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Abstract.  We apply the Jaynes principle of maxinmum entropy for the partial
reconstruction of correlated spin states. We determine the minimum set of
observables which is necessary for the complete reconstruction of the most
correlated states of systems composed of spins 4 (e.g. the Bell and the
Greenberger—Horne—Zeilinger states). We investigate to what extent an in-
complete measurement can reveal non-classical features of correlated spin
states.

1. Introduction

The seminal paper by Vogel and Risken [I(a)] (see also [1(b)<j)]) on the
tomographic reconstruction of Wigner functions of light fields has greatly en-
hanced interest into the old problem of ‘measurement’ of states of quantum-
mechanical systems. Within the last few years, tomographic reconstruction has
been experimentally realized for example by Raymer and co-workers [2] and by
Mlynek and co-workers [3] Tomographic reconstruction schemes of states of
other bosonic systems such as vibrational modes of trapped atoms [4] and atomic
waves [5] have been proposed. Recently Wigner functions of vibration states of a
trapped atom have been experimentally determined by Wineland and co-workers
[6], while Kurtsiefer and co-workers [7] have measured Wigner functions of
atomic wave packets. Leonhardt [8(a)] (see also [§(b)«e)]) has extended the
ideas of Vogel and Risken to the case of Wigner functions in discrete phase spaces
associated with physical systems with finite-dimensional Hilbert spaces, such as
spin systems.

The problem of reconstruction of states of finite-dimensional systems is closely
related to various aspects of quantum information processing, such as reading of
registers of quantum computers [9] This problem also emerges when states of
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atoms are reconstructed. In particular, Walser ez al. [10(a)] (see also [10(b), (¢)]
have shown that, under certain conditions, quantum states of a single quantized
cavity mode can be completely transferred on to the internal Zeeman submanifold
of an atom. Consequently, the reconstruction of the states of a cavity mode is
reduced to the problem of reconstruction of angular momentum states in a finite-
dimensional Hilbert space.

From the postulates of quantum mechanics it follows that the complete
reconstruction of a state of a quantum-mechanical system can be performed
providing a complete set of system observables (i.e. the quorum [11]) is measured
on the ensemble of identically prepared systems. On the one hand this goal may be
technically difficult to realize and on the other hand it may not be necessary. In
many situations even partial knowledge (i.e. incomplete reconstruction) of the state
is sufficient for particular purposes.

The complete reconstruction of spin states have been addressed in the
literature [8, 11-13]. In the present paper we shall analyse the problem of the
partial reconstruction of these states. We shall show how the spin state can be
reconstructed when just a restricted set of mean values of the system observables is
known from the measurement. Utilizing the Jaynes principle of maximum entropy
we shall partially reconstruct the density operator from the available (i.e. mea-
sured) mean values of system observables.

We shall also address the question which is the minimum observation level (i.e.
a specific subset of system observables) on which the complete reconstruction can
be performed. In particular, we shall analyse the reconstruction of the most
correlated states of the system composed of two and three spins 1 (i.e. the Bell
and the Greenberger—Horne-Zeilinger (GHZ) states).

The present paper is organized as follows. In section 2 we briefly review the
principle of maximum entropy and the formalism of state reconstruction asso-
ciated with particular observation levels. In section 3 we present a simple
illustration of a reconstruction of a state of single spin 1. Section 4 will be devoted
to the detailed analysis of the state reconstruction for a system of two correlated
spins 4. In section 5 we shall address the problem of the (partial) reconstruction of
the GHZ states. In appendix A we present detailed reconstruction of density
operators on two non-trivial observation levels.

2. Reconstruction of density operators of quantum states

When it is a priori known that experimental data contain the complete
information about the state of the system, then it is just a question of technical
convenience how to perform a transformation of these data into a more familiar
object such as a density operator. A particular example of this procedure is
quantum homodyne tomography [1] when from the measured probability dis-
tributions of rotated quadratures one can reconstructf (with the help of the inverse
Radon transformation) the Wigner function of the state.

Now we can ask the question: ‘What is the density operator of the quantum-
mechanical system when an incomplete measurement over this system is per-

+ Strictly speaking, Wigner functions or wave-vectors cannot be measured; they only can
be reconstructed from experimental data with the help of some inversion procedures.
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formed?” In this case the experimental data do not provide us with sufficient
information to specify the density operator of the system uniquely, that is there can
be many density operators which fulfil the constraints imposed by incomplete
experimental data. In this situation, one can only estimate what is the most
probable density operator which describes the system.

In principle we can distinguish two different forms of incompleteness: firstly,
when precise knowledge of a subset of the quorum [11] of system observables is
known; secondly, when system observables are not measured precisely, that is
instead of probability distributions only frequencies of appearances of eigenvalues
of these observables are available.

In the present paper we shall focus our attention on the reconstruction of
density operators of spin states when mean values of a subset of system observables
are measured precisely. In this case the estimation of density operators can be
performed with the help of Jaynes principle of maximum entropy.

2.1. Principle of maximum entropy and observation levels

Let us assume that the state of a spin system, described by theAdensHy operator
po, is unknown and only expectation values G, of observables G, (v =1, ,...,n)
are available from a measurement. The set of observables is referred to as the
observation level 0 [14]. There can be a large number of density operators p which

are in agreement with the experimental results, that is
Tr(3G,) = G, (v=1,...,n). (1)

If we wish to use only the expectation values G, of the chosen observation level for
an estimation (reconstruction) of the density operator, then we face the problem of
selecting one particular density operator p, out of many p which fulfil condition
(1). To perform this ‘selection’ (i.e. estimation) we note that the density operators
under consideration do differ by their degree of deviation from pure states. To
quantify this deviation an uncertainty measure has to be introduced. Following
Jaynes [15], one can utilize the von Neumann [16] entropy

S[p]= - Tr (5 mp). (2)

For pure states, S = 0 while, for statistical mixtures of pure states, S > 0.
According to the Jaynes pr1n01ple of maximum entropy, we have to choose
from a set of density operators p Wthh fulfil the constraints of equation (1) the
generalized canonical density operator p, which maximizes the value of the von
Neumann entropyt. In other words, the maximum-entropy principle is the most
conservative assignment, in the sense that it does not permit one to draw any
conclusions unwarranted by the measured data. The generalized canonical density

