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Cavity QED with cold trapped ions
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We analyze the quantum motion of a cold, trapped two-level ion interacting with a quantized light field in
a single-mode cavity. We show that in the nonclassical Lamb-Dicke limit the time evolution of the vibrational
mode representing the quantized motion of the center of mass of the trapped ion is very sensitive to the
quantum statistics of the light field. We also show that the system under consideration may evolve into the
maximally entangled three-particle Greenberger-Horne-Zeilinger state. We briefly discuss the dynamics of a
cluster of two-level ions trapped in a cavity and interacting with a quantized light field.
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I. INTRODUCTION

Cavity QED as currently investigated~see, e.g.,@1# and
references therein! has been plagued by fluctuations in t
number of quantum sources~atoms! interacting with a cavity
field at any instant. These fluctuations in the number of
oms partially smear out the quantum nature of the atom-fi
interaction in a cavity. For example, the ac Stark effect co
result in absorption spectra being split into doublets or n
depending on whether or not a single atom is present in
cavity @2,3#. A thermal beam of source atoms traversing t
cavity will result in an essentially Poisson distribution
source atoms at any time. For this reason a number of
perimental groups@4# have begun to turn their attention t
the problem of asingle trapped ion interacting with a singl
quantized cavity mode. It is now routinely possible expe
mentally to trap a single ion@5#, and if this could be done in
a high finesse optical cavity it would allow us to study cav
QED dynamics when just two precisely specified quant
systems, i.e., the trapped ion and the single-mode ca
field, are strongly coupled together. This means that wit
the lifetime of a photon in the cavity, this photon can
‘‘exchanged’’ many times between the ion and the field.
a consequence of this interaction the two subsystems~i.e.,
the internal state of the trapped ion and the cavity mo!
become quantum-mechanically entangled@2#. On the other
hand, it has been shown recently@6,7# that ions in trapping
potentials interacting with classical light fields can be coo
down to their lowest vibrational states and that from the
arbitrary quantum vibrational states of trapped ions can
prepared in a controlled way@8,9#. Therefore, it is reasonabl
to assume that the single trapped ion interacting with a qu
tized cavity field may be cooled down to its lowest vibr
tional state. This would represent the ‘‘ultimate’’ quantum
mechanical system in which three quantum subsystems~i.e.,
the internal ionic states, the quantum vibrational mode of

*On leave from Department of Physics, Sogang Univers
C.P.O. Box 1142, Seoul, Korea.
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ion, and the single-mode cavity field! are coupled together
In the present paper we propose a simple, exactly solva
model describing this physical situation@10#. As we will see,
it adds new phenomena to the subject of the cavity QED,
in particular allows for the construction of the fully corre
lated Greenberger-Horne-Zeilinger~GHZ! state@11# in a re-
markably simple way.

A semiclassical model describing the dynamics of trapp
ions interacting with a traveling-wave light field was intro
duced by Blockleyet al. @12#. An analogous model employ
ing standing-wave light fields was proposed by Ciracet al.
@13#. In these models a single two-level ion undergoes qu
tized vibrational motion within a harmonic trapping potent
and interacts with aclassicalsingle-mode light field. Block-
ley and co-workers@12# pointed out that in the Lamb-Dicke
regime the dynamics of trapped ion can be described b
very simple Hamiltonian similar to that of the Jayne
Cummings model~JCM! @14#. Later it was shown that out
side of the Lamb-Dicke regime the vibrational motion of
trapped ion can be described by a strongly nonlinear J
@15#. Zeng and Lin have investigated the generation of n
classical vibrational states of atomic motion in a quantiz
trap, based on the transfer of nonclassical features from
quantized electromagnetic field to the atomic motion@16#.

Within the framework of these Jaynes-Cummings-li
models, various aspects of the dynamics of trapped ions h
been studied. For example, quantum nondemolition meas
ment of vibrational quanta of trapped ions has been analy
theoretically@17# and several schemes proposed@18# for the
reconstruction of quantum-mechanical vibrational states o
trapped ion. One of these schemes has been successfull
plied to the experimental reconstruction of the Wigner fun
tion of nonclassical states of the vibrational mode of
trapped ion@19#.

As noted above, there exists a very close formal anal
between an ion vibrating in a trapping potential and an
interacting with a quantized cavity field. Therefore ma
ideas and effects that have been discussed within the fra
work of cavity QED can now be ‘‘mapped’’ onto th
trapped-ion models and vice versa. For example, cavity-Q
,
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56 2353CAVITY QED WITH COLD TRAPPED IONS
models of quantum computing@20,21#, quantum state engi
neering@22#, and quantum state endoscopy@23# should be
mentioned.

