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Reconstruction of Liouvillian superoperators

Vladimı́r Bužek
Institute of Physics, Slovak Academy of Sciences, Du´bravskácesta 9, 842 28 Bratislava, Slovakia

~Received 17 February 1998!

We show how to determine~reconstruct! a master equation governing the time evolution of an open
quantum system. We present a general algorithm for the reconstruction of the corresponding Liouvillian
superoperators. The dynamics of a two-level atom in various environments is discussed in detail.
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A proper description of quantum dynamics of open s
tems is essential for our understanding of physical proce
in many areas of physics, from quantum optics to quant
cosmology. In general an open system can be represent
a systemS interacting with an environmentE @1#. In this
paper we consider the archetypal system plus environm
model, which is specified as follows. LetHS denote a Hilbert
space of the systemS andHE the Hilbert space associate
with the environmentE. The HamiltonianĤSE5ĤS^ 1̂E

1Ĥ int11̂S^ ĤE of the composite systemS% E acts onHS
^HE . It is assumed thatS% E is aclosed finite-dimensiona

system that evolves unitarily. The density operatorr̂SE(t) of
this composite system is governed by the von Neum
equation with the formal solution r̂SE(t)5exp@2i(t
2t0)ĤSE#r̂SE(t0)exp@i(t2t0)ĤSE#, where the initial state is
r̂SE(t0)5 r̂S(t0) ^ r̂E(t0) and \51. The reduceddynamics
of the systemS is then defined as

r̂S~ t !:5T̂ ~ t,t0!r̂S~ t0!5TrE@ r̂SE~ t !#. ~1!

By definition, T̂ (t,t0) is a linear map that transforms th
input stater̂S(t0) into the output stater̂S(t). In this paper we
address the questionhow to determine (reconstruct) the ma
ter equation that governs the time evolution of the redu

density operatorr̂S(t). This master equation can be writte
in the convolutionlessform @2# ~we omit the subscriptS)

d

dt
r̂~ t !5L̂~ t,t0!r̂~ t !, ~2!

which is possible due to the fact that in thefinite-dimensional
Hilbert spaces matrix elements of density operators are

lytic functions. Consequently,T̂ (t,t0) are nonsingular opera
tors ~except maybe for a set ofisolatedvalues oft) in which

case the inverse operatorsT̂ (t,t0)21 exist and the Liouvillian
superoperator can be expressed as

L̂~ t,t0!:5F d

dt
T̂ ~ t,t0!G T̂21~ t,t0!. ~3!

We note thatT̂(t,t0) is uniquely specified byĤSE and by the
initial stater̂E(t0) of the environment.
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In this paper we propose a general algorithm to rec

struct the Liouvillian superoperatorL̂(t,t0) from the knowl-
edge of the time evolution of the system density opera
r̂(t). In fact, there are two aspects of this problem. Fir
r̂(t) can be given as a result of a sequence of quant
tomography measurements@3# such that at each timet the
system density operator is reconstructed from the meas
tomographic data. From these experimental data the Liou
lian that governs the open system can then bereconstructed

~see exampleA!. Second, the density operatorr̂(t) is deter-
mined from the knowledge of the unitary evolution of th
compositeS% E system@see Eq.~1!#. From this knowledge
the master equation~2! is determined. In both cases the d
namics of the open system is given exclusively in terms
the system operators. Environmental degrees of freedom
completely eliminated from the reduced dynamics. Nevert
less, the state of the environment may change during the
evolution due to the interaction with the system. That is,
do not employ the assumption that the environment i
‘‘big’’ reservoir that does not change under the action of t
system~see examplesB andC!.

In order to reconstruct the Liouvillian superoperat

L̂(t,t0) we have to determine firstly the linear mapT̂ (t,t0)
given by Eq.~1!. This part of the reconstruction can be pe
formed with the help of the algorithm recently proposed
Poyatos, Cirac, and Zoller@4#. This algorithm works as fol-
lows. Let us assume that the systemS has been initially
prepared in a pure stateuC(t0)&5( i 150

N ci 1u i 1&, whereu i 1& are

basis vectors in the (N11)-dimensional Hilbert spaceHS of
the system under consideration. It is further assumed tha
environment is initially prepared in a stater̂E(t0)
5(a1 ,a2

da1a2
ua1&E^a2u, where ua i&E are basis vectors in

the Hilbert spaceHE of the environment.

