
Abstract

We present a quantum netwoprk for an optimal quantum copying ªmachineº (transformation) which
poduces N � 1 identical copies from the original qubit. The quality (fidelity) of the copies does not
depend on the state of the original and is only a function of the number of copies, N.

I. Introduction

The most fundamental difference between classical and quantum information is that while
classical information can be copied perfectly, quantum information cannot. In particular, it
follows from the no-cloning theorem [1] (see also [2, 3]) that one cannot create a perfect
duplicate of an arbitrary qubit. For example, using the well-known teleportation protocol
[4], one can create a perfect copy of the original qubit but this will be at the expense of the
complete destruction of information encoded in the original qubit. In contrast, the main goal
of quantum copying is to produce a copy of the original qubit which is as close as possible
to the original state while the output state of the original qubit is minimally disturbed.

If one is only interested in producing imperfect copies, then it is possible to design
machines (actually, to find unitary transformations) which copy quantum states. A number
of these were analyzed in a recent paper by two of us [5] (see also [6±±8]). The copy
machine considered by Wootters and Zurek [1] in their proof of the no-cloning theorem,
for example, produces two identical copies at its output, but the quality of these copies
depends upon the input state. They are perfect for the basis vectors which we denote as j0i
and j1i, but, because the copying process destroys the off-diagonal information of the input
density matrix, they are poor for input states of the form �j1i � eij j0i�= ���

2
p

, where j is
arbitrary. A different copy machine, the Universal Quantum Copy Machine (UQCM), pro-
duces two identical copies whose quality is independent of the input state. In addition, its
performance is, on average, better than that of the Wootters-Zurek machine, and the action
of the machine simply scales the expectations values of certain operators. In particular the
expectation value in one of the copies of any operator which is a linear combination of the
Pauli matrices is equal to 2/3 of its expectation value in the input state.

In this paper we introduce the copying machine which produces N � 1 identical copies
(i.e. ªflocksº of quantum clones) from the original qubit. The quality (fidelity) of copies
does not depend on the state of the original and is only a function of a number N of
produced copies. We present a quantum network for the quantum copying machine. We
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show that this machine is formally described by the same unitary transformation as recently
discussed by Gisin and Massar [9].

The paper is organized as follows: In Section II we briefly review the basic properties of
the UQCM and in Section III we describe a quantum network which realizes this copy
machine. In Section IV we introduce copying machine which produces multiple copies out
of a single qubit and describe a corresponding quantum network. In the final section we
discuss properties of copied qubits.

II. Universal Quantum Copying Machine

Let us assume we want to copy an arbitrary pure state jYia0
which in particular basis

fj0ia0
; j1ia0

g is described by the state vector jYia0

jYia0
� a j0ia0

� b j1ia0
; a � sin J eij ; b � cos J : �2:1�

The two numbers which characterize that state (2.1) can be associated with the ªamplitudeº
jaj and the ªphaseº j of the qubit. Even though ideal copying, i.e., the transformation

jYia0
! jYia0

jYia1
�2:2�

is prohibited by the laws of quantum mechanics for an arbitrary state (2.1), it is still possi-
ble to design quantum copiers which operate reasonably well. In particular, the UQCM [5]
is specified by the following conditions.

(i) The state of the original system and its quantum copy at the output of the quantum
copier, described by density operators r̂�out�

a0
and r̂�out�

a1
, respectively, are identical, i.e.,

r̂�out�
a0
� r̂�out�

a1
�2:3�

(ii) If no a priori information about the in-state of the original system is available, then
it is reasonable to require that all pure states should be copied equally well. One way to
implement this assumption is to design a quantum copier such that the distance between
density operators of each system at the output (r̂�out�

aj
where j � 0, 1) and the ideal density

operator r̂�id� which describes the in-state of the original mode are input state independent.
Quantitatively this means that if we employ the square of the Hilbert-Schmidt norm

d�r̂1; r̂2� :� Tr ��r̂1 ÿ r̂2�2� ; �2:4�
as a measure of distance between two operators, then the quantum copier should be such that

d1�r̂�out�
aj

; r̂�id�aj
� � const:; j � 0; 1 : �2:5�

Here we use the subscript 1 in the definition of the distance d1 to denote the distance
between single-qubit states.

