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† Department of Physics, Hunter College of the City University of New York, 695 Park Avenue,
New York, NY 10021, USA
‡ Institute of Physics, Slovak Academy of Sciences, Dúbravsḱa cesta 9, 842 28 Bratislava,
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Abstract. A classical analysis of two equal intensity coherent fields incident on a beamsplitter
shows that the difference-phase noise of the output depends only on the noise in the difference
of the amplitudes of the input fields and not on their phase noise. This suggests that in the
quantum mechanical case squeezing in the amplitudes of the input beams can lead to squeezing
in the phase difference of the output beams. We show that this is true. We also find the phase
properties of the output when the input consists of two number states with an equal number of
photons. The difference phase distribution consists of two narrow peaks, atθ = 0 andθ = π .
States with small phase difference noise should be useful in the measurement of phase shifts.

1. Introduction

A beamsplitter is perhaps one of the simplest optical devices. They are of interest in
themselves and as components of interferometers. In a beamsplitter two input beams are
transformed into two output beams. Classically this transformation is quite simple but
quantum mechanically the situation is more complicated; the quantum properties of the
input and output beams are not the same. With the development of sources of nonclassical
light these issues have attracted increased attention. Considerable work has been done on
the relation between the quantum properties of the input beams and those of the output
beams [1–6]. Some of this work has focused on beamsplitters in interferometers [1], and
some has analysed their role in homodyne and heterodyne detection [4, 5]. Campos, Saleh
and Teich made a detailed study of the relation between the number distributions of the
input and the output states [6]. They found some rather unusual effects. For example, for
a 50–50 beamsplitter with number state inputs with equal numbers of photons in each port,
the probability of detecting an odd number of photons in either output port vanishes.

Here we want to examine the phase properties of the beamsplitter output. It is the
behaviour of the phase difference between the output beams which determines how the
beamsplitter will behave as part of an interferometer. In particular, we want to consider the
case when the intensities of the input beams are equal. As we shall see, this will allow us
to produce output beams with reduced noise in the difference of their phases. Such beams
should be useful in the measurement of phase shifts.

A classical analysis shows that for two equal intensity input beams the noise in the
phase difference of the output beams depends only on the intensity noise of the input beams
and not on their phase noise. This is true as long as the intensity and phase noise are not
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too large. This suggests that in the quantum case intensity squeezing could be converted
to phase difference squeezing by a beamsplitter. An analysis with input states which are
coherent states squeezed in the amplitude direction shows that this is indeeed true.

We also consider what happens when the intensity noise of the input state is zero but
the phase noise is large. This is the case if the input state consists of two number states
with equal photon numbers. This situation was first considered by Holland and Burnett, but
our results differ somewhat from theirs [7]. We find that the difference phase distribution
of the output has two peaks, one at zero and one atπ . Each of these peaks exhibits phase
squeezing. In fact, the output is a superposition of a state with phase difference zero and
one with phase differenceπ which one can view as a kind of Schrödinger cat.

Finally, we briefly examine the effect of an input state in which the two input beams are
correlated. The classical analysis suggests that if the amplitudes of the input beams are equal,
and if the amplitude fluctuations are correlated, then the difference phase fluctuations will be
small. In the quantum mechanical case, a displaced two-mode squeezed state satisfies these
conditions, and we verify that it produces an output state with difference-phase squeezing.

2. Classical analysis

Let us begin our study by considering what happens when classical light is incident on a
beamsplitter (figure 1). The complex amplitudes of the input fields will be designated by
α1in = r1eiθ1 andα2in = r2eiθ2, while those of the output fields will be denoted byα1out and
α2out. We shall assume that our beamsplitter is such that(

α1out

α2out

)
= 1√

2

(
1 −i
−i 1

) (
α1in

α2in

)
. (1)

We are interested in finding the phase difference,θd, between the output beams. This can
be done by finding the argument ofα∗

2outα1out. We find that

θd = arg(α∗
2outα1out) = arctan

(
r2

1 − r2
2

2r1r2 cos(θ1 − θ2)

)
. (2)

It is necessary at this point to discuss which branch of arctan should be taken. The
quantity 2r1r2 cos(θ1 − θ2) is the real part ofα∗

2outα1out. If the real part is positive the
argument ofα∗

2outα1out is between−π/2 andπ/2 while if it is negative the argument is
either betweenπ/2 andπ or between−π and−π/2. Therefore, if cos(θ1 − θ2) > 0, then
−π/2 6 θd 6 π/2, and if cos(θ1−θ2) < 0, then eitherπ/2 < θd 6 π or −π < θd < −π/2.