In the present paper we go beyond the formal anal
between the trapped-ion and cavity-QED models. Wecom-
bine them so that we can describe the interaction of a trap
ion ~with a quantized motional state! with a quantized cavity
light field. Our motivation for this generalization is as fo
lows: in the process of preparation of nonclassical vib
tional states of a trapped ion, an appropriate sequenc
laser pulses tuned to either the ionic electronic transition
to resolved vibrational sidebands~i.e., a Raman transition
between internal ionic states! are used@8#. Here the driving
laser pulse is aclassicalfield so the vibrational mode can b
mutually entangled~correlated! with only the internal de-
grees of freedom. On the other hand, for quantum inform
tion processing, an entanglement with an additional syste
often required. The channel for information exchange
tween ions stored in a linear trap~‘‘ionic crystals’’! is given
by their collective vibration mode@24#. Another possibility
may be to couple ion traps~with single ions! via their com-
mon resonator~cavity!, which supports one particular mod
of the electromagnetic field. The cavity field mode cou
then be considered as thequantumchannel for information
transfer between ions.

The model presented in the paper provides us with a
quantum-mechanical picture of dynamics of trapped ion
teracting with a single-mode electromagnetic field. In p
ticular, the model reveals many interesting features of
quantum-mechanical entanglement between the ionic in
nal degree of freedom, the vibrational mode, and the li
field. For example, such a configuration with three entang
subsystems enables us to create the GHZ states of ce
interest in quantum-measurement theory and to test quan
mechanics versus local realism~hidden variables! theories
@11#.

This paper is organized as follows: Section II is devo
to a brief description of the Blockley-Walls-Risken mode
The model of the completely quantized system is descri
in Sec. III. In this section we also present the exact analyt
solution of our model. In Sec. IV we consider two two-lev
trapped ions interacting with a single cavity mode. In Sec
we present conclusions.

II. TRAPPED ION INTERACTING WITH A CLASSICAL
LIGHT FIELD

First we briefly review the model proposed by Blockle
et al. @12# in which a two-level ion moves in a harmon
potential and simultaneously interacts with the single-mo
classical field. The corresponding HamiltonianĤBWR in the
frame rotating at the light field frequency reads

ĤBWR5\nS b̂†b̂1
1

2D1
1

2
\Dŝz

1
1

2
\V@D̂b~ i e!ŝ11D̂b

†~ ie!ŝ2#, ~2.1!

where D̂b(j)5exp@jb̂†2j* b̂# is the displacement operato
\n is the energy of the trap~vibrational! quanta;b̂ (b̂†) is
y
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the annihilation~creation! operator of the quantized vibra
tional motion of the ion,ŝ7 andŝz are the Pauli spin opera
tors of the two-level ion;D5v02vL is the detuning of the
internal ionic transition at frequencyv0 from the laser fre-
quencyvL ; V is the Rabi frequency of the driven transitio
in the external classical~laser! field; the parametere is de-
fined ase5AEr /(\n), whereEr is the recoil energy of the
ion. It is supposed that the ion during its time evolution do
not leave the trap. Neither spontaneous emission nor the
fluence of ionic micromotion@25# is taken into account here

This model, in the nonclassical Lamb-Dicke regime
small e, with the external driving field tuned to the first~up-
per! vibrational sideband~i.e., D52n) shares features simi
lar to the JCM@14#. The difference between the Blockley
Walls-Risken@12# model and the JCM is the nature of th
bosonic field to which the atom is coupled: the quantiz
single-mode electromagnetic field in the JCM is replaced
the quantized vibrational mode, which represents the mo
of the center of mass of the ion under consideration.

We assume that the driving laser frequency is tuned to
first ~blue! vibrational sideband, i.e.,D52n. If the ion ab-
sorbs energy from the classical light field, this absorpt
process is accompanied by an excitation of the vibratio
mode, which causes heating of the ion~a schematic descrip
tion of the heating process of the trapped ion is depicted
Fig. 1!. In the opposite process the ion emits its excitati
energy into the light field and cools down. This process
accompanied by a decrease of the number of vibratio
quanta. It has been shown@12,13,26# that the effective inter-
action Hamiltonian corresponding to the Lamb-Dicke regim
with transitions that involve an exchange of only one tr
quantum~i.e., e2 n̄ b!1; n̄ b being the average number of th
trap quanta! in the rotating-wave approximationfor this de-
tuning ~i.e., V!n) can be written as

Ĥc.f.5
i

2
\Ve@ b̂†ŝ12b̂ŝ2#. ~2.2!

By analogy with the JCM@14,27,28#, collapses and revivals
of the ionic inversion have been predicted and observed@8#
when the ion, initially in a lower internal energy state,
prepared in a coherent vibrational state. In this case the
vival time tR of Rabi oscillations is estimated a
tR'4pb/(Ve), whereb is the initial amplitude of the co-
herent vibrational stateub&b5D̂b(b)u0&b , where u0&b de-
notes the vacuum state of the vibrational mode. The beha
of the phase-space HusimiQb function of the vibrational
mode@see Eq.~3.3!# also exhibits very interesting feature

FIG. 1. A schematic description of a heating of the trapp
two-level ion with the internal transition energy\v0 by the external
light field ~laser! with frequencyvL . The vibrational mode is ex-
cited by one quantum\n. In the opposite process the ion coo
down.
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Namely, it bifurcates, and at one-half of the revival time
pure superposition vibrational state is produced, i.e., the
can be foundsimultaneouslyin two macroscopically sepa
rated states within the trap~the so-called Schro¨dinger cat
state@29#!.

