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Institute of Physics, Slovak Academy of Sciences, Du´bravskácesta 9, 842 28 Bratislava, Slovakia

~Received 16 May 1995; revised manuscript received 4 January 1996!

We apply the Jaynes principle of maximum entropy@Phys. Rev.106, 620 ~1957!; 108, 171 ~1957!# for a
reconstruction of Wigner functions of quantum-mechanical states of light on different observation levels. We
study how quantum interference between components of superpositions of coherent states, which is responsible
for the appearance of nonclassical effects, can be detected on different observation levels. We analyze in detail
the reconstruction of Wigner functions of squeezed states on different observation levels in the case of nonunit
detection efficiency modeled as a decay of the state under consideration into a zero-temperature reservoir.
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I. INTRODUCTION

The Wigner function@1# of the quantum-mechanical state
which is described by the density operatorr̂ can, in prin-
ciple, be reconstructed either via a set of single-observable
measurements~the so-called optical homodyne tomography
@2,3#! or via a simultaneous measurement of two noncom-
muting observables~see, for instance, the concept of propen-
sities as discussed by Wo´dkiewicz @4# and others@5,6#!. The
completely reconstructed Wigner function, or equivalently
the reconstructed density operator, contains information
aboutall independent moments of the system operators, i.e.,
in the case of the quantum harmonic oscillator the knowl-
edge of the Wigner function is equivalent to the knowledge
of all momentŝ (â†)mân& of the creation (â†) and annihila-
tion (â) operators.

In many cases it turns out that the state under consider-
ation is characterized by aninfinite number of independent
moments^(â†)mân& ~for all m and n). To perform acom-
plete measurement of these moments can take an infinite
time. This means that even though the Wigner function can
in principle be reconstructed the collection of experimental
data takes an infinite time. In addition, the data processing
and numerical reconstruction of the Wigner function are time
consuming as well. Therefore an experimental realization of
the reconstruction of the Wigner function can be question-
able.

In practice, it is possible to perform a measurement of just
a finite number of independent moments of the system op-
erators. The aim of this paper is to analyze how the Wigner
function of a quantum state of a single-mode light field can
be ~partially! reconstructed from not necessarily complete

data obtained from the measurement of the system~i.e., from
a finite number of moments of system operators!. Simulta-
neously we address the question of how to quantify the pre-
cision with which the Wigner function is reconstructed. To
accomplish this task we utilize the concept of observation
levels@7#, where each observation level is specified by a set
of linearly independent operatorsĜn (n51,2, . . . ,n) for
which expectation valuesGn are given~measured!. With the
help of the Jaynes principle of maximum entropy@8# ~see
also @7,9#! we will show how to reconstruct in the most re-
liable way the Wigner function of the measured state within
a given observation level. In addition, we analyze how quan-
tum coherences can be detected on different observation lev-
els. In other words, we address the problem:Which is the
most incomplete observation level which still allows us to
distinguish between a pure state and the corresponding sta-
tistical mixture?To model nonunit efficiency measurements
we analyze the ‘‘decay’’ of quantum-mechanical states into a
zero-temperature reservoir~heat bath!. The paper is orga-
nized as follows. In Sec. II we briefly review basic elements
of the phase-space formalism used in quantum optics. In Sec.
III we introduce the concept of observation levels applied to
quantum optics. In Sec. IV we show how with the help of the
maximum entropy principle Wigner functions on given ob-
servation levels can be reconstructed. In Sec. V we analyze
Wigner functions of a squeezed vacuum state of light on
different observation levels. Section VI is devoted to a dis-
cussion of detection of quantum coherences on different ob-
servation levels and description of the decay of superposition
states of light. We finish our paper with conclusions.

II. PHASE-SPACE DESCRIPTION OF STATES
OF A SINGLE-MODE FIELD

Utilizing a close analogy between the operator for the
electric componentÊ(r ,t) of a monochromatic light field
and the quantum-mechanical harmonic oscillator, we will
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consider a dynamical system which is described by a pair of
canonically conjugated Hermitian observablesq̂ and p̂, with
@ q̂,p̂#5 i\. Eigenvaluesq and p of these operators range
continuously from2` to1`. The annihilation and creation
operatorsâ and â† can be expressed as a complex linear
combination ofq̂ and p̂:

â5
1

A2\
~lq̂1 il21p̂!, â†5

1

A2\
~lq̂2 il21p̂!,

~2.1!

wherel is an arbitrary real parameter. The operatorsâ and
â† obey the Weyl-Heisenberg commutation relation
@ â,â†#51.

A particularly useful set of states is the overcomplete set
of coherent statesua& which are the eigenstates of the anni-
hilation operatorâ, i.e., âua&5aua&. These coherent states
can be generated from the vacuum stateu0& @defined as
âu0&50# by the action of the unitary displacement operator
D̂(a) @6#,

D̂~a![exp@aâ†2a* â#, ua&5D̂~a!u0&. ~2.2!