(iii) Finally, we would also like to require that the copies are as close as possible to the
ideal output state, which is, of course, just the input state. This means that we want our
quantum copying transformation to minimize the distance between the output state r̂�out�

aj
of

the copied qubit and the ideal state r̂�id�aj
. The distance is minimized with respect to all

possible unitary transformations U acting on the Hilbert space H of two qubits and the
quantum copying machine (i.e., H � Ha0 
Ha1 
Hx)

d1�r̂�out�
aj

; r̂�id�aj
� � min fd�U�1 �r̂�out�

aj
; r̂�id�aj

�; 8Ug; �j � 0; 1� : �2:6�
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Originally, the UQCM was found by analyzing a transformation which contained two free
parameters, and then determining them by demanding that condition (ii) be satisfied, and
that the distance between the two-qubit output density matrix and the ideal two-qubit out-
put be input state independent. That the UQCM machine obeys the condition (2.6) has only
been shown recently [9, 10].

The unitary transformation which implements the UQCM [5] is given by

j0ia0
jQix !

�����
2

3

r
j00ia0a1

j"ix �
�����
1

3

r
j�ia0a1

j#ix

j1ia0
jQix !

�����
2

3

r
j11ia0a1

j#ix �
�����
1

3

r
j�ia0a1

j"ix �2:7�

where

j�ia0a1
� 1���

2
p �j10ia0a1

� j01ia0a1
� ; �2:8�

and satisfies the conditions (2.3±±2.6). The system labelled by a0 is the original (input)
qubit, while the other system a1 represents the qubit onto which the information is copied.
This qubit is supposed to be prepared initially in a state j0ia1

(the ªblank paperº in a
copier). The sates of the copy machine are labelled by x. The state space of the copy
machine is two dimensional, and we assume that it is always in the same state jQix initi-
ally. If the original qubit is in the superposition state (2.1) then the reduced density operator
of both copies at the output are equal [see condition (2.3)] and they can be expressed as

r̂�out�
aj
� 5

6
jYiaj

hY j � 1

6
jY?iaj

hY?j ; j � 0; 1 �2:9�

where

jY?iaj
� b* j0iaj

ÿ a* j1iaj
; �2:10�

is the state orthogonal to jYiaj
. This implies that the copy contains 5/6 of the state we

want and 1/6 of the one we do not.
The density operator r�out�

aj
given by Eq. (2.9) can be rewritten in a ªscaledº form:

r̂�out�
aj
� sjr̂

�id�
aj
� 1ÿ sj

2
1̂; j � 0; 1 ; �2:11�

which guarantees that the distance (2.4) is input-state independent, i.e. the condition (2.5) is
automatically fulfilled. The scaling factor in Eq. (2.11) is sj � 2=3 �j � 0; 1�.

We note once again that the UQCM copies all input states with the same quality and
therefore is suitable for copying when no a priori information about the state of the origi-
nal qubit is available. This corresponds to a uniform prior probability distribution on the
state space of a qubit (Poincare sphere). Correspondingly, one can measure the quality of
copies by the fidelity F, which is equal to the mean overlap between a copy and the input
state [9]

F � � dWajhY j r̂out�
aj
jYiaj

; �2:12�
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where
�

dW � � 2p
0 dj

� p
0 dJ sin J=4p. It is easy to show that the relation between the fide-

lity F and the scaling factor s is

s � 2F ÿ 1 : �2:13�

III. Copying Network

In what follows we show how, with simple quantum logic gates, we can copy quantum
information encoded in the original qubit onto other qubits. The copying procedure can be
understood as a ªspreadº of information via a ªcontrolledº entanglement between the origi-
nal qubit and the copy qubits. This controlled entanglement is implemented by a sequence
of controlled-NOT operations operating on the original qubit and the copy qubits which are
initially prepared in a specific state.

In designing a network for the UQCM we first note that since the state space of the copy
machine itself is two dimensional, we can consider it to be an additional qubit. Our net-
work, then, will take 3 input qubits (one for the input, one which becomes the copy, and
one for the machine) and transform them into 3 output qubits. In what follows we will
denote the quantum copier qubit as b1 rather than x. The operation of this network is such,
that in order to transfer information from the original a0 qubit to the target qubit a1 we will
need one idle qubit b1 which plays the role of quantum copier.