One quite natural question arises: ‘‘What will happen
the single-mode light field is treatedquantum mechani-
cally?.’’ To answer this question we propose in the pres
paper a fully quantum-mechanical model in which t
trapped two-level ion interacts with a quantized cavity mo
of the light field in a high-finesse resonator. This model ta
into consideration the effects of theback actionof the ion on
the field mode andcorrelationsbetween the ionic degrees o
freedom~internal and vibrational! and the quantized cavity
field.

III. MODEL WITH QUANTIZED CAVITY FIELD MODE

In what follows we consider the situation when th
trapped two-level ion is placed in a resonator~cavity! that
supports one particular mode of the electromagnetic fi
The cavity field is treated quantum mechanically. In t
Lamb-Dicke regime of smalle, when the quantized field
mode with frequencyvL is tuned to the first~blue! vibra-
tional sideband (D52n), we can write the interaction
Hamiltonian as

Ĥq.f.5
i

2
\ke@ b̂†ĉŝ12b̂ĉ†ŝ2#, ~3.1!

where ĉ ( ĉ†) is the annihilation~creation! operator of the
quantized cavity field mode andk is the ion-field coupling
constant in the dipole approximation. The interaction Ham
tonian ~3.1! describes the process ofheating, in which the
absorption of one photon excites the ion and increases
vibrational energy by one quantum@the first term of the
Hamiltonian~3.1! is schematically depicted in Fig. 1#. Cool-
ing is the opposite process@described by the second term
Eq. ~3.1!# in which emission of one photon deexcites the i
and decreases the number of vibrational quanta by one.
note that our model described by Eq.~3.1! involves a multi-
plicative trilinear Hamiltonian in which the internal ionic
degrees of freedom are coupled to both the single-mode
ity field and the vibrational degrees of freedom. This sho
be contrasted with the two-mode vibrational coupling co
sidered recently by Gouet al. @30#, which is additive in the
sense that the internal ionic degrees of freedom are cou
to one or the other bosonic mode additively. The analog
additive type of interaction has been considered by Zeng
Lin @16#. These authors have studied the far off-resonant c
when internal atomic degrees of freedom can be adiabatic
eliminated. In this case the effective Hamiltonia
Ĥeff. il(b̂†ĉ2b̂ĉ†) describes an effective linear couplin
between the two bosonic modes~i.e., the vibrational mode
and the single mode of the cavity field!. Obviously, this bi-
linear Hamiltonian differs from the trilinear Hamiltonia
~3.1! discussed in the present paper. We also note that G
and Eberly@31# studied a trilinear Hamiltonian analogous
Eq. ~3! within the context of two-photon transitions of
two-level atom interacting with a bichromatic field in a ca
ity.
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In the present paper we compare two models when
cavity field mode is treated~1! classically@see Eq.~2.2!# and
~2! quantum mechanically@see Eq.~3.1!#, respectively. We
will study how the initial photon statistics of the quantize
cavity field mode affects the time evolution of the syste
under consideration as well as back action of the ion on
cavity field.

To distinguish between pure states and statistical mixtu
into which the quantum-mechanical subsystems~i.e., the
ionic internal and vibrational degrees of freedom, and
bosonic cavity mode! evolve, we study the time evolution o
the entanglement parameter. For a particular subsystem
scribed by the reduced density operatorr̂x5 Tr$yÞx%r̂ ( r̂ is
the density operator of the whole system! the entanglemen
parameter is associated with the linearized entropy@32#

Sx
corr512Trx$r̂x

2%. ~3.2!

This entropy is equal to zero for pure states and for a
statistical mixture stateSx

corr.0. In addition,Sx
corr represents

a lower bound of the corresponding von Neumann entro
Sx52 Trx@ r̂xlnrx#, i.e., Sx

corr(t)<Sx(t). Thus the entangle-
ment parameter can be used to quantify the degree of co
lation established during the interaction between quantu
mechanical subsystems involved in dynamics.
‘‘visualize’’ quantum-statistical properties of a particula
bosonic mode the phase-space HusimiQx function is used.
This phase-space probability density distribution is defin
as @33#

Qx~a!5^aur̂xua&, ~3.3!

where ua& is a coherent state with the complex amplitu
a5x1 i y.