In general, the physical processT̂ (tk ,t0) is determined by
a transformation acting on basis vectors of the system
the environment~in what follows we omit in all expression
the explicit reference to the initial timet0)

u i 1&Sua1&E→
T~ tk!

(
j 150

N

(
b1

E~ i 1 j 1!~a1b1!~ tk!u j 1&Sub1&E . ~4!

The output density operatorr̂(tk) of the system at timetk is
obtained when the transformation~4! is applied to the initial
1723 © 1998 The American Physical Society
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state of the system environmentr̂(t0) ^ r̂E(t0) and then the
tracing over the environment is performed, so thatr̂(tk) can
be written as

r̂~ tk!5 (
i 1 ,i 250

N

ci 1
~ci 2

!* R̂~ i 1 ,i 2!~ tk!, ~5!

where (N11)2 operatorsR̂( i 1 ,i 2)(tk) are defined as

R̂~ i 1 ,i 2!~ tk!5 (
j 1 , j 250

N

D ~ i 1 ,i 2!~ j 1 , j 2!~ tk!u j 1&^ j 2u, ~6!

with

D ~ i 1 ,i 2!~ j 1 , j 2!~ tk!5 (
a1 ,a2 ,g

da1a2

3E~ i 1 j 1!~a1g!~ tk!E~ i 2 j 2!~a2g!
* ~ tk!. ~7!

From Eq. ~5! it follows that the processT̂(tk) for a given
time tk is completely determined by (N11)2 operators
R̂( i 1 ,i 2)(tk), which in turn are specified by the (N11)2

3(N11)2 matrix elementsD ( i 1 ,i 2)( j 1 , j 2)(tk). We note that

the R̂( i 1 ,i 2)(tk) have the properties

TrR̂~ i 1 ,i 2!~ tk!5d i 1 ,i 2 ,
~8!

@R̂~ i 1 ,i 2!~ tk!#
†5R̂~ i 2 ,i 1!~ tk!

or, equivalently,

(
j 50

N

D ~ i 1 ,i 2!~ j , j !~ tk!5d i 1 ,i 2

~9!

D ~ i 1 ,i 2!~ j 1 , j 2!
* ~ tk!5D ~ i 2 ,i 1!~ j 2 , j 1!~ tk!.

We also note that neither theR̂( i 1 ,i 2)(tk) nor

D ( i 1 ,i 2)( j 1 , j 2)(tk) depend on the initial stater̂(t0) of the sys-
tem and formally they fulfill the conditions

lim
tk→t0

R̂~ i 1 ,i 2!~ tk!5u i 1&^ i 2u,

~10!

lim
tk→t0

D ~ i 1 ,i 2!~ j 1 , j 2!~ tk!5d i 1 , j 1d i 2 , j 2 .

Poyatoset al. @4# have shown that in order to specify th
(N11)2 operatorsR̂( i 1 ,i 2)(tk) one has to consider (N11)2

specific ~see below! initial conditions uC (k1 ,k2)& in

5( i 150
N ci 1

(k1 ,k2)u i 1& wherek1 ,k250,1,. . . ,N, and to measure

the corresponding (N11)2 output density operator
r̂ (k1 ,k2)(tk) which can be expressed as

r̂ ~k1 ,k2!~ tk!5 (
i 1 ,i 250

N

M ~k1 ,k2!~ i 1 ,i 2!R̂~ i 1 ,i 2!~ tk!, ~11!

where
M ~k1 ,k2!~ i 1 ,i 2!5ci 1

~k1 ,k2!
~ci 2

~k1 ,k2!
!* . ~12!