The parametric space of eigenvalues, i.e., thephase spacefor
our dynamical system, is theinfinite plane of eigenvalues
(q,p) of the Hermitian operatorsq̂ and p̂. An equivalent
phase space is the complex plane of eigenvalues

a5
1

A2\
~lq1 il21p! ~2.3!

of the annihilation operatorâ. The parametersq andp in Eq.
~2.3! can be interpreted as the expectation values of the op-
eratorsq̂ and p̂ in the stateua&.

The phase-space description of the quantum-mechanical
oscillator which is in the state described by the density op-
eratorr̂5uC&^Cu ~in what follows we will consider mainly
pure states! is based on the definition of the Wigner function
@1# WuC&(j). The Wigner function of the system described
by the density operatorr̂ is defined as@10#

WuC&~j!5
1

pE Tr@ r̂D̂~h!#exp~jh*2j*h!d2h, ~2.4!

whereD̂(h) is given by Eq.~2.2!.
The Wigner function can also be defined as a particular

Fourier transform of the density operator expressed in the
basis of the eigenvectorsuq& of theposition operatorq̂:

WuC&~q,p![E
2`

`

dz^q2z/2ur̂uq1z/2&eipz/\. ~2.5!

Both definitions~2.4! and ~2.5! of the Wigner function are
identical ~see Hilleryet al. @1#!, providing the parametersj
and j* are related to the coordinatesq and p of the phase
space as

j5
1

A2\
~lq1 il21p!, j*5

1

A2\
~lq2 il21p!.

~2.6!

The Wigner function can be interpreted as the quasiprobabil-
ity density distribution~see below! through which a prob-
ability can be expressed to find a quantum-mechanical sys-
tem ~harmonic oscillator! around the ‘‘point’’ (q,p) of the
phase space.

III. MAXIMUM ENTROPY PRINCIPLE
AND OBSERVATION LEVELS

The state of a quantum system can always be described by
a statistical density operatorr̂. Depending on the system
preparation, the density operator represents either a pure
quantum state~complete system preparation! or a statistical
mixture of pure states~incomplete preparation!. The degree
of deviation of a statistical mixture from the pure state can be
best described by theuncertainty measureh@r̂# ~see@7,9#!,

h@r̂#52kBTr~ r̂ lnr̂ !, ~3.1!

wherekB is the Boltzmann constant. The uncertainty mea-
sureh@r̂# is equal to zero for pure states andh@r̂#.0 for
statistical mixtures. For an isolated system the uncertainty
measure is a constant of motion, i.e.,dh(t)/dt50.

A. Maximum entropy principle

There are situations when instead of the density operator
r̂, expectation valuesGn of a set O of operators Ĝn

(n51, . . . ,n) are given. The set of linearly independent op-
erators is referred to as theobservation levelO @7#. A large
number of density operatorsr̂ $Ĝ% which fulfill the conditions

Trr̂ $Ĝ%51, ~3.2a!

Tr~ r̂$Ĝ%Ĝn!5Gn , n51,2, . . . ,n, ~3.2b!

can be found for a given set of expectation values
Gn5^Ĝn&. Each of these density operatorsr̂ $Ĝ% can possess
a different value of the uncertainty measureh@r̂$Ĝ%#. If we
wish to use only the expectation valuesGn of the chosen
observation level for determining the density operator, we
must select a particular density operatorr̂ $Ĝ%5ŝ$Ĝ% in an
unbiased manner. According to the Jaynes principle of maxi-
mum entropy@8# this density operatorŝ$Ĝ% must be the one
which has the largest uncertainty measureh@ŝ$Ĝ%# and si-
multaneously fulfills constraints~3.2!. As a consequence,

h@ŝ$Ĝ%#52kBTr~ ŝ$Ĝ%lnŝ$Ĝ%!>h@r̂$Ĝ%#

52kBTr~ r̂$Ĝ%lnr̂ $Ĝ%! ~3.3!

for all possibler̂ $Ĝ% which fulfill Eqs. ~3.2!. The variation
determining the maximum ofh@ŝ$Ĝ%# under the conditions
~3.2! leads to a generalized canonical density operator@8,11#

ŝ$Ĝ%5
1

Z$Ĝ%
expS 2(

n
lnĜnD , ~3.4!