A. Solution of the model

Utilizing the existence of two integrals of motion

R̂15b̂†b̂1 ĉ†ĉ and R̂25b̂†b̂2ŝ1ŝ2 ~3.4!

associated with the Hamiltonian~3.1! ~i.e., @Ĥq.f. ,R̂k#50)we
obtain the general solution for the state vectoruc(t)& of the
system governed by this Hamiltonian. If we consider t
initial state of the ion-field system to be described by t
state vector

uc~0!&5(
n

cnun&c^ (
m

bmum&b^ ug& i ~3.5!

then in the resonant case the general solution in the inte
tion picture reads

uc~ t !&5(
m,n

bmcn@cos~Vm,nt !um&bun&cug& i

2 isin~Vm,nt !um11&bun21&cue& i ], ~3.6!

whereun&c and um&b are number~Fock! states of the cavity
field and the vibrational mode, respectively;ug& i (ue& i) de-
notes the internal lower~upper! ionic level. The generalized
Rabi frequencyVm,n is given by the relation
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56 2355CAVITY QED WITH COLD TRAPPED IONS
Vm,n5 1
2 keAn~m11!. ~3.7!

It is instructive to start our analysis of the dynamics of t
system governed by the Hamiltonian~3.1! for the initial state
vector

uc~0!&5ub&b^ uN&c^ ug& i , ~3.8!

i.e., where the cavity mode is prepared in the Fock s
uN&c , the vibrational mode is initially in a coherent sta
with amplitudeb ~for simplicity we assumeb to be real! and
the ion is in its internal lower stateug& i . We remind our-
selves that the initial average number of trap~vibrational!
quanta n̄ b5b2 has to be chosen such that the conditi
e2 n̄ b!1 is fulfilled. This condition implies restriction on th
range of parameters for which the Hamiltonians given
Eqs. ~2.2! and ~3.1! are relevant. The initial state~3.8!
evolves according to Eq.~3.6! with bm5e2b2/2bm/Am! and
cn5dN,n . In this case the dynamics is characterized by
perfect correlation between the internal ionic energy sta
and the cavity field. Because of this perfect correlation, e
of the two quantum-mechanical subsystems is, for any t
t.0, in a statistical mixture. We note tha
uug(N)&&[uN&cug& i and uue(N)&&[uN21&cue& i form collec-
tive ion-field states. The expression for the state vec
uc(t)& fulfilling the initial condition ~3.8! can be written as

uc~ t !&5(
m

bm@cos~Vm,Nt !um&buug~N!&&

2 isin~Vm,Nt !um11&buue~N!&&]. ~3.9!

From here it follows that the time evolution of the vibr
tional mode isthe sameas for the case of the Hamiltonia
~2.2! with a classically treated field mode, providing that t
parameterV in Eq. ~2! is chosen such thatV5kAN. This is
in correspondence with an intuitive picture in whichAN is
associated with the amplitude of the equivalent class
field, with no fluctuations in the intensity.

Obviously, the mean number of the trap quantan̄ b(t)
exhibits collapses and revivals analogous to the collap
revival effect in the JCM@14,27#. We plot n̄b(t) as a func-
tion of the scaled time in Fig. 2~a!. The corresponding re
vival timetR

(b) ,

tR
~b!~N!'

4pb

keAN
, ~3.10!

is exactly the same as in the model with a classical fi
mode, governed by the Hamiltonian~2!, providingV5kAN.
In Fig. 2~b! we plot the time evolution of the entangleme
parameterSb

corr, which at one-half of the revival is almos
equal to zero. It can be checked by direct calculations tha
one-half of the revival time the vibrational mode is in a pu
superposition state@12# composed of two coherentlike state
that are mutually rotated around the origin of phase spac
p ~the so-called Schro¨dinger cat state@29#!.

The dynamics of the vibrational mode within the mod
described by the Hamiltonian~3.1! for the initial state~3.8!
te

y
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e
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is the same as within the model~2.2! with a classically
treated light field. On the other hand, the time evolution
the internal ionic energy states is significantly affected by
quantum nature of the cavity mode. Namely, within t
model~2.2! with a classical light field, the ion is, at one-ha
of the revival time, in thepure superpositionuc& i 5(1/A2)
3(ug& i1eiwue& i). On the contrary, if the light field is quan
tized @i.e., the ion-cavity-field dynamics is governed by th
Hamiltonian ~3.1!# then at one-half of the revival time th
ion evolves into a statistical mixture described by the den

operator r̂ i5
1
2 (ug& i i ^gu1ue& i i ^eu). The corresponding

entanglement parameterSi
corr is equal to 1/2, which reflects

the degree of mutual entanglement between the cavity m
and the internal ionic levels. This is illustrated in Fig. 2~c!.
Note that for the cavity mode initially prepared in a Fo
state the correlation parametersSc

corr andSi
corr evolve identi-

cally. What one finds at one-half of the revival time is th
Bell-like state, withperfectcorrelations between the interna
states of the ion and the states of the cavity mode,
uc&c1 i5(1/A2)(uN&cug& i1eiwuN21&cue& i).