+ We note that, in principle, instead of the von Neumann entropy one can utilize another
uncertainty measure to distinguish between the density operators which fulfil constraints
(1). For example, by maximizing the linearized entropy [17]

)= 1- Tr()

one can obtain a partially reconstructed density operator p(’") which fulfils conditions (1) and

simultaneously leads to the ‘maximum mixture’, that is nL (’")] = max. Note that, for pure
states, = 0 while, for mixtures, 11 > 0. On the complete observation level, this ‘maximum-
mixture’ principle is equivalent to the maximum entropy principle but, in general, on the

reduced (incomplete) observation levels, p, # A(’").
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operator (GCDO) po Tepresents a partially reconstructed (estimated) density
operator —on the given observation level ©. The corresponding entropy
So =8 po] represents the measure of deviation of the reconstructed state from
an original pure state. The GCDO p, takes the form [14]

A 1 A
Po — Z_Oexp Z)\u Gu ) (3)
Z, = Tr| exp| - Z?\Uéu

where Z, is the generalized partition function; A, are the Lagrange multipliers
which have to be found from the set of equations (1).

Any incomplete observation level 0 4 can be extended to a more complete
observation level © 5 which includes additional observables, that is 0 4 C 0 p.
Additional expectation values can only increase the amount of available informa-
tion about the state of the system. This procedure is called the extension of the
observation level (from 0 4 to 0 ) and is usually associated with a decrease in the
entropy, as S < S 4. We can also consider a reduction in the observation level if we
decrease the number of independent observables which are measured. This
reduction is accompanied with an increase in the entropy due to the decrease in
information available about the state of the system. Each incomplete observation
level can be considered as a reduction in the complete observation level. In what
follows we shall study a sequence of observation levels in the form

04 COpCOCc " COcomp,

(4)
S4=8p=Sc= = O,
which represent successive extensions of an observation level 04 towards the
complete observation level O comp.
Concluding this section we make two remarks.

(1) Firstly we stress that the reconstruction scheme based on the Jaynes
principle of maximum entropy does not require any a priori assumption
about the purity of reconstructed states, that is it can be applied for
reconstruction of pure states as well as for statistical mixtures. This
reconstruction scheme is equivalent to an averaging over the generalized
grand canonical ensemble of all states of the system, under the conditions
imposed by the constraints given by equation (1). Within the framework of
a geometrical formalism, each state of the quantum system is represented
by a point in the parametric state spacei. Those states which fulfil the
constraints (1) are represented by a specific manifold in the parametric
space. From the maximum-entropy principle it then follows that the
generalized canonical density operator is equal to the equally weighted

+ Pure states, which are elements of the generalized microcanonical ensgmble, are
represented by points on a manifold in this state space (such as the Poincare sphere in
the case of the spin 4).
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average over all states on this specific manifold. Obviously this average is
represented by one special point which is associated with the GCDO.

(2) In the case when there is no information available about the preparation of
the system, then there is no intrinsic way to specify the ‘minimal’ complete
observation level. Here by minimal we mean the complete observation level
composed of the smallest number of observables. What one can do is to
extend systematically observation levels and to evaluate the von Neumann
entropy associated with reconstructed GCDOs. If at some stage of the
extension of observation levels the von Neumann entropy becomes zero, it
then means that the given observation is complete and the pure state of the
system is completely ‘measured’. Obviously this does not mean that this
observation level is minimalf. In the case when the measured system is
prepared in an unknown statistical mixture it is impossible to specify the
minimal observation level until the measurement on the complete observa-
tion level has been performed. If this is done, then, by a sequence of
reductions under the condition that the von Neumann entropy is un-
changed, one can specify the minimal observation level.

In the following sections we shall apply the Jaynes principle for the recon-
struction of pure spin states. Firstly, for illustrative purposes we present the simple
example of the reconstruction of states of a single spin-{ system with the help of the
maximum-entropy principle. Then we shall discuss the partial reconstruction of
entangled spin states. In particular, we shall analyse the problem how to identify
incomplete observation levels on which the complete reconstruction can be
performed for the Bell and the GHZ states (1 e. the corresponding entropy is
equal to zero and the GCDO is identical with py).

3. Asingle spin ]

Firstly we illustrate the application of the maximum—entropy principle for the
partial quantum- state reconstruction of single spin-J system. Let us consider an
ensemble of spins 4 in an unknown pure state |y6). In the most general case this
unknown state vector |y6) can be parametrized as

luby = cos 6]1) + exp (ip) sin 60, (5)

where |0>, |1> are eigenstates of the z component of the spin operator . %SZ with
eigenvalues - 4,1 respectively. The corresponding density operator py |l/l)><l/l)|

can be written in the form

>

o =4I +n-h), (6)

where 7 is the unity operator, n = (sin(26) cos ¢, sin(20) sin ¢, cos(26)) = <ﬁ>
h = (5,,5,,5:) are the Pauli spin operators which in the matrix representation in
the basis fO}, 1) are

1 In fact, in the case of pure states there always exists just one observable (at least in a
sense of the Hermitian operator) such that the given pure state is an eigenstate of this
observable. Unfortunately, it is impossible to specify this operator prior to complete
reconstruction.
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Table 1. In this table we present three observation levels 0(1) W and o) associated
with a measurement of the particular spin-§ operators ( the observables that
constitute a given observation level We also present exphcrt expressions for the

reconstructed density operators p4; pp and Peomp-

A A A

Observation level o Gy Sy Reconstructed density operator
A
O(A}) ° //3\A = %(14— nzez)
A
o'V o o pp=%(1+ns + nxéx)
A
ngl))mp i i i //3\comp = %(I"' e + i’lyG,C + I’l}G})
. 0 1 A 0 -1 A_|1T O (7)
= = . O; — .
x 1 0] 77 1 0> 0 -1

T o determine completely the unknown state, one has to measure three linearly
independent (e.g. orthogonal) projections of the spin. After the measurement of
the expectation value of each observable, a reconstruction of the generalized
canonical density operator (3) according to the maximum-entropy principle can
be performed In table 1 we consider three observation levels defined as

1) _ (1) A A (1) _ (A A A
o) = (5., 0y =15.,6 and 0} = {07,0V,cy} Ocomp (the superscript of
the observation levels indicates the number of spins 4 under consideration).