Z$Ĝ%~l1 , . . . ,ln!5TrFexpS 2(
n

lnĜnD G , ~3.5!

where ln are the Lagrange multipliers andZ$Ĝ%(l1 ,
. . . ,ln) is the generalized partition function. The Lagrange
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multipliers can be expressed as functions of the expectation
values ln5ln(G1 , . . . ,Gn). The maximum uncertainty
measure regarding an observation levelO$Ĝ% will be referred
to as the entropyS$Ĝ%[h@ŝ$Ĝ%#52kBTr(ŝ$Ĝ%lnŝ$Ĝ%). This
entropy can be expressed exclusively in terms of the mean
valuesGn , i.e.,S$Ĝ%5S(G1 , . . . ,Gn).

B. Extension and reduction of the observation level

If an observation levelO$Ĝ%[$Ĝ1 , . . . ,Ĝn% is extended
by including further operatorsM̂1 , . . . ,M̂ l , then additional
expectation valuesM15^M̂1&, . . . ,Ml5^M̂ l& can only in-
crease the amount of available information about the state of
the system. This procedure is called theextensionof the
observation level~from O$Ĝ% to O$Ĝ,M̂ %) and is associated
with a decrease of the entropy. The generalized canonical
density operator on the observation levelO$Ĝ,M̂ % ,

ŝ$Ĝ,M̂ %5
1

Z$Ĝ,M̂ %
expS 2 (

n51

n

lnĜn2 (
m51

l

kmM̂mD , ~3.6!

belongs to the set of density operatorsr̂ $Ĝ% which fulfill
Eq. ~3.2!. The entropyS$Ĝ,M̂ % of the extended observation
level O$Ĝ,M̂ % can only be smaller than or equal to the
entropy S$Ĝ% of the original observation levelO$Ĝ% ,
i.e., S$Ĝ,M̂ %<S$Ĝ% @a special case of Eq.~3.3!#. The
Lagrange multipliers can be expressed as functions of the
expectation values:ln5ln(G1 , . . . ,Gn ,M1 , . . . ,Ml) and
km5km(G1 , . . . , Gn ,M1 , . . . ,Ml). In the special case
km50 the expectation valuesMm are functions of the expec-
tation valuesGn . This means that the measurement of ob-
servablesM̂m does not increase information about the sys-
tem. Consequently,r̂ $Ĝ,M̂ %5 r̂ $Ĝ% andS$Ĝ,M̂ %5S$Ĝ% .

We can also consider areduction of the observation level
if we decrease the number of independent observables which
are measured, e.g.,O$Ĝ,M̂ %→O$Ĝ% ~hereĜn and M̂m are in-
dependent!. This reduction is accompanied by an increase of
the entropy due to the decrease of the information available
about the state of the system.

C. Time-dependent entropy of an observation level

If the dynamical evolution of the system is governed by
the evolution superoperator Û(t,t0), such that
r̂(t)5Û(t,t0) r̂(t0),then the expectation values of the opera-
tors Ĝn on the given observation level at timet are given by
Gn(t)5Tr@ĜnÛ(t,t0) r̂(t0)#. By using these time-dependent
expectation values as constraints for maximizing the uncer-
tainty measureh@r̂$Ĝ%(t)#, we get the generalized canonical
density operatorŝ$Ĝ% @see Eq.~3.4!# with the time-dependent
Lagrange multipliersln(t)5ln„G1(t), . . . ,Gn(t)… and the
time-dependent entropyS$Ĝ%(t) which is associated with the
given observation level. This generalized canonical density
operator is not governed by the von Neumann equation but it
satisfies an integro-differential equation derived by Robert-
son @11# ~see also @12#!. The time-dependent entropy
S$Ĝ%(t) is defined for any system that is arbitrarily far from
equilibrium. In the case of an isolated system the entropy can
increase or decrease during the time evolution~see, for ex-
ample, the book by Hobson, Ref.@9#, Sec. 5.6!.

D. Wigner functions on different observation levels

With the help of a generalized canonical density operator
ŝ$Ĝ% which is associated with ouractual knowledge about
the state of the physical system, we define the Wigner func-
tion in the j phase space at the corresponding observation
level as

W$Ĝ%~j!5
1

pE d2hTr@D̂~h!ŝ$Ĝ%#exp~jh*2j*h!. ~3.7!

An analogous expression can be found for the Wigner func-
tion in the (q,p) phase space@see Eq.~2.5!#.