In our second example we will consider the cavity field
be initially prepared in a coherent stateug&c . Comparing this
example with the previous case when the field was suppo
to be prepared in a Fock state we find that the quan
statistical properties of the cavity mode significantly affe
the vibrational motion of the trapped ion. To be specific,
us consider the initial state vector

uc~0!&5ub&b^ ug&c^ ug& i , ~3.11!

FIG. 2. ~a! The time evolution of the average number of vibr
tional quantanb and ~b! the entanglement parametersSb

corr of the
vibrational mode;~c! Sc

corr of the cavity mode, which evolves iden
tically with Si

corr of the internal ionic system. The initial state vect
is of the form ~3.8! with the cavity field in the number stat
uN564&c , the vibrational mode in the coherent stateub54&b , and
the ion in its ground stateug& i . The scaled time iskt/2p and
e50.05.
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i.e., the vibrational and the radiation modes are prepare
coherent states with amplitudesb, g ~taken to be real for
simplicity! and the ion is in its lower internal stateug& i . In
our discussion we will consider the initial mean number
vibrational quanta to be fixed (n̄ b5b2) and we will assume
various intensities of the initial coherent state of the cav
mode. The time evolution of the initial state~3.11! is
given by Eq. ~3.6! with cn5e2g2/2gn/An! while bm

5e2b2/2bm/Am!. The average number of trap quanta at tim
t can now be written in the form

~3.12!

Eq. ~3.12! describes the double coherent summation of te
oscillating at generalized Rabi frequenciesVm,n @see Eq.
~3.7!#. This Poissonian averaging results in the appearanc
two time scales on which collapses and revivals of the av
age number of vibrational quanta appear. These two t
scales are indicated in Eq.~3.12!. One of them is associate
with the characteristic time

tR
~b!'

4pb

keg
, ~3.13!

while the other time scale is given by the relation

tR
~c!'

4pg

keb
. ~3.14!

For g2@b2, the timetR
(c) is related to revivals of the enve

lope of the ‘‘rapid revivals’’ governed by the revival tim
tR
(b) , i.e., the rapid revivals of the mean number of vibration

quanta are modulated on the ‘‘overall’’ time scale associa
with tR

(c) . We illustrate this modulation of rapid revivals i
Fig. 3~a! in which we plot the time evolution of the mea
number of vibrational quanta.

The behavior of the mean vibrational quanta, and also
quantum entanglement between the ionic internal states
ionic vibrational states, and the quantized cavity mode
duced by the interaction Hamiltonian~3.1! all very sensi-
tively depend on the quantum statistics of the light field. W
have seen that when the cavity mode is initially prepared
the Fock state, then att5tR

(b)/2 the linearized entropy of the
vibrational modeSb

corr is approximately equal to zero, whic
means that the vibrational mode during its time evolut
evolves into a pure state. On the contrary, as can be
from Fig. 3~b!, if the cavity mode is initially prepared in a
coherent state, then the entanglement parameter of the v
tional mode is significantly larger than zero for anyt.0, i.e.,
the vibrational mode is~in this case! always in a statistica
mixture. We note that ifg,b@1 then theQb function of the
vibrational mode bifurcates into two components. Moreov
as seen from Fig. 4~a!, at one-half of the characteristic tim
tR
(b) , this probability density distribution has two ‘‘macro
in
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scopically’’ distinct peaks in phase space. If we setV5kg
@this substitution corresponds to the naive semiclassical
placement ofâ→g in the Hamiltonian~3.1!# then the time
scale associated with the characteristic timetR

(b) is equal to
the revival time in the model~2.2! when the light field is
treated classically. Setting the two time scales equal we
that attR

(b)/2 theQb functions in both models have two dis
tinct peaks. We stress that theQb function of the vibrational
mode in the fully quantized model describes a statistical m
ture, while in the Blockley-Walls-Risken model the corr
spondingQb function describes a pure superposition sta
For anygÞ0 the process governed by the Hamiltonian~3.1!
is characterized by an inevitable loss in the initial purity
the states of the bosonic subsystems, due to their mu

FIG. 3. The cavity mode prepared in the coherent stateug58&c .
~a! time evolution ofnb ; ~b! Sb

corr ; ~c! Sc
corr ; ~d! ~c! Si

corr . Other
parameters are the same as in Fig. 2.

FIG. 4. TheQb function of the vibrational mode~a! at the half
of the revival time and~b! at the revival timetR

(b) . The cavity field
is prepared initially in the coherent stateug58&c . Other conditions
are the same as in Fig. 2.
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entanglement. The only exception is the internal ionic deg
of freedom. As Fig. 3~d! suggests forg2@b2@1 an almost
pure ionic coherent state is produced at1

2 tR
(b) . Note that si-

multaneously apure state in the ‘‘complementary’’ system
composed of the vibrational and cavity modes has to app

For example, withg52b one finds attR
(b)/2 a structure

close to a pure two-mode Schro¨dinger catlike state for the
vibrational and cavity modes, which consists of four comp
nents. Each particular bosonic mode is in a two-compon
mixture ~in the vibrational mode the components are mu
ally rotated byp at tR