Before proceeding with the network itself let us specify the one and two-qubit gates from
which it will be constructed. Firstly we define a single-qubit rotation R̂j�q� which acts on
the basis vectors of qubits as

R̂j�q� j0ij � cos q j0ij � sin q j1ij ;

(3.1)
R̂j�q� j1ij � ÿ sin q j0ij � cos q j1ij ;

We also will utilize a two-qubit operator (a two-bit quantum gate), the so-called con-
trolled-NOT gate, which has as its inputs a control qubit (denoted as � in Fig. 1) and a
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Figure 1: Graphical representation of the UQCM network. The logical controlled-NOT P̂kl given by
Eq. (3.2) has as its input a control qubit (denoted as �) and a target qubit (denoted as �). The action of
the single-qubit operator R is specified by the transformation (3.1). We separate the preparation of the
quantum copier from the copying process itself. The copying, i.e. the transfer of quantum information
from the original qubit, is performed by a sequence of four controlled-NOTs. We note that the ampli-
tude information from the original qubit is copied in the obvious direction in a XOR or the controlled-
NOT operation. Simultaneously, the phase information is copied in the opposite direction making the
XOR a simple model of quantum non-demolition measurement and its back-action.



target qubit (denoted as � in Fig. 1). The control qubit is unaffected by the action of the
gate, and if the control qubit is j0i, the target qubit is unaffected as well. However, if the
control qubit is in the j1i state, then a NOT operation is performed on the target qubit. The
operator which implements this gate, P̂kl, acts on the basis vectors of the two qubits as
follows (k denotes the control qubit and l the target):

P̂kl j0ik j0il � j0ik j0il ;

P̂kl j0ik j1il � j0ik j1il ;
(3.2)

P̂kl j1ik j0il � j1ik j1il ;

P̂kl j1ik j1il � j1ik j0il :
We can decompose the quantum copier network into two parts. In the first part the copy
�a1� and the idle �b1� qubits are prepared in a specific state jYi�prep�

a1b1
. Then in the second

part of the copying network the original information from the original qubit a0 is redistrib-
uted among the three qubits. That is, the action of the quantum copier can be described as
a sequence of two unitary transformations

jYi�in�a0
j0ia1

j0ib1
! jYi�in�a0

jYi�prep�
a1b1

! jYi�out�
a0a1b1 :

�3:3�

The network for the quantum copying machine is displayed in Fig. 1.

A. Preparation of quantum copier

Let us first look at the preparation stage. Prior to any interaction with the input qubit we
have to prepare the two quantum copier qubits (a1 and b1) in a very specific state jYi�prep�

a1b1
.

If we assume that initially these two qubits are in the state

jYi�in�a1b1
� j0ia1

j0ib1
; �3:4�

then the arbitrary state jYi�prep�
a1b1

jYi�prep�
a1b1

� C1 j00ia1b1
� C2 j01ia1b1

� C3 j10ia1b1
� C4 j11ia1b1

; �3:5�

with real amplitudes Ci �such that
P4

i� 1 C2
i � 1� can be prepared by a simple quantum

network (see the ªpreparationº box in Fig. 1) with two controlled-NOTs P̂kl and three rota-
tions R̂�qj�, i.e.

jYi�prep�
a1b1

� R̂a1�q3� P̂b1a1 R̂b1�q2� P̂a1b1 R̂a1�q1� j0ia1
j0ib1

: �3:6�

Comparing Eqs. (3.5) and (3.6) we find a set of equations

cos q1 cos q2 cos q3 � sin q1 sin q2 sin q3 � C1 ;

ÿcos q1 sin q2 sin q3 � sin q1 cos q2 cos q3 � C2 ;

(3.7)
cos q1 cos q2 sin q3 ÿ sin q1 sin q2 cos q3 � C3 ;

cos q1 sin q2 cos q3 � sin q1 cos q2 sin q3 � C4 ;
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from which the angles qj �j � 1; 2; 3� of rotations can be specified as functions of param-
eters Ci. In particular, for the purpose of the UQCM we need that

jYi�prep�
a1b1

� 1���
6
p �2 j00ia1b1

� j01ia1b1
� j11ia1b1

� : �3:8�

With the help of Eq. (3.7) we find that the rotation angles necessary for the preparation of
the state given in Eq. (3.8) are