E. Maximum entropy principle and laws of physics

It has been pointed out by Jaynes@8# that there is a strong
formal resemblance between the maximum entropy formal-
ism and the rules of calculations in statistical mechanics and
thermodynamics. Simultaneously, he has emphasized that
the maximum entropy principle ‘‘has nothing to do with the
laws of physics.’’ In fact, this is the reason why the maxi-
mum entropy principle is applicable in so many fields of
human activity, such as economy or sociology~for more de-
tails, see the book by Kapur and Kesavan@9#!. To be more
specific, it is worth citing a paragraph from Jaynes’ Brandeis
lectures~see p. 183 of these lectures@8#!: ‘‘Conventional
quantum theory has provided an answer to the problem of
setting up initial state descriptions only in the limiting case
where measurements of a complete set of commuting ob-
servables have been made, the density matrixr̂(0) then re-
ducing to the projection operator onto a pure statec(0)
which is the appropriate simultaneous eigenstate of all mea-
sured quantities. But there is almost no experimental situa-
tion in which we really have all this information, and before
we have a theory able to treat actual experimental situations,
existing quantum theory must be supplemented with some
principle that tells us how to translate, or encode, the results
of measurements into a definite state descriptionr̂(0). Note
that the problem is not to findr̂(0) which correctly describes
true physical situation.’ That is unknown, and always re-
mains so, because of incomplete information. In order to
have a usable theory we must ask the much more modest
question:What r̂(0) best describes our state of knowledge
about the physical situation?’’ In other words, the maximum
entropy principle isthe most conservative assignment in the
sense that it does not permit one to draw any conclusions not
warranted by the data.

We can conclude that a measurement itself is a physical
process and is governed by the laws of physics. On the other
hand, formal procedures by means of which we reconstruct
information about the system from the measured data are
based on certain principles which cannot be directly ex-
pressed in terms of the physical laws.

IV. OBSERVATION LEVELS FOR A SINGLE-MODE
FIELD

In our paper we will consider two different classes of
observation levels; namely, we will consider the phase-
sensitive and phase-insensitive observation levels. Phase-
sensitive observation levels are related to operators which
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provide some information about off-diagonal matrix ele-
ments of the density operator in the Fock basis~i.e., these
observation levels reveal some information about the phase
of states under consideration!. On the contrary, phase-
insensitive observation levels are based exclusively on a
measurement of diagonal matrix elements in the Fock basis.
Before we proceed to a detailed description of the phase-
sensitive and phase-insensitive observation levels, we intro-
duce two exceptional observation levels, the complete and
thermal observation levels.

Complete observation levelO0[$(â†)kâl ;;k,l %. The set
of operatorsun&^mu ~for all n andm) is referred to as the
completeobservation level. The expectation values of the
operatorsun&^mu are the matrix elements of the density op-
erator in the Fock basis,

^mur̂un&5Tr@ r̂un&^mu#, ;n,m, ~4.1!

and therefore the generalized canonical density operator is
identical with the statistical density operator,

ŝ05
1

Z0
expF2 (

m,n50

`

lm,nun&^muG5 r̂. ~4.2!

In this case the entropyS0 is determined by the density op-
eratorr̂ as

S052kBTr@ŝ0lnŝ0#52kBTr@ r̂ lnr̂ #. ~4.3!

This entropy is usually called the von Neumann entropy
@13#.

As a consequence of the relation~cf. Sec. 3.3 in@14#!

un&^mu5 lim«→1(
k50

`
~2«!k

k!An!m! ~ â†!k1nâk1m, ~4.4!

the complete observation levelO0 can also be given by a set
of operators$(â†)kâl ;;k,l % or $q̂kp̂l ;;k,l %. The Wigner
function on the complete information level is equal to the
Wigner function of the state itself, i.e.,WuC&

(0) (j)5WuC&(j).
Thermal observation levelOth[$â†â%. The total reduc-

tion of the complete observation levelO0 results in a thermal
observation levelOth characterized just by one observable,
the photon number operatorn̂, i.e., quantum-mechanical
states of light on this observation level are characterized only
by their mean photon numbern̄[^n̂&. The generalized ca-
nonical density operator of this observation level is the well-
known density operator of the harmonic oscillator in thermal
equilibrium,

ŝ th5
1

Zth
exp@2l thn̂#. ~4.5!

To find an explicit expression for the Lagrange multiplier
l th we have to solve the equation Tr@s thn̂#5n̄, from which
we find that

exp~2l th!5
n̄

n̄11
, ~4.6!

so that the partition function corresponding to the operator
ŝ th readsZth5n̄11. Now we can rewrite the generalized
canonical density operatorŝ th in the Fock basis in the form

ŝ th5 (
n50

`
n̄ n

~ n̄11!n11
un&^nu. ~4.7!

For the entropy of the thermal observation level we find a
familiar expression:

Sth5kB~ n̄11!ln~ n̄11!2kBn̄ lnn̄. ~4.8!

The fact that the entropySth is larger than zero for
any n̄.0 reflects the fact that on the thermal observation
level all states with the same mean photon number are indis-
tinguishable. This is the reason why Wigner functions of
different states on the thermal information level are identical.
The Wigner function of the stateuC& on the thermal obser-
vation level is given by the relation

WuC&
~ th!~j !5

2

112n̄
expF2

2uju2

112n̄G . ~4.9!