(b)/2 while in the cavity field mode they
are rotated byp/4 as 1

2tR
(b)5 1

8tR
(c)). The loss of the initial

purity of the vibrational mode is reflected in Fig. 3~b! in
which the time evolution of the entanglement parameterSb

corr

is presented. From this figure we also see that a partial
toration of the initial quantum-statistical properties of t
vibrational mode can be observed at the timetR

(b) . Namely,
in Fig. 4~b! we see that the one-peak structure of theQb
function is recovered at this moment~for g2,b2@0). This
means thattR

(b) can be associated with the restoration~re-
vival! time of theQb function in phase space. Analogous
tR
(c) is associated with the revival in phase space of the qu

tized cavity mode, i.e., with a partial restoration of the init
shape of theQc function. In other words, the time scalestR

(b)

andtR
(c) represent the main characteristics of the dynamic

those particular phase spaces that are not affected by q
tum entanglement.

For completeness we mention that for small intensities
the cavity field mode (g.1) the Qb function of the vibra-
tional mode splits into three rather than two components
in the case wheng@b @compare Figs. 5~a! and 4~a!, respec-
tively#. One of the three peaks is ‘‘stationary’’ in the give
rotating frame, while the other two peaks move clockw
and anticlockwise around the origin of the phase space.
existence of the stationary peak is associated with the p
ence of the stateub&bu0&cug& i , which does not evolve unde
the action of the Hamiltonian~3.1!. We note that analogou
behavior in a three-level atomic system has already b
seen by Knight and Shore@34#.

One can also demonstrate that in the model~2! with a
classical light field a considerable degree of squeezing
fluctuations of the position of the trapped ion can be found
the revival timetR

(b) @26#. In the model~3! with a quantized
cavity field mode being initially coherently excited, th
squeezing behavior is less pronounced, with mode
squeezing and sub-Poissonian statistics~amplitude fluctua-

FIG. 5. TheQb function of the vibrational mode~a! at the half
of the revival time and~b! at the revival timetR

(b) . The cavity field
is prepared initially in the coherent stateug51&c . Other conditions
are the same as in Fig. 2.
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tions reduced below the coherent-state level! appearing at the
initial stages of time evolution.

B. Generalizations of the model

In recent experiments with trapped ions@8# one can
choose the type of the generalized Jaynes-Cummings
interaction by tuning the laser field to an appropriate
solved vibrational sideband@19#. In particular, tuning a lase
to the first lower~red! sideband means that in the Lam
Dicke limit dynamics of the trapped ion interacting with
classical light field is described by the effective Hamiltoni
Ĥc.l.

(red)5( i /2)\Ve@ b̂†ŝ22b̂ŝ1#. When the cavity field is
considered to be quantized, then the effective Hamilton
readsĤq.f.

(red)5( i /2)\ke@ b̂†ĉ†ŝ22b̂ĉŝ1#. We note that if
the system under consideration is initially prepared in a s
uc(0)&5u0&b^ u0&c^ ue& i then at half of the generalize
Rabi cycle it will evolve into the Greenberger-Horn
Zeilinger state @11# uc(th)&5(1/A2)(u0&bu0&cue& i
1u1&bu1&cug& i) at 1

2 keth5p/4. This seems to us to be one o

the most straightforward ways to realize a GHZ state
quantum optics.

When the laser field is tuned to the second upper vib
tional sideband the effective Hamiltonian describing inter
tion of an ion with a classical light field in the Lamb-Dick
limit reads Ĥc.l.

(2nd)5 1
4 \Ve2@ b̂†2ŝ12b̂2ŝ2#. This two-

phonon model is almost completely periodic~for a theoreti-
cal description of the two-photon JCM model see@35# and
for a recent experimental realization of the ion-trap vers
of this model see the paper by Wineland and co-workers@9#!.
The periodicity is given by the specific dependence of
Rabi frequency on the vibration numberm, i.e., the Rabi
frequency is proportional toAm(m11), which implies that
its values are commensurate for various values ofm@1.
Therefore forb2@1 the time evolution is quasiperiodic. Th
revival time tR

(2)54p/(Ve2) corresponds to the restoratio
of the initial Qb function~just rotated byp) and to the ion in
the opposite internal state. One peculiarity of the two-pho
model is that at one-half of the revival time, the vibration
mode is in a mixture state asSb

corr'1/2. On the other hand
the entanglement parameter is close to zero at1

4tR and 3
4tR ,

i.e., Schro¨dinger’s catlike states with components mutua
rotated byp/2 are established. With the quantized cav
field, the effective two-phonon interaction is described by
HamiltonianĤq.f.