Figure 1. Beamsplitter input and output modes. In the quantum
mechanical case the classical mode amplitudes are replaced by
annihilation operators.
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Now consider the caser1 = r2. Thenθd will be either 0 orπ depending on whether
cos(θ1 − θ2) is positive or negative. This offers the possibility of very small phase
fluctuations inθd even if there are substantial fluctuations inθ1 and θ2. In particular,
suppose thatθ1 and θ2 both fluctuate about the valueθ0 and that the fluctuations are such
that θ0 − π/4 < θj < θ0 + π/4, j = 1, 2. This implies that cos(θ1 − θ2) is positive and
implies that, despite large phase fluctuations inθ1 and θ2, the value ofθd is always zero.
Therefore, a beamsplitter with input beams of equal intensity can provide output beams
with a very well defined difference phase.

Let us do a more detailed analysis incorporating both amplitude and phase fluctuations.
Suppose thatr1, r2, θ1, and θ2 all fluctuate and that the fluctuations are small, i.e. small
enough so that we need only consider quantities of at most second order in the fluctuations.
Assume thatr1 andr2 have the same mean value,r = 〈r1〉 = 〈r2〉, and defineδrj = rj − r,
j = 1, 2. Let us also assume, for simplicity, that the mean value ofθ1 − θ2 is zero. Making
use of equation (2) we find that

〈(δθd)
2〉 = 1

r2
〈(δr1 − δr2)

2〉 (3)

whereδθd = θd − 〈θd〉. Note that at this level of approximation the fluctuations inθd do
not depend on the phase fluctuations but on the intensity fluctuations. Thus, an input with
small intensity fluctuations can be used to produce an output with small fluctuations in
the difference phase. Note also that an input with correlated amplitude fluctuations can
also reduce phase-difference fluctuations. The most extreme case would be ifδr1 = δr2,
which, classically, leads to no difference-phase noise at all. We shall examine a quantum
mechanical analogue of this situation in section 6.

3. Quantum analysis—coherent states

A close connection between the classical and quantum results occurs when the input state
to the beamsplitter is a product of a coherent state in mode 1,|β1in〉, and another coherent
state in mode 2,|β2in〉. The coherent state parameters,β1in and β2in, correspond to the
classical mode amplitudes. The output state from the beamsplitter is also a product of
coherent states,|β1out〉1 ⊗ |β2out〉2. The output parameters,β1out andβ2out, are related to the
input parameters,β1in andβ2in, in the same way that the classical output mode amplitudes
are related to the classical input amplitudes, i.e. through equation (1) [2, 3].

Let us now justify these statements. Quantum mechanically a beamsplitter is described
as a transformation between the in operators of its two modes and the out operators of
the same modes [1]. The transformation corresponding to the beamsplitter in the previous
section is given by(

a1out

a2out

)
= 1√

2

(
1 −i
−i 1

) (
a1in

a2in

)
(4)

whereaj in andajout, j = 1, 2 are the in and out annihilation operators, respectively. This
transformation can also be represented as [1](

a1out

a2out

)
= U−1

1

(
a1in

a2in

)
U1 (5)

where

U1 = exp[−iπ(a
†
1ina2in + a1ina

†
2in)/2]. (6)
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The operatorU1 also transforms input states into output states, i.e. if|9in〉 is the input state
to the beamsplitter then the output state,|9out〉 is

|9out〉 = U1|9in〉. (7)

For the sake of notational simplicity we shall henceforth drop the subscript ‘in’ on in
operators. Operators without an in or an out subscript will be understood to be in operators.