cos 2q1 � 1���
5
p ; cos 2q2 �

���
5
p

3
; cos 2q3 � 2���

5
p : �3:9�

B. Quantum copying

Once the qubits of the quantum copier are properly prepared then the copying of the initial state
jYi�in�a0

of the original qubit can be performed by a sequence of four controlled-NOT opera-
tions (see Fig. 1)

jYi�out�
a0a1b1

� P̂b1a0 P̂a1a0 P̂a0b1 P̂a0a1 jYi�in�a0
jYi�prep�

a1b1
: �3:10�

When this operation is combined with the preparation stage, we find that the basis states of
the original qubit �a0� are copied as described by Eq. (2.7) with j"ix � j0ib1

and
j#ix � j0ib1

. When the original qubit is in the superposition state (2.1) then the state vector
of the three qubits after the copying has been performed reads

jYi�out�
a0a1b1

� jF0ia0a1
j0ib1

� jF1ia0a1
j1ib1

; �3:11�

with

jF0ia0a1
� a

����
2

3

r
j00ia0a1

� b
1���
3
p j�ia0a1

;

(3.12)

jF1ia0a1
� b

����
2

3

r
j11ia0a1

� a
1���
3
p j�ia0a1

:

From this it follows that at the output of the quantum copier we find a pair of entangled
qubits in a state described by the density operator

r̂�out�
a0a1
� jF0ia0a1

hF0j � jF1ia0a1
hF1j : �3:13�

Each of the copy qubits at the output of the quantum copier has a reduced density operator
r̂�out�

aj
�j � 0; 1� given by Eq. (2.11). The distance d1�r̂�out�

aj
; r̂�id�aj

� �j � 0; 1� between the
output qubit and the ideal qubit is constant and can be expressed as a function of the
scaling prameter s in Eq. (2.11):

d1�r̂�out�
aj

; r̂�id�aj
� � �1ÿ s�2

2
� 1

18
: �3:14�
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Analogously we find the distance d1�r̂�out�
a0a1

; r̂�id�a0a1
� between the two-qubit output of the

quantum copying and the ideal output to be constant, i.e.

d2�r̂�out�
a0a1

; r̂�id�a0a1
� � s2

2
� 2

9
: �3:15�

The idle qubit after the copying is performed is in a state

r̂
�out�
b1
� 1

3
�r̂�id�b1

�T � 1

3
1̂ ; �3:16�

where the superscript T denotes the transpose. We note that in spite of the fact that the
distance between this density operator and the ideal qubit depends on the initial state of the
original qubit, i.e.

d1�r̂�out�
b1

; r̂
�id�
b1
� � 2

9
�1� 12 jaj2 jbj2 sin2 j� ; �3:17�

the output state of the original qubit still contains information about the input state, though
less than either of the copies a0 and a1. In order to extract this information we note that for
an Hermitian operator Â

Tr �r̂�in�b1
Â� � Tr ��r̂�in�b1

�T ÂT� : �3:18�

This means that to obtain information about Â at the input, we must measure ÂT for the
original qubit at the output.

IV. Multiple Copying

Here we propose a generalization of the transformation (2.7) to the case when a ªflockº of
N copy qubits aj �j � 1; . . . ; N� are produced out of the original qubit a0. We also propose
a simple quantum network which realizes this multiple quantum copying 1! 1� N.

We already know that ideal multiple copying of the form

jYia0
! jYia0

jYia1
. . . jYiaN

�4:1�

does not exist. But, as we shall show, one can generalize the copying procedure described
in Section 3, and find a transformation such that

r̂�out�
a0
� r̂�out�

aj
; j � 1; . . . ; N ; �4:2�

with the distances d1 [see Eq. (2.4)] which do not depend on the initial state (2.1) of the
original qubit.

To find the 1! 1� N network we assume the following:
(1) We assume that the information from the original qubit is copied to N copy qubits aj

which are initially prepared in the state jN; 0i~a � j0ia1
. . . j0iaN

(here the subscript ~a is a
shorthand notation indicating that jN; 0i~a is a vector in the Hilbert space of N qubits aj).

(2) To implement multiple quantum copying we need to associate an idle qubit bj with
each copy qubit, aj. These N idle qubits, which play the role of the copying machine itself,
are initially prepared in the state jN; 0i~b � j0ib1

. . . j0ibN
.