(2nd)5 1
4\ke2@ b̂†2ĉŝ22b̂2ĉ†ŝ1#. We briefly

note that this nonlinear interaction between three quan
subsystems results in very complex dynamics. In particu
let us assume that the cavity field mode is initially prepa
in a coherent stateug&c . In this case the parameterSi

corr

describing the entanglement between the internal degre
freedom of the ion and the two bosonic modes~i.e., the vi-
brational mode and the cavity field! converges to the station
ary value of 1/2 via a sequence of minima at tim
@(2n11)4#tR

(2) , where tR
(2)54p/(kge2). At the first mini-

mum 1
4tR

(2) the value ofSi
corr is close to zero~for b2,g2@1),

which means a coherent superposition of the two inter
ionic levels is created at this moment. Simultaneously,
combined system of the vibrational mode and the cavity fi
is in a pure state — the two-mode Schro¨dinger catlike state
~see for instance@36#!.
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IV. TWO TRAPPED TWO-LEVEL IONS IN A CAVITY

In the previous section we have analyzed dynamics of
trapped two-level ion interacting with the quantized cav
field. Now we address the question of what will happ
when a cluster of trapped two-level ions interacts with
same cavity mode. Recent work on collections of more th
one trapped ion has already demonstrated the existenc
observable collective effects~see @37# and references
therein!.

For this purpose we generalize the Hamiltonian~3! and
we propose the interaction Hamiltonian for a cluster
trapped two-level ions interacting with a quantized cav
mode:

Ĥq.f.
~N!5

i

2
\e(

j 50

N

k j@ b̂ j
†ĉŝ1

~ j !2b̂ j ĉ
†ŝ2

~ j !#. ~4.1!

This Hamiltonian is written in the rotating frame associat
with the light field and it describes the dynamics of trapp
ions in the Lamb-Dicke limit. In Eq.~4.1! b̂ j (b̂ j

†) denotes
the annihilation~creation! operator of the vibrational motion
of the j th ion described by the spin-flip operatorsŝ6

( j ) . We
focus our attention on comparison of the results for
model describing one trapped ion (N51) and the results in
the case of two identical ions (N52). To simplify our dis-
cussion we assume that the ions interact with the cavity fi
with the same intensity, i.e.,k5k15k2. This model could
address the situation when two ion traps~each with a single
ion! are enclosed by the same resonator; i.e., they sha
quantized cavity field mode that mediates an indirect c
pling between the ions. We could extend our analysis
describe laser-cooled atoms trapped in optical lattices@38#.
The optical potential generated for neutral atoms in stand
wave laser beams possesses sufficient periodic structur
the effects we have been concerned with to be relevant
thus one can even imagine the case when the atoms ar
calized at the sites of different potential wells.

We start our analysis with an observation that if the cav
field is initially prepared in a coherent state and the ions
in their lower internal states and, in addition, if we assu
the ions to be in the Fock~number! vibrational states, i.e.,

uc~0!&5ug&c^ uM1&b
~1!ug& i

~1!
^ uM2&b

~2!ug& i
~2!, ~4.2!

then the dynamics of the cavity field isthe sameas that
within the framework of the collective Tavis-Cumming
model @39#, with the interaction Hamiltonian

ĤTCM
~N! 5\(

j 51

N

@l ĉŝ1
~ j !1l* ĉ†ŝ2

~ j !#. ~4.3!

This isomorphism between the two models is valid provid
the interaction constantl is given by the relation
l5( i /2)keA(M111)(M211). In this case we observe a
interesting effect: splitting of theQc function of the cavity
field into three components~or, generally, intoN11 compo-
nents if the cluster consists ofN ions! @40#. The time at
which theQc function of the cavity mode returns again to i
initial shape is equal to the time at which the revival of t
mean photon number appears and is given by the rela
e
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tR52pg/ulu. The time evolution of populations of the inte
nal ionic levels is also the same as within the Tav
Cummings model but any kind of ionic coherence betwe
collective Dicke levels@41# is inevitably lost owing to the
perfect entanglement of the internal ionic energy states w
the vibrational number states. Namely, the sta
uug(N)&& ( j )5uM j&b

( j )ug& i
( j ) , uue(N)&& ( j )5uM j11&b

( j )ue& i
( j )

( j 51,2) form collective ionic states. Consequently, the
brational mode of each ion is fort.0 in astatistical mixture.

Further we assume that all bosonic modes of the mo
are initially in coherent states, i.e.,

uc~0!&5ug&c^ ub1&b
~1!ug& i

~1!
^ ub2&b

~2!ug& i
~2!. ~4.4!