From Eq.~4.8! it also follows that the vacuum state can be
completely reconstructed onOth becauseSth50 for n̄50.
Extending the thermal observation level we can obtain more
‘‘complete’’ Wigner functions, which in the limit of the
complete observation level are equal to the Wigner function
of the measured state itself, i.e., they are not biased by the
lack of information~measured data! about the state.

A. Phase-sensitive observation levels

1. Observation levelO1[{â†â,â†,â}

We can extend the thermal observation level if in addition
to the observablen̂ we consider also the measurement of
mean values of the operatorsâ and â† ~that is, a measure-
ment of the observablesq̂ and p̂ is performed!. If we denote
the~measured! mean values of these operators as^â&5g and
^â†&5g* , then the generalized canonical density operator
ŝ1 can be written as

ŝ15
1

Z1
exp@2l1~ â

†2g* !~ â2g!#, ~4.10!

with the partition function Z1 given by the relation
Z15(12e2l1)21. To find the Lagrange multiplierl1 we
have to solve the equation Tr@ â†âŝ1#5n̄, from which we
find

e2l15
n̄2ugu2

11n̄2ugu2
. ~4.11!

The entropyS1 on the observation levelO1 can be expressed
in a form very similar toSth @see Eq.~4.8!#:

S15kB@ n̄2ugu211# ln@ n̄2ugu211#

2kB@ n̄2ugu2# ln@ n̄2ugu2#. ~4.12!

The Wigner functionWuC&
(1) (j) corresponding to the general-

ized canonical density operatorŝ1 reads

54 807QUANTUM STATE RECONSTRUCTION AND DETECTION OF . . .



WuC&
~1! ~j !5

2

112~ n̄2ugu2!
expF2

2uj2gu2

112~ n̄2ugu2!
G . ~4.13!

From the expression~4.12! it follows that S150 for those
states for whichn̄5ugu2. In fact, there is only one state with
this property. It is a coherent stateua& ~2.2!. In other words,
because of the fact thatS150, the coherent state can be
completelyreconstructed on the observation levelO1 . In this
caseWua&

(1)(j)5Wua&
(0)(j)52exp@22uj2au2#. For other states

S1.0 and therefore to improve our information about the
state we have to perform further measurements, i.e., we have
to extend the observation levelO1 .

2. Observation levelO2[{â†â,(â†)2,â2,â†,â}

One of the possible extensions of the observation level
O1 can be performed with the help of observablesq̂2 and
p̂2, i.e., when not only the mean photon numbern̄ and mean
values of q̂ and p̂ are known, but also the variances
^(Dq̂)2&, ^(D p̂)2&, and^$Dq̂D p̂%& are measured. On the ob-
servation levelO2 we can express the generalized canonical
operatorŝ2 as

ŝ25
1

Z2
expF2

l2

2
~ â†2g* !2

2
l2*

2
~ â2g!22l1~ â

†2g* !~ â2g!G , ~4.14a!

where the Lagrange multiplierl1 is real whilel2 can be
complex:l25ul2ue2 iu. We can rewriteŝ2 in a form similar
to the thermal density operator:

ŝ25
1

Z̃2
D̂~g!Û~u/2!Ŝ~r !

3exp@2~l1
22ul2u2!1/2â†â#Ŝ†~r !Û†~u/2!D̂†~g!,

~4.14b!

where the displacement operatorD̂(g) is given by Eq.~2.2!,
while the operatorsÛ(u/2) andŜ(r ) are given by the rela-
tions

Û~u!5exp@2 iuâ†â#,

Ŝ~r !5expF2
ir

2\
~ q̂p̂1 p̂q̂!G5expF r2 ~ â†22â2!G ,

~4.15!

where tanh2r52ul2u/l1. The partition functionZ̃2 in Eq.
~4.14b! can be evaluated in an explicit form:

Z̃2
21512exp@2~l1

22ul2u2!1/2#. ~4.16!

Instead of finding explicit expressions for the Lagrange mul-
tipliers l1 andl2 we can find solutions for the parameters
tanh2r andx defined as

x5$exp@~l1
22ul2u2!1/2#21%21. ~4.17!

We express these parameters as

tanh2r5
uM u

N11/2
, x5@~N11/2!22uM u2#1/221/2,

~4.18!

whereN5n̄2ugu2.0 andM5uM ue2 iu5z2g2.
We recall that physical requirements@15# lead to the fol-

lowing restrictions on the parametersN andM :

N>0, N~N11!>uM u2. ~4.19!

Once tanh2r and x are found we can reconstruct the
Wigner functionWuC&

(2) (j) on the observation levelO2 . This
Wigner function reads@15#

WuC&
~2! ~j !5

1

@~N11/2!22uM u2#1/2
expF2

~N11/2!uj2gu22~M* /2!~j2g!22~M /2!~j*2g* !2

@~N11/2!22uM u2# G . ~4.20!