An input state which is a product of coherent states,

|9in〉 = |β1〉 ⊗ |β2〉 (8)

can be expressed in the form

|9in〉 = D1(β1)D2(β2)|0〉1 ⊗ |0〉2 (9)

whereD1(β1) andD2(β2) are the displacement operators for modes 1 and 2, respectively,

D1(β1) = exp(β1a
†
1 − β∗

1a1) (10)

D2(β2) = exp(β2a
†
2 − β∗

2a2). (11)

The output state is most easily found by applyingU1 to both sides of (9) and making use
of the operator transformations in (4) and (5). The result is

|9out〉 =
∣∣∣∣β1 − iβ2√

2

〉
1

⊗
∣∣∣∣β2 − iβ1√

2

〉
2

(12)

i.e. the product of two coherent states.
In order to discuss the phase properties of|9out〉 it is useful to find its phase distribution.

This is given by

P(θ1, θ2) = |〈θ1, θ2|9out〉|2 (13)

where

|θ1, θ2〉 = |θ1〉1 ⊗ |θ2〉2 (14)

=
[ (

1

2π

)1/2 ∞∑
n1=0

ein1θ1|n1〉1

]
⊗

[ (
1

2π

)1/2 ∞∑
n2=0

ein2θ2|n2〉2

]
. (15)

Let us assume that|β1 − iβ2| � 1 and that|β2 − iβ1| � 1. We can then make use of the
formula for the inner product of a large amplitude coherent state,|α〉, and a phase state|θ〉

〈θ |α〉 ∼=
(

2|α|2
π

)1/4

ei|α|2(φ−θ)−|α|2(φ−θ)2
(16)

whereα = |α|eiφ [8].
The application of this formula requires that we find the arguments and magnitudes of

(β1 − iβ2)/
√

2 and(β2 − iβ1)/
√

2. If β1 andβ2 are expressed in polar notation

β1 = |β1|eiµ1 β2 = |β2|eiµ2 (17)

then we find that

arg(β1 − iβ2) = arctan

( |β1| sinµ1 − |β2| cosµ2

|β1| cosµ1 + |β2| sinµ2

)
(18)

arg(β2 − iβ1) = arctan

( |β2| sinµ2 − |β1| cosµ1

|β2| cosµ2 + |β1| sinµ1

)
. (19)
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The classical analysis suggests that we look at the case|β1| = |β2|. Making this assumption
we find from (18) and (19) that if the numerators of the fractions inside the arctan functions
have the same sign, then

arg(β1 − iβ2) = arg(β2 − iβ1). (20)

If they have opposite signs, the arguments differ byπ . Let us assume that they have the
same sign so that equation (20) applies. We shall denote the common phase byθ0. Turning
our attention now to the magnitudes we have∣∣∣∣β1 − iβ2√

2

∣∣∣∣2

= r2[1 − sin(µ1 − µ2)] (21)∣∣∣∣β2 − iβ1√
2

∣∣∣∣2

= r2[1 + sin(µ1 − µ2)] (22)

wherer = |β1| = |β2|.
We are now in a position to find the phase distribution of the output state. We have

P(θ1, θ2) ∼= 2

π
r2| cos(µ1 − µ2)| exp{−2r2[1 − sin(µ1 − µ2)](θ1 − θ0)

2

−2r2[1 + sin(µ1 − µ2)](θ2 − θ0)
2}. (23)

From this expression we see that the phase of each mode is peaked aboutθ0, and the
width of the peaks is of order 1/r, although the exact widths depend onµ1 andµ2. This
implies that the difference phase is sharply peaked about zero. This is in agreement with
our expectations from the classical argument.

To see this in more detail let us calculate the distribution forθd. This can be done by
expressingP(θ1, θ2) in terms ofθd and the sum angle,θs = (θ1 + θ2), and integrating out
θs. The result is

P(θd) = r√
π

| cos(µ1 − µ2)| exp{−r2 cos2(µ1 − µ2)θ
2
d}. (24)

This confirms our result from the preceding paragraph thatP(θd) is highly peaked about
zero with the width of the peak being of order 1/r. In addition we see that the peak will
be narrowest whenµ1 = µ2. Therefore, to achieve the sharpest difference phase in the
output the two input coherent states should have complex amplitudes whose magnitudes
and phases are equal.

4. Two-squeezed-state input

Let us now consider the situation when identical displaced squeezed states are sent into the
input ports. Each state is squeezed in the direction of the displacement so that the amplitude
noise of each state is decreased and the phase noise is increased. According to our classical
argument this input state should produce an output whose difference phase is squeezed. We
would like to verify that this is so.