Fortschr. Phys. 46 (1998) 4±±5 527



(3) Prior to the transfer of information from the original qubit, the copy and the idle
qubits have been prepared in a specific state jYi�prep�

~a~b
. Once this is done the copying is

performed by a simple sequence of controlled-NOT operations.

A. Preparation of the quantum copier

In order to find the explicit form for the quantum network for 1! 1� N copying we
introduce normalized state vectors jN; ki~a describing a symmetric N-qubic state with k
qubits in the state j1i and �N ÿ k� qubits in the state j0i: For example, the state j3; 2ia1a2a3

can be expressed as

j3; 2ia1a2a3
� 3

2

� �ÿ1=2

�j110ia1a2a3
� j101ia1a2a3

� j011ia1a2a3
� : �4:3�

These states are orthonormalized, i.e.

~ahN; l jN; ki~a � dk; l �4:4�
and have the property

jN; li~a �
�����������
N ÿ l

N

r
j0iam

jN ÿ 1; lia1 ... amÿ 1am� 1 ... aN
�4:5�

�
����
l

N

r
j0iam

jN ÿ 1; lÿ 1ia1 ... amÿ 1am� 1 ... aN
: �4:6�

As we have already said, we assume that the copy � idle qubits are initially prepared in the
state

jYi�in�
~a~b
� jN; 0i~a jN; 0i~b : �4:7�

By performing a sequence1) of local rotations R and controlled-NOT operations analogous
to Eq. (3.6) we can obtain the state jYi�prep�

~a~b

jYi�prep�
~a~b

� PN
k� 0
�ek jN; ki~a � fk jN; k ÿ 1i~a� jN; ki~b ; �4:8�

where

ek �
�������������

2

N � 2

r N

k

� �
N � 1

k

� � ; fk �
���������������������

k

N ÿ k � 1

r
ek : �4:9�

Once the copying machine is prepared in the state jYi�prep�
~a~b

we can start to copy informa-
tion from the original qubit a0.
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1) We do not specify here this sequence of operations explicitly. From the universality of one and
two-qubit gates [11] it follows that this sequence does exist. As an example, we present the preparation

of the state jYi�prep�
a1b1

given by Eq. (3.8), see also Fig. 1.



B. Copying of information

To describe the copying network we firstly introduce an operator Q̂a0~a which is a product
of the controlled-NOTs defined by Eq. (3.2) with a0 being a control qubit and aj

�j � 1; . . . ; N� being targets:

Q̂a0~a � P̂a0aN P̂a0aNÿ 1 . . . P̂a0a1 : �4:10�
We also introduce the operator Q̂~aa0 describing the controlled-NOT process with a0 playing
the role of the target qubit, i.e.

Q̂~aa0 � P̂aN a0 P̂aNÿ 1a0 . . . P̂a1a0 : �4:11�
Now we find the 1! 1� N copying network to be

jYi�in�a0
jN; 0i~a jN; 0i~b ! jYi�in�a0

jYi�prep�
~a~b

! jYi�out�
a0~a~b

; �4:12�

where the �2N � 1� qubit output of the copying process is described by the state vector
jYi�out�

a0~a~b
which is defined as

jYi�out�
a0~a~b
� Q̂~ba0

Q̂~aa0 Q̂a0
~bQ̂a0~a jYi�in�a0

jYi�prep�
~a~b

: �4:13�

This last equation describes a simple quantum network when firstly the original qubit con-
trols the target qubits of the quantum copier. Then the qubits ~a and ~b ªcontrolº the state of
the original qubit via another sequence of controlled-NOTs (see Fig. 2). In this way one
can produce out of a single original qubit a ªflockº of quantum clones.
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Figure 2: Graphical representation of the network for the 1! 1� N copying. The logical controlled-
NOT P̂kl given by Eq. (3.2) has as its input a control qubit (denoted as �) and a target qubit (denoted
as �). We separate the preparation of the quantum copier from the copying process itself. The copying,
i.e. the transfer of quantum information from the original qubit, is performed by a sequence of con-
trolled-NOTs as described by Eq. (4.13).