Analogously, we can find an expression for the entropyS2:

S25kB~x11!ln~x11!2kBx lnx. ~4.21!

It has the form of the thermal entropy~4.8! with a mean
thermal photon number equal tox @see Eq.~4.18!#.

Using the expression for the Wigner function~4.20! we
can rewrite the variances of the position and momentum op-
erators in terms of the parametersN andM as follows:

^~Dq̂!2&5
\

2
@112N12ReM #,

^~D p̂!2&5
\

2
@112N22ReM #. ~4.22!

The product of these variances reads

^~Dq̂!2&^~D p̂!2&5
\2

4
@~112N!224~ReM !2#. ~4.23a!
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From the expression~4.21! for the entropyS2 it is seen
that those states for whichN(N11)5uM u2 can be com-
pletely reconstructed of the observation levelO2 , because
for these statesS250. In fact, it has been shown by Dodonov
et al. @16# that the states for whichN(N11)5uM u2 are the
only pure states which have non-negative Wigner functions.
For these states the product of variances~4.23a! reads

^~Dq̂!2&^~D p̂!2&5
\2

4
@114~ ImM !2#, ~4.23b!

which means that if in addition ImM50 ~see, for instance, a
squeezed vacuum state with a real parameter of squeezing!
then these states also belong to the class of minimum uncer-
tainty states. From Eqs.~4.18! and ~4.21! it follows that all
pure Gaussian states for whichN(N11)5uM u2 can be com-
pletely reconstructed on the observation levelO2 .

B. Phase-insensitive observation levels

1. Observation levelOA[{P̂n5znlknz;;n}

The most general phase-insensitive observation level cor-
responds to the case whenall diagonal elements
Pn5^nur̂un& of the density operatorr̂ describing the state
under consideration are measured. The observation level
OA can be obtained via a reduction of the complete observa-
tion levelO0 and it corresponds to the measurement of the
photon number distributionPn such that(nPn51. Because
of the relation~4.4! we can conclude that the observation
levelOA corresponds to the measurement of all moments of
the creation and annihilation operators of the form (â†)kâk

or, which is the same, it corresponds to a measurement of all
moments of the photon number operator, i.e.,

OA[$P̂n5un&^nu;;n%5$~ â†!kâk;;k%5$n̂k;;k%. ~4.24!

The generalized canonical operatorŝA at the observation
levelOA reads

ŝA5
1

ZA
expF2 (

n50

`

lnun&^nuG5 (
n50

`

Pnun&^nu. ~4.25!

The Lagrange multipliersln have to be evaluated from an
infinite set of equationsPn5Tr@ŝAP̂n#5e2ln/ZA ~for ;n),
from which we findln52 ln@ZAPn#. The entropySA at the
observation levelOA is given by the expression first derived
by Shannon@17#:

SA52kB(
n50

`

PnlnPn . ~4.26!

The Wigner functionWuC&
(A) (j) of the stateuC& at the obser-

vation levelOA can be reconstructed in the form

WuC&
~A! ~j !5 (

n50

`

PnWun&~j!, ~4.27a!

whereWun&(j) is the Wigner function of the Fock state
un&,

Wun&~j!52~21!nexp~22uju2!Ln~4uju2!, ~4.27b!

andLn(x) is the Laguerre polynomial of ordern.
The phase-insensitive observation levelOA can be further

reduced if only a finite number of operatorsP̂n @wheren
PM# is considered. In this case, in general, we have
(nPMPn,1 and therefore it is essential that apart from the
mean valuesPn the mean photon numbern̄ is also known
from the measurement.

2. Observation levelOB[ˆn̂,P̂N5zN‹ŠNz‰

We can reduce observation levelsOA when we consider
only a measurement of the mean photon numbern̄ and the
probabilityPN to find the system under consideration in the
Fock stateuN&. The generalized density operatorŝB in this
case reads

ŝB5
1

ZB
exp@2ln̂2lNP̂N#5PNuN&^Nu1 (

nÞN

`

Pnun&^nu,

~4.28!

wherePn5exp(2ln)/ZB gives the photon number distribu-
tion on the subspace of the Fock space without the vector
uN&. If we introduce the notation x5exp(2l),
y5exp(2lN), then the Lagrange multipliersl andlN can be
found from the equations

PN5
~12x!xNy

11xN~y21!~12x!
, ~4.29a!

n̄5
x1NxN~12x!2~y21!

~12x!@11xN~y21!~12x!#
. ~4.29b!