If the (N11)2 initial conditions uC (k1 ,k2)& in are chosen so
that the matrixM (k1 ,k2)( i 1 ,i 2) given by Eq.~12! is invertible,
then the set of equations~11! can be solved with respect o
the operatorsR̂( i 1 ,i 2)(tk). Alternatively, one can express th

matrix elementsD ( i 1 ,i 2)( j 1 , j 2)(tk) as functions of thein and
out states of the measured system, i.e.,

D ~ i 1 ,i 2!~ j 1 , j 2!~ tk!5 (
k1 ,k250

N

M̃ ~ i 1 ,i 2!~k1 ,k2!S~k1 ,k2!~ j 1 , j 2!~ tk!,

~13!

where the (N11)23(N11)2 matrix S is defined as

S~k1 ,k2!~ j 1 , j 2!~ tk!5^ j 1ur̂ ~k1 ,k2!~ tk!u j 2&. ~14!

The matrix M̃ is the inverse ofM and has the property
(k1 ,k250M̃ ( j 1 , j 2)(k1 ,k2)M (k1 ,k2)( i 1 ,i 2)5d i 1 , j 1d i 2 , j 2 .

So this is

how the processT̂(tk) can be reconstructed from the me
sured in and out states. To make the reconstruction poss
the matrixM has to be invertible. Obviously, there are ma
choices of such a matrix. In particular, Poyatoset al. @4#
have proposedM given by Eq.~12! with complex ampli-
tudesci

(k1 ,k2) specified as

ci
~k1 ,k2!

5H ~d i ,k1
1d i ,k2

!/A2 if k1.k2

d i ,k1
if k15k2

~d i ,k1
1 id i ,k2

!/A2 if k1,k2.

~15!

The reconstruction process described above gives us a s
operatorsR̂( i 1 ,i 2)(tk) that describe the transition of the sy

tem from the stater̂(t0) to the stater̂(tk) at a given timetk .
In principle, one can perform a whole sequence of such
constructions at different timest1 ,t2 , . . . ,tK so that there-
duced dynamicsof the studied system can be reconstruc
from the measured data.

Now our task is to determine~reconstruct! from a set of
measurements of the output statesr̂ (k1 ,k2)(t) for given input
statesr̂ (k1 ,k2)(t0) the form of the Liouvillian superoperato

L̂(t) in Eq. ~2!. To do so, we note that when the time ev
lution of the operatorsr̂ (k1 ,k2)(t) is governed by Eq.~2! and
taking into account expression~11! and the assumption tha
the matrix M is invertible, we find that the operator
R̂( i 1 ,i 2)(t) are also governed by the same master equat
i.e.,

d

dt
R̂~ i 1 ,i 2!~ t !5L̂~ t !R̂~ i 1 ,i 2!~ t !, ~16!

with the initial conditions given by Eq.~10!. Alternatively,
taking into account the expression~6! we obtain from Eq.
~16! a set of linear differential equations for matrix elemen
D ( i 1 ,i 2)(k1 ,k2)(t) ,



or

n

a

o

r

o-

ta

fo

he

ro-

res-
the

-
vo-

e-
e
g-

hat

ith
in

r

the

nly

om

PRA 58 1725RECONSTRUCTION OF LIOUVILLIAN SUPEROPERATORS
d

dt
D ~ i 1 ,i 2!~k1 ,k2!~ t !5 (

j 1 , j 250

N

D ~ i 1 ,i 2!~ j 1 , j 2!~ t !G~ j 1 , j 2!~k1 ,k2!~ t !,

~17!

with the initial conditions ~10!. Here the matrix
G( j 1 , j 2)(k1 ,k2)(t) is defined as

G~ j 1 , j 2!~k1 ,k2!~ t !5^k1u~L̂~ t !u j 1&^ j 2u!uk2& ~18!

and it uniquely determines the Liouvillian superoperat

L̂(t).
We already know how to reconstruct matricesD from the

measured data for arbitrary timet ~from these data we ca
also evaluate the corresponding time derivatives!. Provided
the matrix D ( i 1 ,i 2)( j 1 , j 2)(t) is not singular, its inverse

D̃ ( j 1 , j 2)( i 1 ,i 2)(t) can be found and then the reconstructed m

trix G( j 1 , j 2)(k1 ,k2)(t) is given by a simple expression

G~ j 1 , j 2!~k1 ,k2!~ t !5 (
i 1 ,i 250

N

D̃ ~ j 1 , j 2!~ i 1 ,i 2!~ t !