V. Properties of Copied Qubits

Using the explicit expression for the output state jYi�out�
a0~a~b

we find that the original and the
copy qubits at the output of the quantum copier are in the same state described by the
density operator

r̂�out�
aj
� s�N�r̂�id�aj

� 1ÿ s�N�

2
1̂ ; j � 0; 1; . . . ; N ; �5:1�

where the scaling factor s�N� depends on the number N of copies, i.e.

s�N� � 1

3
� 2

3�N � 1� ; �5:2�

which corresponds to the fidelity F � 2=3� 1=3�N � 1�. We see that this result for N � 1
reduces to the case of the UQCM discussed in Section 3. We also note that in the limit
N !1, i.e. when an infinite number of copies is simultaneously produced via the general-
ization of the UQCM, the copy qubits still carry information about the original qubit, be-
cause their density operators are given by the relation

r̂�out�
aj
� 1

3
r̂�id�aj
� 1

3
1̂ ; j � 0; 1; . . . ;1 ; �5:3�

which corresponds to the fidelity F � 2=3. This is the optimal fidelity achievable when an
optimal measurement is performed on a single qubit [12, 13]. From this point of view one
can consider quantum copying as a transformation of quantum information into classical
information [9]. This also suggests that quantum copying can be utilized to obtain novel
insight into the quantum theory of measurement [e.g., a simultaneous measurement of con-
jugated observables on two copies of the original qubit; or a specific realization of the
generalized (POVM) measurement perform on the original qubit (see [9])].

Comment 1

We note that if the original qubit is copied sequentially by a system of N copying machines
of the type 1! 1� 1 (each machine copies two outcomes of the previous copier) then 2N

copies of the original qubit in the limit N !1 are in the state r̂�out�
aj
� 1̂=2. In this case

the copied qubits do not carry information about the original qubit, while all idle qubits are
in the state (3.16).

Comment 2

The two-qubit density operator r̂�out�
aman

(here m; n � 0; 1 . . . ; N and m 6� n) associated with
the output state jYi�out�

a0~a~b
[see Eq. (4.13)] in the basis j11iaman

, j10iaman
, j01iaman

, j00iaman
is

described by the matrix

r̂�out�
aman
� 1

6

�3N � 5� jbj2 � �N ÿ 1� jaj2
N � 1

a*b�N � 3�
N � 1

a*b�N � 3�
N � 1

0

ab*�N � 3�
N � 1

1 1
a*b�N � 3�

N � 1

ab*�N � 3�
N � 1

1 1
a*b�N � 3�

N � 1

0
ab*�N � 3�

N � 1

ab*�N � 3�
N � 1

�3N � 5� jaj2 � �N ÿ 1� jbj2
N � 1

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

(5.4)
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From Eq. (5.4) we find that the eigenvalues ~E � fE1; E2; E3; E4g of the partially trans-
posed matrix �r̂�out�

aman
�T2 are input-state independent

~E � 1

6
;

1

6
;

1

3
�

��������������������������������
2�5� 4N � N2�p

6�N � 1� ;
1

3
ÿ

��������������������������������
2�5� 4N � N2�p

6�N � 1�

( )
: �5:5�

Using the Peres-Horodecki theorem [14, 15] we can conclude that the two copied qubits at
the output of the copier are iseparable only in the case N � 1. In this case one of the
eigenvalues (5.5) is negative, which is the necessary and sufficient condition for the insepar-
ability of the matrix (5.4). For N > 1 all pairs of copied qubits at the output of the quan-
tum copier are separable (i.e. the eigenvalues given by Eq. (5.5) are positive).

Comment 3

Using the copying transformation (4.13) we find that the basis vectors j0ia0
and j1ia0

of the
original qubit are transformed as [compare with Eq. (2.7)]

j0ia0
jYi�in�

~a~b
! PN

k� 0
l
�N� 1�
k jN � 1; kia0~a

jN; ki~b ;

j1ia0
jYi�in�

~a~b
! PN

k� 0
l
�N� 1�
Nÿ k jN � 1; k � 1ia0~a

jN; ki~b ; �5:6�

where

l
�N � 1�
k �

���������������������������������
2�N � 1ÿ k�
�N � 1� �N � 2�

s
: �5:7�

We clearly see that the set of N � 1 completely symmetric orthonormal states jN; ki~b
(with k � 0; 1; . . . ; N� of the idle qubits bj plays the role of a set of basis vectors of the
abstract quantum copier and in this form the transformation (5.6) describes the action of
the quantum copier as discussed by Gisin and Massar [9]. These authors have also
shown that transformation (5.6) describes the optimal input-state independent 1! 1� N
quantum copier.