Using algebraic properties of the &, operators, the generalized canonical

density operator (3) can be expressed as
1 1 . :
Po = —exp(- 2h) == cosh|)\|?- sinh |)\|il|—i|i , Z=2cosh|A|, (8
with 2 = (Ay,A,A.) and |)\|2 A2+ A2 + A2. The final form of the p, on particular
observation levels is given in table 1. The corresponding entropies can be written as

So = Do lnpo - (1- po)ln(l' po), 9)

where p, is one eigenvalue of p, (the other eigenvalue is equal to 1 - Do) which
reads as

_1+K6 _ 1+ (G + ) _ 1+ (& + G + 6
pA_TapB_ > s Pcomp = 5 .

(10)

It is seen that the entropy S, is equal to zero if and only if Do = 1. From here it
follows that on (Q(A only the basis vectors |0 and |1y with [¢5.) = 1 can be fully

reconstructed. o' B , on which a whole set of pure states (5) with <cy> 0 (ie.
¢ = 0,T) can be uniquely deterrmned is non-trivial. For such states, Sp = 0, and
further measurement of the cy on O comp Tepresents redundant (useless) mforma—
tion.

4. Two spins 1
Now we assume a system composed of two distinguishable sprns 2 If we are

R(erforrmng only local measurements of observables such as c V@1 and
) ®6” (here superscripts label the particles) which do not reﬂect correlations
between the particles, then the reconstruction of the density operator reduces to an
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estimation of individual (uncorrelated) spins %, that 1s the reconstruction reduces to
the problem discussed in the previous section. For each spin 4 the reconstruction
can be performed separately and the resulting GCDOQO is given as a tensor product
of particular generalized canonical density oPerators, that is p = o'V ® 2. In this

case just the uncorrelated states |y6) = |%1 ® |l/é2)> can be fully reconstructed.
Nevertheless, the correlated (non-factorable) states |y6) # |yf'> ® [yh”) are of
central interest.

In general, any density operator of a system composed of two distinguishable
spins 1 can be represented by a 4 x 4 Hermitian matrix and 15 independent
numbers are required for its determination. It is worth noting that 15 operators

(observables)
80 @12, 1V 082,81 ©82)  (u,0=x,) (11)

together with the identity operator T ®1? form an operator algebra basis in
which any operator can be expressed. In this ‘operator’ basis, each density operator
can be written as

U

= % @72+ a0V @12+ n2 [0 @f + S g i ®é§?>) (12)

HyL

with &, = G\ @67 (u,0 = x,,2).

Using the maximum-entropy principle we can (partially) reconstruct an un-
known density operator py on various observation levels. Conceptually the method
of maximum entropy is rather straightforward; one has to express the generalized
canonical density operator (3) for two spins 4 in the form (12) from which a set of
nonlinear equations for Langrange multipliers A, is obtained. Owing to algebraic
properties of the operators under consideration the practical realization of this
programme can be technically difficult (see appendix A).

In table 2 we define some non-trivial observation levels. Measured observables
which define a particular observation level are indicated in table 2 by full circles
while the open circles indicate unmeasured observables (i.e. these observables are
not included in the given observation level) for which the maximum-entropy
principle ‘predicts’ non-zero mean values. This means that the maximum-entropy
principle provides us with a non-trivial estimation of mean values of unmeasured
observables. The generalized canonical density operators which correspond to the
observation levels considered in table 2 are presented in table 3. The signs ¢ and S
are used to indicate unmeasured observables for which non-trivial information can
be obtained with the help of the maximum-entropy principle.

4.1. Reconstruction of Bell states

In what follows we analyse a partial reconstruction of the Bell states (i.e. the
most correlated two particle states) on observation levels given in table 2. One of
our main tasks will be to find the minimum observation level (i.e. the set of system
observables) on which the complete reconstruction of these states can be per-
formed. Obviously, if all 15 observables are measured, then any state of two spins 1
can be reconstructed precisely. Nevertheless, owing to the quantum entanglement
between the two particles, measurements of some observables will simply be
redundant. To find the minimal set of observables which uniquely determine the
Bell state one has to perform either a sequence of reductions of the complete
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ol?g)ervation level, or a systematic extension of the most trivial observation level
oy
Let us consider particular examples of Bell states, of the form

|.{,pr611) 5 [|1 1>+ exp 1(/))|0 0>] A(Bell) |.{, (Bell) ><.),, (Bell) | (13)

(other Bell states are discussed later). These maximally correlated states have the
property that the result of a measurement performed on one of the two spins -1
uniquely determines the state of the second spin. Therefore, these states find their
applications in quantum communication systems [I18]. In addition, they are
suitable for testing fundamental principles of quantum mechanics [19] such as
the complementarity principle or local hidden-variable theories [20].

(Z)Let us analyse now a sequence of successive extensions of the observation level

0y

0} coly col? coly. (14)
The observation level 07 (see table 2) is associated with the measurement of &.
observables of each spin 1nd1v1duallg that is it is insensitive with respect to
correlations between the spins. On 0 3 both z-spin components of particular spins
and their correlation have been recorded (simultaneous measurement of these
observables is p0551ble because they commute). Further extension to the observa-
tion level on (Q(C) corresponds to a rotation of the Stern—Gerlach apparatus such
that the x-spin component of the second spin 1 is measured. The observation level
(9(1)2) is associated with another rotation of the Stern—Gerlach apparatus which
would allow us to measure the y-spin component. The generalized canonical
density operators on the observation levels '3, (Q(Cz) and 0'? predict zero mean
values for all the unmeasured observables (11) (see table 3).

In general, successive extensions (14) of the observation level (Q(j) should be
accompanied by a decrease in the entropy of the reconstructed state which should
reflect an increase in our knowledge about the quantum-mechanical system under
consideration. Nevertheless, we note that there are states for which the entropy
remains constant when (9%) is extended towards (Q(C and (Q(D), that is the
measurements performed are in fact redundant. For instance, this is the case for
the maximally correlated state (13). Here entropies associated with given observa-
tion levels are

SA:211’12, SB:SC:SD:h’l2, (15)

respectively, which mean that these observation levels are not suitable for
reconstruction of the Bell states. The reason is that the Bell states have no
‘preferential’ direction for each individual spin, that is (G> = 0 for u = x,y,z
and p = 1,2.