One approach is to calculate the difference phase distribution for the output state. This
is rather complicated so we shall take a different approach which is valid if the squeezing
is not too large. Consider the operator

V = 1
2(eiφ1a1 + eiφ2a2 + e−iφ1a

†
1 + e−iφ2a

†
2) (25)

which corresponds to the classical quantity

Vcl = 1
2(eiφ1α1 + eiφ2α2 + e−iφ1α∗

1 + e−iφ2α∗
2) (26)
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whereα1 = r1eiθ1 andα2 = r2eiθ2. As in section 2 we assume thatr1, r2, θ1, andθ2 fluctuate,
and that

〈r1〉 = 〈r2〉 = r 〈θ1 − θ2〉 = 0. (27)

Settingφ1 = 1
2π − 〈θ1〉 andφ2 = 3

2π − 〈θ2〉 and keeping quantities of up to second order
in δrj andδθj , j = 1, 2, we find

(δVcl)
2 = r2〈(δθ1 − δθ2)

2〉 (28)

i.e. we can identify(δVcl)
2 with r2〈(δθd)

2〉. For displaced squeezed states, with identical
displacements,reiθ , we can set

〈(δθd)
2〉 = 1

r2
(1V )2 (29)

with φ1 = 1
2π −θ andφ2 = 3

2π −θ . Therefore, in order to find〈(δθd)
2〉 for our output state

we need to apply the beamsplitter transformation to the input state and calculate(1V )2.
For the input state in each mode we choose a displaced squeezed state. In order to

produce this state we start with a squeezed vacuum state, which is squeezed in the real
direction, and then displace it along the positive real axis of the complex amplitude plane
(figure 1). Explicitly the state is

|9in〉 = D1(r)D2(r)S1(−µ)S2(−µ)|0〉1 ⊗ |0〉2 (30)

wherer andµ are real and greater than zero. The squeeze operator,Sj (−µ), for j = 1, 2
is given by

Sj (−µ) = exp{−µ[(a†
j )2 − a2

j ]/2}. (31)

We next apply the beamsplitter transformation,U1, to |9in〉. Use of equations (6) and (30)
yields

|9out〉 = U1|9in〉
= D1(re−iπ/4)D2(re−iπ/4) exp[iµ(a

†
1a

†
2 + a1a2)]|0〉1 ⊗ |0〉2. (32)

We now apply equation (29) to this state. We first note that the angle of the displacement
is −π/4 so thatφ1 = 3π/4 andφ2 = −π/4. With these choices,(1V )2 for |9out〉 becomes

(1V )2 = 1
2e−2µ (33)

and

〈(δθd)
2〉 = 1

2r2
e−2µ. (34)

From equation (34) we clearly see that asµ increases the variance in the difference
phase decreases. In fact, becauseµ = 0 corresponds to coherent states, forµ > 0 there is
less noise in the difference phase than there is for coherent states, and we have difference
phase squeezing. Therefore,amplitude squeezing in the input can lead to phase difference
squeezing in the output.

5. Number state inputs

A product of number states with an equal number of photons in each mode is a state with no
intensity fluctuations and equal intensities in both modes. A superficial examination of our
classical argument would suggest that such an input state would produce an output state with
a very well defined difference phase. A more careful analysis leads to somewhat different
conclusions. Because the phase of a number state is arbitrary the factor cos(θ1 − θ2) in (2)
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can be either positive or negative with number state inputs. This suggests that, according
to the arguments in section 2, the phase of the output state can be either 0 orπ . In fact, we
shall find that the output state is a superposition of a state with a phase of 0 and another
with a phase ofπ .

In order to perform this calculation it is useful to introduce the analogy between
beamsplitters and rotations which has been introduced by a number of authors [1, 6]. This
is done by using the mode operatorsa1 anda2 to construct the Schwinger representation of
the angular momentum operators

J1 = (a1a
†
2 + a

†
1a2)/2 J2 = i(a1a

†
2 − a

†
1a2)/2 J3 = (a

†
1a1 − a

†
2a2)/2. (35)

The operatorU1 which describes the action of our beamsplitter can be expressed as

U1 = e−iπJ1/2. (36)

The number state|n1〉 ⊗ |n2〉 corresponds to the angular momentum state|j, m〉 where

j = (n1 + n2)/2 m = (n1 − n2)/2. (37)

This state is an eigenstate of the total angular momentumEJ 2 with eigenvaluej (j + 1), and
of J3 with eigenvaluem.