Generally, we cannot express the Lagrange multipliersl and
lN as functions ofn̄ andPN in an analytical way for arbi-
traryN and Eqs.~4.29! have to be solved numerically. Nev-
ertheless, there are two cases when these equations can be
solved in a closed analytical form.

~1! If N50 ~we will denote this observation level as
OB1), then we can find for Lagrange multipliersl andl0 the
following expressions:

e2l512
12P0

n̄
, e2l05

P0

~12P0!
2 @ n̄2~12P0!#,

~4.30!

and after some straightforward algebra we can evaluate the
parametersPn as

Pn5H P0 for n50,

~12P0!
2

n̄2~12P0!
F n̄2~12P0!

n̄
G n for n.0.

~4.31!

From Eq.~4.31! which describes the photon number distri-
bution of the generalized density operatorŝB1 , it follows
that the reconstructed state on the observation levelOB1 has
a thermal-like character on the subspace formed of Fock
states except the vacuum. Nevertheless, in this case the re-
constructed Wigner function can be negative~unlike in the
case of the thermal observation level!. This can happen if
P0 is close to zero andn̄ is small. Using explicit expressions
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for the parametersPn given by Eq.~4.31!, we can evaluate
the entropySB1 corresponding to the present observation
level:

SB152kBP0lnP02kB~ n̄2P!ln~ n̄2P!22kBPlnP

1kBn̄lnn̄, ~4.32!

where we have used the notationP512P0 . In the limit
P0→(11n̄)21 expression~4.32! represents the entropy on
the thermal observation level@see Eq.~4.8!#. In this limit
OB1 reduces to the thermal observation levelOth . On the
other hand, in the limitP0→0, n̄→1 the entropySB150 and
Pn5dn,1 which means that the Fock stateu1& can be com-
pletely reconstructed on the observation levelOB1 .

~2! If the mean photon number is an integer, then in the
caseN5n̄ ~we will denote this observation level asOB2) we
find for the Lagrange multipliersl and lN5 n̄[l n̄ the ex-
pressions

e2l5
n̄

11n̄
, e2l n̄5

~11n̄!11 n̄2n̄ n̄

~12Pn̄ !n̄ n̄
Pn̄ . ~4.33!

The reconstructed photon number distribution has again a
thermal-like character:

Pn5^nuŝB2un&5
e2nl

ZB2
@11dn, n̄~e2l n̄21!#. ~4.34!

The corresponding entropy can be evaluated in a closed ana-
lytical form:

SB252kBPn̄ lnPn̄2kB~12Pn̄ !ln~12Pn̄ !1kB~12Pn̄ !

3 lnF ~11n̄!11 n̄

n̄ n̄
21G . ~4.35!

It is interesting to note that ifPn̄ is given by its value in the
thermal photon number distribution then the entropy~4.35!
reduces to the entropy of the thermal observation level@see
Eq. ~4.8!#. In such a case the reconstructed density operator
ŝB25ŝ th @see Eq.~4.7!# and so the reductionOB2→Oth
takes place. On the other hand, ifPn̄51 thenSB250 and the
Fock stateun̄& can be completely reconstructed on the obser-
vation levelOB2 .

C. Relations between observation levels

The various observation levels considered in this section
can be obtained as a result of a sequence of mutual reduc-
tions. Therefore we can order the observation levels under
consideration. This ordering can be done separately for
phase-sensitive and phase-insensitive observation levels. In
particular, phase-sensitive observation levels are ordered as
follows:

O0.O2.O1.Oth . ~4.36a!

The corresponding entropies are related as

S0<S2<S1<Sth . ~4.36b!

The ordering of phase-insensitive observation levelsOA ,
OB1 , andOB2 is more complex:

O0.OA.HOB1

OB2
J .Oth , ~4.37a!

which reflects the fact that observation levelsOB1 andOB2
cannot be obtained as a result of mutual reduction or exten-
sion. The corresponding entropies are related as

S0<SA<HSB1SB2
J <Sth . ~4.37b!

For a particular quantum-mechanical state of light, the ob-
servation levelsOk can be ordered with respect to increasing
values of the entropiesSk . From the above it also follows
that if the entropySk on the observation levelOk is equal to
zero, then the entropies on the extended observation levels
are equal to zero as well. This means that the Wigner func-
tion of a pure state can be completely reconstructed on the
observation levelOk , i.e., the complete reconstruction can
be performed via the measurement of a finite number of ob-
servables.

D. Choice of the observation level

We stress here that the entropiesSk associated with dif-
ferent observation levels do not reflect only the purity of the
state itself but also the degree of our knowledge~data ob-
tained from a measurement! about the state. In other words,
the entropiesSk can be taken as a measure of the error of a
reconstruction procedure on a given observation level. The
higher ~i.e., more complete! the observation level, the better
is the reconstruction and the smaller is the value ofSk . This
behavior is clearly seen from the chain of inequalities pre-
sented by Eqs.~4.36b! and ~4.37b!.