From the above it follows that, for a non-trivial reconstruction of Bell states,
the observables which reflect correlations between composite spins also have to be
included into the observation level. Therefore let us now discuss the sequence of
observation levels

0 co? col? (16)

associated with simultaneous measurement of spin components of the two particles
(see table 2). The corresponding GCDOs are given in table 3. To answer the
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question of which states can be completely reconstructed on the observation level
(9(52) we evaluate the von Neumann entropy (2) of the GCDO py. For the Bell
states we find that Sg = - pglnpg - (1 - pg)In(1- pg) where pg = (1 - cose) /2.
We can aso compare directly prBe“) with pz. The density operator prBe“) in the

matrix form can be written as

1 0 0 exp(-ip)
;J\(Bell) — 1 0 00 0 (17)
’ 1 o 00 0 ’
L exp(ip) 0 0 1 |

while the corresponding operator reconstructed on the observation level (9(,3) is

1 0 0 cose
0O 00 0
A (18)
P70 00 o
L Coso 0 0 1 i

A

‘We see that prBe") =ppand S ESE] = 0 only if ¢ = 0 or = which means that the Bell
states |'Pw:0,n> = (12! 2)&1, 1)+ |O, 0>] are completely determined by mean values
of two observables 6. ®6? and &) ® 52 and that these states can be completely
reconstructed on (9(52) . We_note that two other maximally correlated states
loay = (1 /21/2)[|O, D+ |1,0>] can also be completely reconstructed on 0'?.

The extension of 0 (,3) too }2) does not increase the amount of information about
the Bell states (13) with ¢ # 0,n. For this reason we have to consider further
extension of 0'? to the observation level o g) (see table 2 and appendix A). In what
follows we shall show that this is an observation level on which al/ Bell states (13)
can be completely reconstructed. To see this, one has to realize two facts. Firstly,
the GCDO ¢ given by equation (3) can be expressed as a linear superposition of
observables associated with the given observation level, that is

A 1 A A A A
PG = Z—CXp - A GLU ®GL2) - )\xyG&l) ®G§,2) - )\yxcﬁ,l) ®G§2)
G H=X)5Z
(19)
A
-1 - A1) @ A2) _ A1) (2) _ (1) A(2)
=4 1 Z ijcu ®o, §y0x ®Gy éxcy ®ac
H= X052

where the parameters &,, are functions of the Lagrange multipliers A,,. Secondly,
for Bell states (13) the only observables which have non-zero expectation values are
those associated with 0'7, namely (5! ® 62y = 1, (5 @ 525 = - GR ®va2)> =
cosp and (51 ® g(y2>> = <3(y1) ®352) = sine. This means that all coefficients in the
GCDO p given by equation (12) are uniquely determined by the measurement,
that is pg = pooo”

From the above it follows that Bell states can be completely reconstructed on
the observation level (Q(Gz) . On the other hand, (Q(Gz) is not the minimum observation
level on which these states can be completely reconstructed. The minimum set of
observables which would allow us to reconstruct Bell states uniquely can be found

by a reduction in O(Gz). Direct inspection of a finite number of possible reductions
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reveals that Bell states can be completely reconstructed on those observation levels
Wthh can be obtained from 02 when one of the observables 5.’ ®a,
(v=x, y,z) is omitted. As an example, let us consider the observation level (Q(H)
grven 1n table 2 which represents a reduction in (Q(G) when the observable

D ®62 is omitted. Perforrnrng the Taylor series expansion of the generalized
canonrcal densrty operator p defined by equatron (3), one can find that the only
new observable 5. ® 52 enters the expression for the py as indicated in table 3.
The coefficient 7 in front of &¢ D ®62 either can be found explicitly in a closed
analytical form (see appendix A) or can be obtained from the following variational
problem. That is, we remind ourselves that equation (3) for pz helps us to identify
those unmeasured observables for which the Jaynes principle of the maximum
entropy ‘predicts’ non-zero mean values. At this stage we still have to find the
particular value of the parameter 7 for which the density operator py in table 3
leads to the maximum of the von Neumann entropy. T o do so we search through
the one-dimensional parametric space which is bounded as - 1< ¢<1. To be
specific, first of all, for €~ 1, 1) we have to exclude those operators which are not
true density operators (i.e. any such operators which have negative eigenvalues).
Then we ‘pick’ up from a physical parametric subspace the GCDO with the
maximum von Neumann entropy. Direct calculation for Bell states shows that
the physical parametric subspace is reduced to an isolated ‘point’ with =
<S ®52) = 1. Therefore we conclude that Bell states can be completely recon-
structed on 0 . Two other minimum observation levels suitable for the complete
reconstructron of Bell states can be obtained by a reduction in o' when either

) ®3 &2 or c ' ®4 c ) is omitted. On the other hand direct 1nspect10n shows that

a reductron in 0! by exclusion of either & ®c or c '®362 leads to an

incomplete observation level with respect to Bell states

In what follows we discuss briefly two other observatron levels 0'” and 0’
which are defined in table 2. The observation level 0| serves as an example when
one can find an analytical expresswn for the Taylor series expansion of the
canonical density operator p; (equation (3)) in the form (12). The coefficients
(functrons of the original Lagrange multlpliers) in front of particular observables
in equatron (12) can be identified and are given in table 3. Problems do appear
when (9(,2) is extended towards (Qf, In this case we cannot simplify the exponential
expression (3) for p; and rewrite it analytically in the form (12) as a linear
combination of the observables (11). In this situation, one should apply the
following procedure: firstly, by performing the Taylor series expansion of py to
the lowest orders, one can 1dent1fy the observables with non zero coefﬁc1ents 1n the
form ( ) That is, for p, the additional observables c ®c ®c and

®c appear in addition to those which form (Qf,) (see table 3) The
correspondrng coefficients u,v,w &~ 1,1) form a bounded three-dimensional
parametric space (u,v,w). In the second step, one can use constructively the
maximum-entropy principle to choose within this parametric space the density
operator with the maximum von Neumann entropy. T he basic procedure is to scan
the whole three-dimensional parametric space. At the beginning, one has to select
out those density operators (i.e. those parameters u, v,w) which possess negative
eigenvalues and do not represent genuine density operators. Finally, from a
remaining set of ‘physical’ density operators which are semipositively defined
the canonical density operator 5, with maximum von Neumann entropy has to be
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chosen. For completeness, let us note that for Bell states the observation levels 0’
and (Qf,z) are equivalent to (Q(E , that is, p; = pJ = pg.