Because we are interested in states for whichn1 = n2 we shall consider the input state
to be |j, 0〉 wherej is an integer. The action of the beamsplitter on this state is given by

U1|j, 0〉 =
j∑

m′=−j

D
j

m′,0|j, m′〉 (38)

whereD
j
m1,m2 is the matrix for the rotation exp(−iπJ1/2) in the representation ofSU (2)

corresponding toj . This rotation can also be expressed as

U1|j, 0〉 =
j∑

m′=−j

eim′π/2d
j

m′,0(π/2)|j, m′〉 (39)

whered
j
m1,m2(π/2) is the Wigner rotation matrix for the representation labelled byj . For

integer values ofj we have the relation

d
j

m,0(θ) =
√

4π

2j + 1
Yj,m(θ, 0) (40)

whereYj,m(θ, φ) is a spherical harmonic. Settingθ = π/2 and making use of the definition
of Yj,m in terms of associated Legendre functions,P m

j (x), we have [9]

d
j

m,0(π/2) =
√

(j − m)!

(j + m)!
P m

j (0)

= 2−j cos[π(j + m)/2]

√
(j + m)!(j − m)!

((j + m)/2)!((j − m)/2)!
. (41)

Let us define

cm = 2−j

√
(j + m)!(j − m)!

((j + m)/2)!((j − m)/2)!

∼=
√

2

π

1

(j2 − m2)1/4
(42)
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Figure 2. Difference-phase distribution for the state|ψπ 〉 for j = 10. Note that the distribution
is sharply peaked.

where the approximate form, which is valid form not too close toj , comes from applying
the Stirling approximation to the factorials. Finally, we have for the output state

U1|j, 0〉 =
j∑

m′=−j

im
′
cos[π(j + m′)/2]cm′ |j, m′〉. (43)

To be specific let us consider the case whenj is even. The casej odd is similar. Ifj
is even, the cosine factor in (43) is zero form′ odd. This means that the output state can
be expressed as

U1|j, 0〉 = 1

N0
(|ψ0〉 + |ψπ 〉) (44)

where

|ψ0〉 = N0

2
cos(πj/2)

j∑
m′=−j

cm′ |j, m′〉

|ψπ 〉 = N0

2
cos(πj/2)

j∑
m′=−j

(−1)m
′
cm′ |j, m′〉 (45)

andN0 is a constant which guarantees that|ψ0〉 and |ψπ 〉 are normalized to one. The state
|ψ0〉 has a phase distribution which has a peak atθd = 0 and|ψπ 〉 has a distribution with a
peak atθd = π . The difference phase distribution of|ψπ 〉 is plotted in figure 2 for the case
j = 10.

The rotational width in the difference phase of each of these states can be estimated
from the expression in (45). The rotational width is derived from examining the overlap
between a state and a rotated version of itself [10–12]. It gives a good indication of the
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utility of a state for measuring phase shifts. In the case of the difference phase we consider
the function

F(θd) = |〈ψ|e−iθdJ3ψ〉|2. (46)

This function has a maximum value of one forθd = 0 and near this peak its behaviour is
given by

F(θd) ∼= 1 − (1J3)
2θ2

d . (47)

Consequently, we can obtain an estimate of the width of the maximum, which is the
rotational width of the state, by finding 1/(1J3). For |ψ0〉 we have

〈ψ0|J3|ψ0〉 = N2
0

4

j∑
m=−j

|cm|2m = 0 (48)

〈ψ0|J 2
3 |ψ0〉 = N2

0

4

j∑
m=−j

|cm|2m2

∼= 1

π

∫ j

−j

dm
m2

(j2 − m2)1/2
= j2

2
(49)

where in (49) we have replaced the sum by an integral and used the approximate form for
cm given in (42). We see, then, that the rotational width of|ψ0〉 is approximately

1

1J3

∼=
√

2

j
(50)

i.e. the rotational width goes like the inverse of the number of photons in the state. This is
a very narrow width. A state consisting of a coherent state in each mode, both of which
have the same average number of photons, has a width in its difference phase which goes
like the inverse of the square root of the number of photons in the state. Therefore, our
number state input produces an output state which is the superposition of two states each
of which has a very well defined difference phase.

