong-coupling
limit G→`, when simultaneouslyg→` ~so thatj5const)
the functionPee(t) given by Eq.~3.5! describes an ‘‘instan-
taneous’’ collapse to the stationary valueuau2/2. On the con-
trary, the Schro¨dinger dynamics describes periodic Rabi o
cillations ~obviously, the frequency of these oscillations
very large in the large-coupling limit!.

We conclude this section with a brief remark on ‘‘free
ing’’ of the Milburn dynamics. From Eq.~3.5! we see that
for G/g5pn the atomic-level populationPee(t) is frozen
~here we assume thatv5vA). If in addition vA /g5pn,
then also the atomic coherences do not evolve,

FIG. 3. The population of the excited atomic levelPee(t) given
by Eq. ~3.5! as a function of the scaled timeGt/p for various
values of the coupling constantG and fixed value ofg/vA510. All
other conditions are the same as in Fig. 1.
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Peg(t)5const. For illustration we plot in Fig. 4 the tim
evolution ofPeg(t) for two fixed values of time as a functio
of g/vA . We see that the decoherence is strongest
g/vA.0.43, which is the same as for an isolated two-le
atom ~see above!. The evolution is frozen forg/vA
51/(2pn). In the limit g→0, the system does not evolve
all.

IV. MODIFICATION
OF THE WEISSKOPF-WIGNER DECAY

In what follows we want to generalize the results of t
preceding section and we will study the dynamics of
atom coupled to the multimode vacuum of the electrom
netic field. The corresponding Hamiltonian in the dipole a
the rotating-wave approximations reads@4#

H5
1

2
\vA~11sz!1(

l
\vlal

†al

1(
l

\~Gls1al1Gl* s2al
†!, ~4.1!

where summations run over the field modes. We will co
sider the field to be initially in the vacuum state and the at
in the superposition stateuC&5aue&1bug&.

Combining the results of Sec. II with the numerical diag
nalization of the Hamiltonian~4.1! we have analyzed the
decay of the two-level atom under consideration into
multimode vacuum of the electromagnetic field. We ha
considered 500 modes of the field, such that in the sca
units vA51 and the cutoff frequency isvcutoff58. The re-
sults of our numerical simulations are presented in Fig
which shows the time evolution of the population of t
upper atom level in the weak-coupling limit (G5vA/80).
We see that for a very small fundamental time s
(g/vA5106) the Milburn dynamics leads to the exponent
decay of the atomic populationPee(t), which is exactly the
same as within the framework of the Weisskopf-Wign
theory@4# ~see solid line in Fig. 5!. With the increase of the

FIG. 4. The atomic coherencePeg(t) given by Eq.~3.6! as a
function of g/vA for two fixed values of timetfix . All conditions
are the same as in Fig. 1.
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fundamental time step we observe suppression of the de
which is caused by the nonunitary evolution of the system
a short time scale~here ‘‘short’’ is specified by the value o
g). This freezing of the time evolution is analogous to t
quantum Zeno effect@5#. The difference is that the nonun
tarity in the quantum Zeno effect is caused by a sequenc
frequent measurements while in our case the nonunitarit
the evolution is caused by the existence of the fundame
time step. In the Milburn model the physical background
this fundamental time step is not analyzed. Anyway, in
particular case of an atom discussed in this paper one
find an analogy between the Milburn evolution and the d
namics of the atom when the atomic collisions are taken i
account. These collisions can be considered to be respon
for a nonunitary evolution of the atom and the frequency
collisions is then directly related to the time step conside
by Milburn. On the other hand, there might exist anoth
more fundamental reason~e.g., a structure of the space-tim
is not continuous!, which would justify the Milburn equation
~if it is correct!. Anyway, it is not the aim of our paper to
illuminate this fundamental question. Our task is to sh
that the Milburn dynamics of open systems might be co
pletely different from the Schro¨dinger dynamics and tha
maybe this difference can be observed.

To complete the picture of the decay of a two-level ato
we present in Fig. 6 the time evolution of the functionPeg(t)
representing atomic coherences. We see that quantum co
ences in the Milburn model of the atomic decay depend
the value ofg. In particular, with the decrease ofg coher-
ences are deteriorated faster than in the standard Weissk
Wigner model. The fastest intrinsic decoherence in the we
coupling limit can be observed for g/vA.0.43.
Nevertheless, further decrease ofg does not lead to faste
deterioration of quantum coherences. On the contrary, fog

FIG. 5. The population of the excited atomic levelPee(t) as a
function of the scaled timeGt. We assumeN5500 field modes and
all of them are initially prepared in the vacuum state. The atom
transition frequencyvA is chosen in scaled units to be equal
unity and the cutoff frequencyvcutoff58. In this figure we assume
the weak-coupling limit with constantGl equal toG5vA/80 for all
l ’s. The decay rate given by Weisskopf-Wigner theory@4# reads
G52pG2d where for the density of modes we hav
d5N/vcutoff . We assume the atom initially in the sta
uC(0)&5221/2(ue&1ug&).
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small enough,Peg(t) decays slower than in the Weisskop
Wigner model and in the limitg→0 the dynamics is com
pletely frozen.

We have also studied dynamics of the two-level at
interacting with the multimode vacuum (N5500) in the
strong-coupling limit. Here the problem is that the stand
Weisskopf-Wigner model with a large but finite number

FIG. 6. The time evolution of the atomic coherencePeg(t) as a
function of the scaled timeGt. All conditions are the same as i
Fig. 5.
pt

.

d

modes for large coupling constants does not lead to an
ponential decay of the atom. In particular, for a certa
choice of the system parameters the population of the ato
upper level will periodically oscillate, while within the
framework of the Milburn model the dynamics of the ato
can be partially frozen. Because of numerical problems
have not been able to analyze this regime in detail.

V. DISCUSSION AND CONCLUSIONS

In the paper we have shown that in the Milburn model t
dynamics of open systems can be significantly modified i
sense that populations of eigenstates of the subsys
Hamiltonian do evolve differently compared to the Schr¨-
dinger dynamics. Within the framework of the model d
scribing an interaction of a single two-level atom and
single-mode electromagnetic field, we have shown that in
strong-coupling limit Rabi oscillations can be complete
suppressed even for very short fundamental time steps w
the system rapidly ‘‘collapses’’ into a statistical mixture. O
the other hand, in the weak-coupling limit and the lar
enough fundamental time step we can observe freezing o
atomic subsystem.
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