3
d

dt
D ~ i 1 ,i 2!~k1 ,k2!~ t !, ~19!

from which the superoperatorL̂(t) at time t can be deter-
mined. This is the main result of the paper.

In the following we will apply this general algorithm t
three physically interesting examples.

Example A.Let us consider a two-level system~a two-
level atom, a spin 1/2, or a quantum bit! with a two-
dimensional Hilbert spaceHS spanned by two vectorsu1&
and u0&. In order to specify the Liouvillian superoperato

L̂(t) for the two-level atom we have to know the time ev
lution of four initial states specified by Eq.~15!. Let us as-
sume that from the measured data it is found that these s
evolve as

r̂ ~0,0!~ t !5S 0 0

0 1D , r̂ ~1,1!~ t !5S e2Gt 0

0 12e2GtD .

r̂ ~0,1!~ t !5
1

2 S e2Gt ie2Gt/2

2 ie2Gt/2 22e2GtD , ~20!

r̂~1,0!~ t !5
1

2 S e2Gt e2Gt/2

e2Gt/2 22e2GtD .

Now we can apply our reconstruction scheme and we find
the matrixG( j 1 , j 2)(k1 ,k2)(t) the expression@5#

G~ j 1 , j 2!~k1 ,k2!~ t !5S 2G 0 0 G

0 2G/2 0 0

0 0 2G/2 0

0 0 0 0

D . ~21!

This matrix corresponds to the Liouvillian that defines t
master equation
-

tes

r

d

dt
r̂5L̂r̂5

G

2
@2ŝ2r̂ŝ12ŝ1ŝ2r̂2 r̂ŝ1ŝ2#, ~22!

describing the decay of a two-level atom into a ze
temperature reservoir@6#. The Liouvillian in Eq.~22! is time
independent which reflects the fact that the state of the
ervoir does not change in time under the influence of
system.

Example B.Here we will reconstruct the Liouvillian su
peroperator for the master equation describing the time e
lution of a single two-level atom interacting with a singl
mode electromagnetic field in an ideal cavity. Th
corresponding Hamiltonian in the dipole and the rotatin
wave approximations reads@6#

Ĥ5vAŝz1vâ†â1l~ŝ1â1ŝ2â†!, ~23!

wherel is the atom-field coupling constant. We assume t
the atomic transition frequency (vA) is on resonance with
the field frequency (v). The operatorsâ† andâ are the usual
photon creation and annihilation operators, respectively, w

@ â,â†#51. If the atom and the field are initially prepared
states uC(t0)&A5c0u0&1c1u1& and uC(t0)&F5(k50ekuk&
[ua&, respectively, then at timet the atom-field state vecto
uC(t)&A2F reads

uC~ t !&A2F5c0(
k

~costkuk&u0&2 isintkuk21&u1&!

1c1(
k

~costk11uk&u1&2 isintk11uk11&u0&!,

~24!

wheretk5lAkt. Using Eq.~19! we can determine the Li-
ouvillian superoperator that governs the dynamics of

FIG. 1. Time evolution of the decay rateg(t) ~thin line! and the
population of the excited atomic levelP(t) ~thick line!. We assume
the atom to be in the center of the 1D cavity, so it is coupled o
to the odd modes~i.e., l2k50). We assumeL52p and c51 so
that v2k115k11/2 andl2k115l50.3. The effective density of
modes that interact with the atom isde f f(v)5L/2cp51. There-
fore, the decay rateG52pl2de f f(v).0.564. We considerK
5400 modes of the field initially in the vacuum state and the at
~with vA5101) in its upper stateu1&.
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atom. HereL̂(t) explicitly depends on the initial state of th
cavity field. Let us assume a particular case when the fi
has been prepared in the Fock stateuM &. With this initial
state the matrix~13! takes the form