In this section we have found the minimum observation levels (e.g. 0'7') which
are suitable for the complete reconstruction of Bell states. These observat1on levels
are associated with the measurement of two-spin correlations c ' ®4 .2 A“ ' ®4 o2
and two of the observables &, ®35'” (v = x,y,z). Once this problem has been
solved, it is interesting then to find a minimum set of observables suitable for a
complete reconstruction of maximally correlated states of systems consisting of
more than two spins 1. In the following sectlon we shall investigate the (partial )
reconstruction of GHZ states of three spins 1 on various observation levels.

5. Three spins 1

Even though the Jaynes principle of maximum entropy provides us with
general instructions on how to reconstruct density operators of quantum-
mechanical systems, practical applications of this reconstruction scheme may
face serious difficulties. In many cases the reconstruction scheme fails because of
insurmountable technical problems (e.g. the system of equations for Lagrange
multipliers cannot be solved explicitly). We have illustrated these problems in the
previous section when we have discussed the reconstruction of a density operator
of two spins 4. Obviously, the general problem of reconstruc‘uon of density
operators describing a system composed of three spins 4 is much more difficult.
Nevertheless a (partial) reconstruction of some states of this system can be
performed. In particular, in this section we shall discuss a reconstruction of the
maximally correlated three spin 3 states, the so-called GHZ states [20]:

| .{,(GHZ

0 21,2[|1 , 1>+ exp (i0)]0,0,00], A7) = |w, X, |. (20)

Our main task will be to identify, with the help of the Jaynes principle of
maximum entropy, the minimum observation level on which the GHZ state can
be completely reconstructed.

We start with a relatively simple observation level o' B " such that only two-
particle correlations of the neighbouring spins are measured, that is

o) = [8V @52 @', ') @82 @85 . (21)
The generalized density operator associated with this observation level is
pB = %[l\(“ @M @I + G @52 ®l\(3>>3(2“ ®52 @
+ (I ©82 @6 ©52 @6
+ @ glzz> ®f<_3>><f<1> ®é;\<22> ®é<23>>3<21> Q2 ®3<23>]’ (22)

where ¢ indicates a prediction for the unmeasured observable. In particular, for
the GHZ states (20) we obtain the following GCDO:

P2 = T @12 @ 'Y
50 @80 o1 + 1 022 @8 +40 012 @59

z

41,1, 11, 1,1] + 4[0,0,0X0,0,0]. (23)
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The reconstructed density operator p BG HZ)" describes a mixture of three- particle
states and it does not contain any information about the three-particle correlations
associated with the GHZ states. In other words, on 0!} the phase information
which plays an essential role in the description of quantum entanglement cannot be
reconstructed. This is because the density operator S(BGHZ) is equal to the phase-
averaged GHZ density operator, that is

;J\(BGHZ) — 2_1%.[ ] /’J\prHZ) d(/). (24)
Because of this loss of information, the von Neumann entropy of the state pGHZ) is
equal to In2. We note that, when the GHZ states are reconstructed on the
observation levels 0% = [ &) ® 3 ®}\(3 Mme 2 ®6,)| (u=x,y), then the
corresponding reconstructed operators are again glven by equation (23). These
examples illustrate the fact that three-particle correlation cannot in general be
reconstructed via the measurement of two-particle correlations.
Tofind the observation level on which the complete reconstruction of the GHZ
states can be performed, we recall the observables which may have non-zero mean
values for these states. Using the abbreviations

Zjuwz ®j\(3 >a E.uzuz; <?(1 ®3 ®S(u3)>3 Zjuw;; = <8L1) ®?(2) ®8(u3)>3
szwz; = ®G ®G >a HyL, 0= x,y,z) (25)

we find the non-zero mean values to be

25122 = 25223 = §]z3 = 1’
C.Xlxzm = C,mxzx; = Q\qyzx} = Sil’l(/),

Cylyzy:; = C_)ﬂyz)& = QIXZ,VB == COS¢ (26)
C.3€1X2X3 = C0s o,
C.VI,VZ,V3 = - sing.

We see that for arbitrary ¢ there exist non-vanishing three-particle correlations
G vmen- The observation level which consists of all the observables with non-zero
mean values is the complete observation level with respect to the GHZ states. Our
task now is to reduce this set of observables to a minimum observation level on
which the GHZ states can still be uniquely determined. In practice it means that
each observation level which is suitable for the detection of the existing coherence
and correlations should incorporate some of the observables with non-zero mean
values. The other observables of these observation levels should result as a
consequence of mutual tensor products which appear in the Taylor series expan-
sion of the GCDO (3). It can be seen by direct inspection of the finite number of
possible reductions that the minimum set of the observables which matches these
requirements consists of two two-spin observables and two three-spin observables.
For the illustration we consider the observation level

0 =8V @62 @, ' ®62 @60, 8) 62 ®8Y, 8 @52 ®83)|.
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In this case the exlponent C of the GCDO pc= exp( 6’) /Z¢ (see equation (3)) can
be rewrltten as cC=(C+ Cz with C1 = Y120 )@ @I + Y23I ® 62 ®53

and Cz D52 ®cd + ﬂcy y ®cy The operators C1, Cz commute
and further calculatlons are straightforward. After some algebra the GCDO p¢ can
be found in the form

A

pe= 4@ ﬂ3+§ &L ®§”®ﬂ9+§mﬂw®z ®6

Al a3 A1) A2 A(3) 4 A1 2 A(3
+ C-xlxzxchr) ®G C,Vlyzy:; Sy ® )tF/'E,ﬁZzEJN}G(Z ®?( )®‘5(2)

A1

@Qm@m '®6Y ®6 +&mcn ®82®c
A
G

+E§17225273 y S ® 1)2)3 E_$?172 V GV v
+ &, ®52 @8 +§m§m)N ®82 ®8Y)] (28)

For the GHZ states the von Neumann entropy of the GCDO p¢ is equal to zero,
from which it follows that pe = poT2 (see equation (20)), that is the GHZ states
can be completely reconstructed on o'. Moreover, the observation level oc
represents the minimum set of observables for complete determination of the GHZ
states.