6. Correlated inputs

As was mentioned in section 2 another method of reducing phase-difference fluctuations at
the output of a beamsplitter is to introduce correlations into the amplitudes of the two input
beams. Here we shall consider a specific example of this. For our input state we choose a
displaced two-mode squeezed state

|9in〉 = D1(r)D2(r)S12(ξ)|0〉1 ⊗ |0〉2 (51)

whereS12(ξ) = exp(ξa
†
1a

†
2 − ξ ∗a1a2), and we shall assume thatξ is real and positive. We

first need to show that this state has small fluctuations in the difference of the amplitudes
of the two modes, and that, when sent through a beamsplitter, it produces an output whose
difference-phase noise is squeezed.

Going back to our classical analysis we note that if the two modes have the same mean
amplitude, i.e.〈r1〉 = 〈r2〉 = r, then

r2
1 − r2

2 = 2r(δr1 − δr2) (52)

so that

〈(δr1 − δr2)
2〉 = 1

4r2
〈(r2

1 − r2
2)2〉. (53)
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The classical quantitiesr2
1 andr2

2 correspond to the quantum mechanical operatorsa
†
1a1 and

a
†
2a2, respectively. Therefore, for a quantum state whose mean amplitude is much larger

than the size of its fluctuations, we can set

〈(δr1 − δr2)
2〉 = 1

r2
〈J 2

3 〉. (54)

If we evaluate the right-hand side for|9in〉, we find

〈(δr1 − δr2)
2〉 = 1

2e−2ξ (55)

so that the fluctuations in the difference of the amplitudes are squeezed.
We now send|9in〉 into the beamsplitter and find the fluctuations in the difference

phase at the output using the same method as in section 4. The state emerging from the
beamsplitter is

|9out〉 = D1(re−iπ/4)D2(reiπ/4)S1(−iξ)S2(−iξ)|0〉1 ⊗ |0〉2 (56)

whereSj (z) = exp[(z(a†
j )2 − z∗a2

j )/2], andj = 1, 2, is the single-mode squeezing operator.
Our result for|9out〉 implies that the choice of angles in computingV is φ1 = 3π/4 and
φ2 = −π/4. For the difference-phase fluctuations of our output state we find

〈(δθd)
2〉 = 1

2r2
e−2ξ (57)

i.e. they are squeezed. Therefore, our classical analysis has again led us to a correct quantum
mechanical conclusion: a beamsplitter input with equal mean amplitudes and correlated
amplitude fluctuations will produce an output state with small difference-phase fluctuations.

7. Conclusion

By pursuing a classical analogy we have found that it is possible to use a beamsplitter
to convert two-mode light with reduced amplitude fluctuations into light with reduced
fluctuations in the phase difference between the modes. An interferometer detects this phase
difference so that by reducing fluctuations in this quantity more accurate interferometric
measurements become possible. Amplitude squeezing is generally easier to produce than
phase squeezing so that the fact that a beamsplitter allows conversion from one kind to
the other is useful. For example, constant-current-driven semiconductor lasers can produce
amplitude squeezed light [13]. This suggests that two injection-locked semiconductor lasers,
with equal intensities, sent into a beamsplitter would produce phase-difference squeezed
light. The injection locking is necessary to control the phase noise so that we only pick up
the phase-difference point at zero and not the one atπ .

A Mach–Zehnder interferometer consists of two beamsplitters and two additional
mirrors. The analysis we have presented here applies to the first of these beamsplitters. We
have seen how to produce states with a well defined difference phase, which are suitable
for measuring a phase shift, as well as states with two sharp peaks in their difference-phase
distribution. The second beamsplitter in the interferometer converts the phase information
back into photon-number information. One would like to understand this process more
completely and to ask whether it is the optimal way to detect the phase information in
the state between the beamsplitters. Phase-shift information can even be obtained when
the state inside the interferometer has more than one sharp peak in its difference-phase
distribution, as was shown by Holland and Burnett [7]. All of this suggests that a quantum
phase analysis of a Mach–Zehnder interferometer would be useful both in gaining a better
understanding of how it works and in finding ways to improve its accuracy.
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