D ~ i 1 ,i 2!~ j 1 , j 2!~ t !5S j1 0 0 12j1

0 Aj0j1 0 0

0 0 Aj0j1 0

12j0 0 0 j0

D , ~25!

wherej05cos2(ltAM ) andj15cos2(ltAM11). The deter-
y

e-
s

xi-
ld

minant of this matrix det@D#5j0j1(j01j121) is equal to
zero only at discrete moments, soD is invertible and we can
use Eq.~19!, from which we find

G~ j 1 , j 2!~k1 ,k2!~ t !5S 2g1 0 0 g1

0 2g2/2 0 0

0 0 2g2/2 0

g3 0 0 2g3

D , ~26!

with the time-dependent parametersg i(t) given as
g1~ t !5
2l@AMsin~2ltAM !sin2~ltAM11!1AM11sin~2ltAM11!cos2~ltAM !#

cos~2ltAM !1cos~2ltAM11!
,

g2~ t !5
l@AMsin~2ltAM !cos2~ltAM11!1AM11sin~2ltAM11!cos2~ltAM !#

cos2~ltAM !cos2~ltAM11!
, ~27!

g3~ t !5
2l@AMsin~2ltAM !cos2~ltAM11!1AM11sin~2ltAM11!sin2~ltAM !#

cos~2ltAM !1cos~2ltAM11!
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From the solution~26! it follows that the Liouvillian super-
operator is explicitly time dependent, which reflects the d
namical response of the environment~i.e., the cavity field!.
The master equation~2! with L̂(t) specified by Eq.~26! can
be written as

d

dt
r̂5

g1~ t !

2
@2ŝ2r̂ŝ12ŝ1ŝ2r̂2 r̂ŝ1ŝ2#

2
h~ t !

2
@ŝ1ŝ2r̂ŝ2ŝ11ŝ2ŝ1r̂ŝ1ŝ2#

1
g3~ t !

2
@2ŝ1r̂ŝ22ŝ2ŝ1r̂2 r̂ŝ2ŝ1#, ~28!

with the coefficientsg i(t) @Eq. ~27!# and h(t)5g2(t)
2g1(t)2g3(t). One can check thatr̂A(t) obtained from Eq.
~24! is the solution of the master equation~28!. We note that
if the cavity field is initially in the vacuum state (M50) then
the master equation~28! takes the form~22!, but with the
time-dependent ‘‘decay’’ rateG→g1(t)52ltanlt.

Example C.Finally, we consider a single two-level atom
coupled toK modes of the electromagnetic field in a on
dimensional cavity of the lengthL. The spectrum of mode
is discrete with frequenciesvk5kpc/L. The corresponding
total Hamiltonian in the dipole and rotating-wave appro
mations reads@7#

Ĥ5vAŝz1 (
k51

K

vkâk
†âk1 (

k51

K

lk~ ŝ1âk1ŝ2âk
†!. ~29!
-
The field is assumed to be initially in thevacuumstate. By
applying our algorithm we find the master equation for t
atom to be of the form~22!, except the decay rateG→g(t) is
now explicitly time dependent. It can be expressed in ter
of the ‘‘measured’’ probabilityP(t)5^1ur̂A(t)u1& that the
upper atomic level is excited:

g~ t !52S dP~ t !

dt D P~ t !21. ~30!

In Fig. 1 we present the time evolution ofP(t) and g(t)
obtained with the help of numerical diagonalization of t
Hamiltonian ~29!. From our results it follows thatg(t50)
50 but as soon as the atom starts to radiate the functiong(t)
starts to grow and after a short time it takes the cons
valueG52pl2de f f(v) given by the Fermi golden rule@7#.
At this stage the atom radiates exponentially and two w
packets propagating to the left and the right cavity mirro
are irradiated. These packets are reflected by mirrorst
5L/2c and they ‘‘kick’’ back the atom att5L/c. At this
point the atom is essentially in its ground state and the
flected waves packets~environment! force it to absorb en-
ergy, i.e. the atom does not decay exponentially anym
This is the reason why during the recurrence of the ato
inversiong(t) rapidly changes and takes negative values
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