6. Conclusions

We have investigated the problem of a (partial) reconstruction of correlated
spin states on different observation levels. We have found the minimal set of
observables for the complete reconstruction of the most correlated states for
systems composed of two and three spins 4, that is Bell states and GHZ states.
Direct generalization to systems of more splns 1 is possible.

The concept of observation levels and the maximum-entropy principle is a
powerful tool which can be used also for other physical systems, for example for
the reconstruction of the states of a monochromatic light field [21]. We recall that
this reconstruction scheme is based on the knowledge of the exact mean values of
given observables or their probability distributions (see appendix A).
Theoretically, this means that an infinite number of measurements over an
ensemble of identically prepared systems have to be performed in order to obtain
those mean values which are needed. In practice, if the number of measurements is
sufficiently high, then the mean values can be considered to be measured precisely
enough and the Jaynes principle can be applied for a state reconstruction. On the
other hand, if just a few measurements are performed, then the mean values of the
considered observables are not known and the Jaynes principle cannot be used.

In this case another reconstruction scheme has to be applied. In particular, in
the case of a small number of measurements the Bayesian reconstruction scheme
[22] can be effectively utilized. We shall address the problem of a reconstruction of
correlated spin systems based on Bayesian methods elsewhere [23].
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Appendix A

Conceptually the reconstruction scheme based on the Jaynes principle of the
maximum entropy is very simple. On the other hand, particular analytical
calculations can be difficult and in many cases cannot be performed. In this
appendix we present explicit calculations of GCDOs and corresponding entropies
for two observation levels (Q(G) and 0'7 defined in table 2.

A.1. Observation level OG
Let us assume the observatlon level 0! ,Q glven by the set of observables

(6 @526 ®62; 6 ®52; 61 ®62; 6\l ®62)| . In this case the GCDOis
1 A
SG:Z—CXP('E), (Al)
G
where
A
ZG = Tr[exp(- E)] (A2)

is the partition function. Here we have used the abbreviation

E=2..00 @8

52 +)\n0 ® +)‘V}G ®G +)\yvc ®G y)( ®3'2.

(2)
Oy ¥
(A3)
The corresponding entropy has the form
Se=1In Zg+ A& + Anba + Ap &y + A8 + 4,8, (A4)

Using the algebraic properties of the operators associated with the given observa-
tion level we find that the GCDO (A1) is

A A A A A
PG = %[j\(l) ®}\(2) +&.0) ®c2 + &5 ®c?
A A A A A A
+ é;vo&l) ®G§,2) + nycﬁ,l) ®G&2) + é::yycﬁ,l) ®G§,2)], (A5)
where we use the notation
éu_<0 > H,U—x,y,Z) (A6)

Now we express the entropy as a functlon of expectation values of operators
associated with the observation level o G With the help of this entropy function
we can perform reductions in o ) to the observation levels 0,0 and 0. In
order to perform this reduction we express A,, in equation (A 4) as functions of the
expectation values &,,. To do so we utilize the relation

_ danG)

E.ﬂ v T 8)\“ ) (A 7)

.. . . A .
The partition function Z; can be found when we rewrite the operator £ in
equation (A 4) as a 4 x 4 matrix:
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a 0 0 d
A 0 -a b* 0
E= R (A8)
0 b -a O
Ld 0 0 a]
where we used the abbreviations
a=2A.,b= A+ )\yy - i()\xy - )\yx), d=Ax- )\yy + i()\xy + )\yx)‘ (A9)
The powers of the operator E can be written as
E} 0 0 Ej
0 Ep E) 0
B = 2o . (A10)
0 Ey EY 0
LE) 0 0 Ey]
with the matrix elements given by the relations
B = B =Yl [d)" + (a- [d)"],
n n ad
£ =4+ |d)"- (a- a7,
By = B = (- ax )"+ (- a- o],
5 (A1)
5 =4l ar - a- g,
Ej = By,
n _ pAn)"
41 = Ly -
Now we find that
exp (- a) cosh |d| 0 0 - exp(-a) sinh(|d|>f§[
0 expacosh |h| - exp asinh([p]) b 0
exp (- l,-f) = b W ,
0 - expasinh(|b|)m exp acosh |b| 0
- exp(-a) sinh(|d|)-|%[ 0 0 exp (- @) cosh |d|
(A12)
from which we obtain the expression for the partition function Zg:
Zi = 2exp(- a) cosh |d| + 2exp acosh |p]. (A13)

For the expectation values given by equation (A7) we obtain
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E. = —[2exp a) cosh|d| - 2exp acosh |p|}

&= ZL[QCXP (- ) sinh( |d|)]‘[ = Ap) + 2expasinh( |b|)ﬂ Rt ho)

5, = ZL[QeXp (- @) sinh( |d|)]_[ (Ag + Ap) + 2expasinh(|b|)m()\xy' A
£ = ZL[Q exp (- @) sinh( |d|)]_[ (A + Ay + 2expasinh(|b|)-|l[()\xy - ?\yx)],

g, = ZL[ 2exp (- a) sinh ( |d|)]—[ w = Ay) + 2expasinh( |b|)]—[ At Ay

(A14)
If we introduce the abbreviations

B=¢&.+ Ey) Eyv) D=8&u- Eyy + i(?;cy + ny)a (A15)

then with the help of equation (A 14) we obtain
4 . b _ 4 . d
B=- Z—Gexpasmh(|b|)m, D= Z—Gexp( a) smh(|d|)m. (A16)

T aking into account that
4 . 4 .
|B| = Z—Gexpasmh(|b|), |D| = Z—Gexp(- a) sinh (|d|), (A17)

we find that

B__ b D __d
IR T A
Now we introduce four new parameters M;:
My =1+&.+|D|, My=1+&.-|D|,

(A19)
My=1- & +[B|, Mi=1-§&:- [B|,

in terms of which we can express the von Neumann entropy on the given
observation level. Using equations (A 13), (A 14) and (A 17) we obtain

M, = Ziexp(- a+ld), M= iexp - |d)),
N Y (A20)
M; = Z—Gexp(a+ ), M, = Zexp(a- |2)).