Because the model@given by Eq.~4.1!# totally neglects mu-
tual ionic collisions, it is natural to assume that initially th
ions are ‘‘localized’’ at different sites within their respectiv
traps. When one of the trapped ions is cooled down to
zero-point vibrational energy, e.g.,b15b and b250, then
the vibrational motion of the first ion is not affected by th
presence of the second ion, which does not then enter
interaction governed by Eq.~4.1!. We have studied the non
trivial caseb152b25b, when the ions are initially ‘‘local-
ized’’ at opposite sides of their respective traps. We rem
ourselves that the initial average number of vibration
quanta n̄ b5b2 in each of the vibrational modes has to b
chosen to obey the conditione2 n̄ b!1 to ensure that we
operate in the Lamb-Dicke limit. The results obtained f
g@1 suggest that vibrational motion of one ion is not a
fected by the presence of other ions. The characteristic~re-
vival! time tR

(b) in the vibrational phase space of each ion
again equal totR

(b)'4pb/(keg) @see Eq.~3.13!#. In other
words, during a time period of the order of few timestR

(b) the
ions evolve independently. Only the maximum value of t
entanglement parameter of the cavity field increases du
the direct coupling of the cavity mode to more subsystem

It is interesting to note that ifb15b25b ~e.g., the two
ions are initially located at equivalent points of two spatia
separated traps which are coupled through the cavity fiel
the resonator! the Qb function in the corresponding vibra
tional phase space has the same dynamics~except a phase
shift! as in the case when initiallyb152b25b.

For completeness we should comment in some detai
the behavior of the cavity field. The time evolution of th
cavity field depends on the initial average numbersn̄ b

(1) and

n̄ b
(2) of vibrational quanta. If the time scalestR

(1)

54p@ n̄ b
(1)#1/2/(keg) and tR

(2)54p@ n̄ b
(2)#1/2/(keg) are of

the same order then theQc function of the field mode splits
into three components with one dominant static peak. Oth
wise there are two independent bifurcation processes
result in a splitting of theQc function into four components
This reflects the fact that the cavity mode interacts with e
ion independently.

V. CONCLUSIONS

One of the main results of our investigation is that in t
nonclassical Lamb-Dicke limit the time evolution of the v
brational mode representing the quantized motion of the c
ter of mass of the trapped ion is very sensitive to the nat
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56 2359CAVITY QED WITH COLD TRAPPED IONS
of the light field. If the light field is treated quantum me
chanically, then a strong entanglement between the ionic
ternal and vibrational degrees of freedom and the light fi
leads to a change in the quantum-statistical properties of
vibrational mode. Nevertheless, an isomorphism between
two models described by the Hamiltonians~2! and ~3! is
achieved when the quantized light field is initially in a Fo
state with a precisely defined number of photons. In t
casea pure superposition state of the vibrational mode is
duced at one-half of the characteristic timetR . The other
subsystems~i.e., the cavity mode and the internal degree
freedom of the ion! are in statistical mixtures, which is in
contrast with the behavior of the system described by
model ~2! with the classical light field.

When the quantized cavity mode is initially in other th
a Fock state then the initial purity of the vibrational mode
inevitably lost due to the entanglement between
quantum-mechanical subsystems. Consequently, instea
the superposition state astatistical mixturein the vibrational
mode is created. Also the cavity field evolves into a stati
cal mixture. On the other hand, owing to the entangleme
two-mode superposition state in the system composed o
brational and cavity field modes can be established in cer
circumstances. We found that two different time scales ch
acterize dynamics of the quantum-mechanical syst
Namely, as soon as the cavity mode is initially prepared i
superposition of Fock statesun&c , i.e., uc(0)&c5(cnun&c ,
then the revival timestR

(b)(n)54pb/(keAn) @see Eq.
~3.10!# for different values ofn do not match and the ampli
tudes of corresponding revivals~at tR

(b) and its multiples! of
the average number of trap quanta become modulated o
time scale associated withtR

(c) . As a result in the limit of
high intensity of the quantum light field~i.e., g→`) all re-
vivals are smeared out. On the contrary, if the light field
treated classically, then in the high-intensity limit the rev
als of the vibrational mode are perfectly preserved.

From our results it follows that the increase in the num
of trapped ions that interact with the quantized cavity mo
nd

.
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within the model~4.1! does not influence the dynamics of th
ions on the time scaletR

(b) providing the number of ions is
much smaller than the mean photon number of the ca
field mode and the mean number of trap quanta. We h
pointed out further modifications of the model with a qua
tized cavity field mode. They can be of interest in the c
ation of fully correlated Greenberger-Horne-Zeilinger sta
as well as for transfer of information between trapped io
though a quantum channel provided by a quantized ca
field mode.

Finally, the physical situation described by the mod
Hamiltonian~3.1! requires a combination of the strong co
pling regime of cavity QED with the resolved sideband e
citation of a trapped ion. Whereas strong coupling is realiz
typically with a strong~dipole! transition, resolved sideban
excitation is performed on a weak~quadrupole or Raman!
transition. In order to realize a transition with both stro
coupling and resolved sidebands one would need to ensu
radio frequency drive to the trap high enough such that se
lar frequencies are sufficiently large. There is no reason
principle why such a trap cannot be built@42#. For instance,
high-frequency combined rf Penning traps have been
cently reported by Ha¨nsch and co-workers@43#. Such prob-
lems of realization take us beyond the scope of the pre
paper, which is concerned with conceptual matters.
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