Comment 4

We note that idle qubits bj after the copying is performed are always in the state

r̂
�out�
bj
� 1

3
�r̂�id�bj

�T � 1

3
1̂ ; j � 1; . . . ; N ; �5:8�

irrespective of the number of copies created from the original qubit. The density operator
r̂
�out�
bmbn

(here m; n � 1; . . . ; N and m 6� n) describing an arbitrary two-idle qubit state at the
output is described by the matrix

r̂
�out�
bmbn
� 1

6

3 jbj2 � jaj2 ab* ab* 0

a*b 1 1 ab*

a*b 1 1 ab*

0 a*b a*b 3 jaj2 � jbj2

0BBBB@
1CCCCA : �5:9�
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Firstly, from Eq. (5.9) we see that this density operator does not depend on the number N
of copied qubits aj. Secondly, from Eq. (5.9) we find that eigenvalues
~E � fE1; E2; E3; E4g of the partially transposed matrix �r̂�out�

bmbn
�T2 are input-state independent

~E � 1

6
;

1

6
;

1

3
�

���
2
p

6
;

1

3
ÿ

���
2
p

6

� �
: �5:10�

and they do not depend on the number of copies aj. Moreover, these eigenvalues are posi-
tive, from which it follows that pairs of the idle qubits at the output of the copier are not
quantum-mechanically entangled.

Comment 5

To quantify how the ªquantum copierº (i.e., the idle qubits) is entangled with the original
and the copy qubits at the output, we evaluat the parameter x�N� � Tr �r̂�out�

~b
�2, which quan-

tifies the purity of the quantum copier. If x � 1, then the copier (i.e., the subsystem of the
whole system a0~a~b� is in a pure state. Otherwise (i.e., when x < 1) it is in an impure state.

If the whole system is in a pure state, i.e. Tr �r̂�out�
a0~a~b
�2 � 1, then x quantifies the degree of

entanglement between the two subsystem. From Eq. (4.13) we find

x�N� � 1

N � 1

2�2N2 � 7N � 6�
3�N � 2�2 ; �5:11�

from which it follows that in the limit of large N

x�N� ' 4

3�N � 1� : �5:12�

The lower bound xmin of the purity parameter x of an arbitrary quantum system in the
N � 1 dimensional Hilbert space (i.e., this is the size of the Hilbert space of the quantum
copier) is

xmin �
1

N � 1
: �5:13�

We see that for all values of N the parameter x�N� is very close to its lower bound, i.e. the
quantum copier and the copies are highly entangled. To understand the nature of this entan-
glement, we briefly consider the 1! 1� 1 quantum copying. In this case, we can evaluate
the density operator r̂

�out�
a1b1

which in matrix form can be written as:

r̂
�out�
a1b1
� 1

6

4 jbj2 � jaj2 ab* 2a*b 2

a*b jbj2 0 2a*b

2ab* 0 jaj2 ab*

2 2ab* a*b 4 jaj2 � jbj2

0BBBB@
1CCCCA : �5:14�

For a and b real, the eigenvalues of the corresponding partially transposed matrix do not
depend on these parameters and they read:

~E � 1

3
;

2

3
;

1ÿ �����
17
p

12
;

1� �����
17
p

12

� �
: �5:15�
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We see that one of the eigenvalues is negative which means that each copy qubit (i.e.,
either a0 or a1) and the idle qubit are quantum-mechanically entangled. In the case when a
and b are complex, the eigenvalues of the partially transposed matrix associated with the
matrix Eq. (5.14) do depend on a and b and one of the eigenvalues is always negative. So
these qubits are quantum-mechanically entangled.

VI. Conclusions

We have presented a generalization of the universal quantum copying machine which opti-
mally redistributes information from a single original qubit to N � 1 qubits. We have found
a simple quantum network which realizes this quantum copier. Quantum copiers can be
effectively utilized in various processes designed for manipulation with quantum informa-
tion. In particular, quantum copiers can be used for an optimal eavesdropping [16]; they
can be applied for realization of the optimal generalized (POVM) measurements [13], or
they can be utilized for storage and retrieval of information in quantum computers [17].
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