The Lagrange multipliers Ay can be expressed as functions of the expectation
values &; :

M M| P

/
expa=| 35 exp(|p]) = (A21)

1/2
o) =| 42

After inserting these expressions into equation (A 13) we obtain for the partition
function
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4
( My My M M)

When we insert equations (A 18), (A21) and (A 22) into equations (A 1), (A4) and
(A 12), then we find both the entropy

(A22)

ZG:

M; M;
SG - = ZTI T (A23)
and the GCDO
1+&. 0 0 D*
0 1-&. B* 0
pg =1 : A24
PG 0 B 1-&t. 0 (A24)
D 1+&.

as functions of the expectation values &;. Finally, we can rewrite the reconstructed
density operator (A 24) in terms of the spin operators (see table 3).

A.2. Observation level 0 é

The GCDO on, the 0! ') can be obtained as a result of a reduction of the
observation level o ). The difference between these two observation levels is that
the (9;, does not contain the operator 6. ® G2, that is the corresponding mean
value is unknown from the measurement.

According to the maximum-entropy principle, the observation level o' H can be
obtained from o' G ! by setting the Lagrange multiplier A.. equal to zero. With the
help of the relation (see equation (A 7))

0S¢q 1 M, M,
A, = === = A2
A il I vy el (A25)
we obtain
MM, = M; M. (A26)

From this equation we find the ‘predicted’ mean value of the operator &.! ® 62
(i.e. the parameter 7 in table 3):

= Y|pP- |BP =1 (A27)
Taking into account that the parameters |B| and |D| are given by
BP = (&a+ &) + (& - &% D[P = (&u- &7+ (&0 + &7, (A28)

we can expres the predicted mean value Eﬂ as a function of the measured mean

values &, &y, &y and &)

G- = &G &by (A29)
When we insert equation (A 27) into equation (A 19) we obtain
M, = N\Ny, M, = N3Ng, M= NN3, My= NNy, (A 30)

where the parameters N, are defined as
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Ny =1+4|D|+|B), N,=1+X|D|- (|B],

A3l
No=1-lol- |8, Ne=1- 4[|+ (|B). A3

1
2

In addition, from equations (A 30) and (A 23) we obtain the expression for the von
Nezl)lmann entropy of the density operator reconstructed on the observation level

0'2.
SH: - Z“%ln

Finally, from equations (A 28) and (A 24) we find the expression for the GCDO on
the observation level (o(é) (see table 3):

A A A
P =YV @1 + (5,5 - 88,080 @52
+ES @82 4 £,80) @82 + £,8) @82 + £,8) ®52] (A33)

N;

7 (A32)

References

[1] (a) Vocer, K., and Riskex, H., 1989, Phys. Rev. A, 40, 2847; (b) Berrranp, J., and
Berrrano, P., 1987, Found. Phys., 17, 397; (c) Freveercer, M. Vocer, K., and
Scurercn, W. P., 1993, Phys. Lett. A, 176, 41; (a) KUnn, H., WeLsch, D.-G., and
Vocer, W., 1994, J. mod. Optics, 41, 1607; (e) Acarwar, G. S., and CuaTurvenr, S.,
Phys. Rev. A, 49, R665; (f) Vogel, W., and WeLscu, D.-G., 1995, Acta Phys.
Slovaca, 45, 313; (g) Leonuaror, U., Munrog, M., Kiss, T., Ricurer, T., and
Ravmer, M. G., 1966, Optics Commun., 127, 144; (h) Leoxuarot, U., Paur, H., and
D’Ariano, G. M., 1995, Phys. Rev. A, 52, 4899; (i) D’ Ariano, G. M., LEoNHARDT,
U., and Pauvw, H., 1995, Phys. Rev. A, 52, R1801 (j) Lreoxnarot, U., and Paut, H.,
Phys. Lett. A, 193, 117; 1994, J. mod. optics, 41, 1427.

[2] (a) Smrruey, D. T., Beck, M., Raymer, M. G., and Farmani, A., 1993, Phys. Rev.
Lett., 70, 1244; (b) Smrruey, D. T., Beck, M., CoorEr, J., and Raymer, M. G., 1993,
Phys. Scripta T, 48, 35; (c) Beck, M., Ravmer, M. G., WawmsLey, I. A., and Wong,
V., 1993, Optics lett., 18, 2041; (d) Beck, M., Smrruey, D. T., and Ravmer, M. G.,
1993, Phys. Rev. A, 48, R890; () Ravmer, M. G., Beck, M., and McAvListEr, D. F.,
1994, Phys. Rev. Lett., 72, 1137; (f) Raymer, M. G., Smrruey, D. T., Beck, M., and
Coorer, J., 1994, Acta Phys. Polonica, 86, 71.

[3] ScuiLLer, S., Brertensach, G., Perera, S. F., MULLer, T., and Muy~ek, J. 1996,
Phys. Rev. Lett., 77, 2933.

[4] (a) WaLLexTowTz, S., and Vocer, W., 1995, Phys. Rev. Lett., 75, 2932; (b) Povaros,
J. F.., WaLser, R., Cirac, J. 1., ZorLer, P., and Brarr, R., 1996, Phys. Rev. A, 53,
R1966; (c) D’HeLox, C. and Misury, G. J., 1996, Phys. Rev. A, 53, R25.

[5] Janicke, U., and Wirkens, M., 1995, J. mod. Optics, 42, 2183.

[6] Lemrriep, D., Meexknor, D. M., Kixe, B. E., Moxrog, C., Itano, W. M., and
WineLano, D. J., 1996, Phys. Rev. Lett., 77, 4281.

[7] Kurrsierer, Ch., Prau, T., and Mvuy~exk, J., 1997, Nature, 386, 150.

[8] (a) Leonuaror, U., 1995, Phys. Rev. Lett., 74, 4101; 1996, Phys. Rev. A, 53, 2998;
(b) Woorrers, W. K., 1986, Found. Phys., 16, 391; 1987, Ann. Phys. (N.Y.), 175, 1;
(¢) Garerrr, D., and De Torepo Piza, A. F. R., 1988, Physica A, 149, 267;
(d) OPATRNY:, T., Buzek, V., Bajer, J., and Drosxy, G., 1995, Phys. Rev. A, 52, 2419;
(e) Oratrny, T., Welsch, D.-G., and Buzexk, V., 1996, Phys. Rev. A, 53, 3822.

[9] (a) Barexco, A., and Exerr, A. K., 1995, Acta Phys. Slovaca, 45, 205; (b) Barenco, A.,
1996, Contemp. Phys., 37, 359, and references therein.

[10] (a) WaLser, R., Cirac, J. 1., and Zovrer, P., 1996, Phys. Rev. Lett., 77, 2658; (b)
Parkins, A. S., MarrE, P., ZoLLER, P., Carnar, O., and Kivsrg, H. J., 1995, Phys.


http://figaro.catchword.com/nw=1/rpsv/0959-8472^28^2940L.2847
http://figaro.catchword.com/nw=1/rpsv/0015-9018^28^2917L.397
http://figaro.catchword.com/nw=1/rpsv/0375-9601^28^29176L.41
http://figaro.catchword.com/nw=1/rpsv/0950-0340^28^2941L.1607
http://figaro.catchword.com/nw=1/rpsv/0323-0465^28^2945L.313
http://figaro.catchword.com/nw=1/rpsv/0030-4018^28^29127L.144
http://figaro.catchword.com/nw=1/rpsv/0959-8472^28^2952L.4899
http://figaro.catchword.com/nw=1/rpsv/0375-9601^28^29193L.117
http://figaro.catchword.com/nw=1/rpsv/0950-0340^28^2941L.1427
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2970L.1244[csa=0031-9007^26vol=70^26iss=9^26firstpage=1244]
http://figaro.catchword.com/nw=1/rpsv/0146-9592^28^2918L.2041
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2972L.1137
http://figaro.catchword.com/nw=1/rpsv/0587-4254^28^2986L.71
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2977L.2933
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2975L.2932
http://figaro.catchword.com/nw=1/rpsv/0950-0340^28^2942L.2183[csa=0950-0340^26vol=42^26iss=11^26firstpage=2183]
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2977L.4281
http://figaro.catchword.com/nw=1/rpsv/0028-0836^28^29386L.150
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2974L.4101
http://figaro.catchword.com/nw=1/rpsv/0959-8472^28^2953L.2998
http://figaro.catchword.com/nw=1/rpsv/0015-9018^28^2916L.391
http://figaro.catchword.com/nw=1/rpsv/0959-8472^28^2952L.2419
http://figaro.catchword.com/nw=1/rpsv/0959-8472^28^2953L.3822
http://figaro.catchword.com/nw=1/rpsv/0323-0465^28^2945L.205
http://figaro.catchword.com/nw=1/rpsv/0010-7514^28^2937L.359
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2977L.2658
http://figaro.catchword.com/nw=1/rpsv/0323-0465^28^2945L.313
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2970L.1244[csa=0031-9007^26vol=70^26iss=9^26firstpage=1244]

Reconstruction of quantum states of spin systems 2627

Rev. A., 51, 1578; (c) Parkins, A. S., Martg, P., ZoLLer, P., and Kimvee, H. J.,
1993, Phys. Rev. Lett., 71, 3095.

[11] (a) Baxp, W., and Park, J. L., 1979, Am. J. Phys., 47, 188; (b) Banp, W., and Parx, J.
L., 1970, Found. Phys., 1, 133; 1971, ibid., 1, 339; Park, J. L., and Banp, W., 1971,
Found. Phys., 1, 211.

[12] Newron, R. G., and Youne, B.-L., 1968, Ann. Phys. (N.Y.), 49, 393.

[13] Woorters, W. K., 1986, Found. Phys., 16, 391.

[14] (a) Fick, E., and Savermany, G., 1990, The Quantum Statistics of Dynamic Processes
(Berlin: Springer); (b) Karur, J. N., and Krsavax, H. K., 1992, Entropic
Optimization Principles with Applications (New York: Academic Press).

[15] Javnes, E. T., 1957, Phys. Rev., 108, 171, 620, 1963, Am. J. Phys., 31, 66.

[16] von Nrumann, J., 1955, Mathematical Foundations of Quantum Mechanics (Princeton
University Press).

[17] Wenre, A., 1978, Rev. mod. Phys., 50, 221.

[18] Exerr, A., 1991, Phys. Rev. Lett., 67, 661; Bexxert, C. H., Brassarp, G., and Mermix,
N. D., 1992, Phys. Rev. Lett., 68, 557.

[19] Peres, A., 1993, Quantum Theory: Concepts and Methods (Dordrecht: Kluwer);
HiLery, M., 1995, Acta Phys. Slovaca, 45, 243.

[20] GreenBercEr, D. M., Horne, M. H., and Zrwincer, A., 1989, Bell's Theorem,
Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Dordrecht:
Kluwer); 1993, Phys. Today, No. 8, 22.

[21] BuZek, V., Apam, G., and Drosny, G., 1996, Ann. Phys. (N.Y.), 245, 36; 1996, Phys.
Rev. A, 54, 804; Wiepemaxn, H., 1997 (submitted).

[22] Joxes, K. R/W., 1991, Ann. Phys. (N.Y.), 207, 140.

[23] Derka, R., BuZexk, V., and Apawm, G., 1966, Acta Phys. Slovaca, 46, 355; Derka, R.,
BuZek, V., Apawm, G., and Knicur, P. L., 1996, J. Fine Mechanics Optics, No 11/12,
341.


http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2971L.3095
http://figaro.catchword.com/nw=1/rpsv/0002-9505^28^2947L.188
http://figaro.catchword.com/nw=1/rpsv/0015-9018^28^291L.133
http://figaro.catchword.com/nw=1/rpsv/0015-9018^28^291L.211
http://figaro.catchword.com/nw=1/rpsv/0015-9018^28^2916L.391
http://figaro.catchword.com/nw=1/rpsv/0959-8472^28^29108L.171
http://figaro.catchword.com/nw=1/rpsv/0002-9505^28^2931L.66
http://figaro.catchword.com/nw=1/rpsv/0034-6861^28^2950L.221
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2967L.661
http://figaro.catchword.com/nw=1/rpsv/0031-9007^28^2968L.557
http://figaro.catchword.com/nw=1/rpsv/0323-0465^28^2945L.243
http://figaro.catchword.com/nw=1/rpsv/0959-8472^28^2954L.804
http://figaro.catchword.com/nw=1/rpsv/0323-0465^28^2946L.355
http://figaro.catchword.com/nw=1/rpsv/0959-8472^28^2954L.804