If a priori information that the states which are going to
be reconstructed arepure states is available~i.e., the von
Neumann entropyS0 associated with the complete observa-
tion level is equal to zero! then the entropiesSk associated
with Ok uniquely quantify the precision with which a par-
ticular reconstruction has been performed. To be more spe-
cific, if Sk50 onOk lower thanO0 we can conclude with
certainty that a complete reconstruction of apure state has
been performed onOk ~for instance, one can perform a com-
plete reconstruction of a coherent state onO1 because the
entropyS1 is equal to zero!. This means that there is no need
to perform any further measurements~extending the obser-
vation level! because we already have complete information
about the state.

In the case of statistical mixtures the von Neumann en-
tropyS0 associated withO0 is larger than zero. Therefore the
quantification of the precision of the reconstruction with the
help of entropiesSk associated withOk is more difficult. We
do not know whether we have performed complete recon-
struction before a measurement on the complete observation
levelO0 has been performed. Only when we knowa priori
thatS0 has a given value, then ifSk5S0 we can say that on
Ok a complete~i.e., the best possible! reconstruction has
been performed.
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If there is noa priori information available about the state
which is going to be reconstructed, there does not exist any
universal prescription which would suggest to an experimen-
talist which observation level is the most suitable for the
reconstruction of the given state. In any case, there is at least
one general rule which has to be satisfied, i.e., any consistent
observation level has to reveal information about the mean
photon number~mean energy! of the state. This means that
the thermal observation level can be taken as the initial step
for any state reconstruction. In successive steps this observa-
tion level can be extended to more and more complete ob-
servation levels. A sequence of obtained entropies$Sk% as-
sociated with the observation levels$Ok%, or more precisely
differences between neighboring entropies in this sequence,
can give us some indication how close we are to the com-
pletely reconstructed state~this procedure is suitable also for
statistical mixtures!. We note that there are other measures
which can also be utilized for this purpose. For example, the
Hilbert-Schmidt norm ~i.e., ‘‘distance’’! dist(ŝk ,ŝ l) be-
tween the density operators defined as

dist~ ŝk ,ŝ l !5uuŝk2ŝ l uu[@Tr~ ŝk2ŝ l !
2#1/2 ~4.38!

can serve as the measure of how close the two states de-
scribed by density operatorsŝk andŝ l are. Nevertheless, the
distance dist(ŝk ,ŝ l) does not tell us which reconstruction
~i.e., which density operatorŝk or ŝ l) is more complete.
This can only be done with the help of the corresponding
entropiesSk andSl .

A completely different picture appears if one has somea
priori information about the state which is going to be re-
constructed. For instance, if from the preparation procedure
some properties of the state are known, then this information
can significantly improve our choice of ‘‘the most efficient’’
observation level which would yield, if not complete, then at
least a very good reconstruction. As an example, we can
briefly discuss the experiment by Raymeret al. @3# in which
Wigner functions of the vacuum state and the squeezed
vacuum state have been reconstructed via the optical homo-
dyne technique. The preparation part of the setup in Raymer
et al.’s experiment was designed to generate squeezed
vacuum states, i.e.,pureGaussian states. If this is taken asa
priori information then one can conclude that the measure-
ment performed on the observation levelO2 reveals the com-
plete information about the state. Consequently, instead of
performing a very sophisticated homodyne tomography
~which in an ideal case corresponds to the measurement on
O0) one can perform a simple homodyne measurement in
which the variance of relevant quadratures can be measured
and the Wigner function of the state can be reconstructed. On
the other hand, fornon-Gaussianstates optical homodyne
tomography can be considered as the most efficient way to
gain information about the system.

We note that if the density operatorr̂0 of the measured
state is knowna priori, then the Hilbert-Schmidt norm~4.38!
can be used to measure how close the reconstructed state is
to the original state.

In our previous discussion we have not analyzed the role
of experimental errors in a reconstruction scheme based on
the maximum entropy principle. That is, we have considered
that all mean values of observables are measured precisely.

We note that any inclusion of ‘‘errors’’ on a given observa-
tion level is implicitly associated with an extension of this
observation level. For instance, an error related to the mean
value of n̂ is associated with a measurement of the mean
value of the operatorn̂2.

V. RECONSTRUCTION OF WIGNER FUNCTIONS

As an illustration we will analyze in this section a recon-
struction of the Wigner function of the squeezed vacuum
state on different observation levels. The squeezed vacuum
state@18# can be expressed in the Fock basis as

uh&5~12h2!1/4(
n50

`
@~2n!! #1/2

2nn!
hnu2n&, ~5.1!

where the squeezing parameterh ~for simplicity we assume
h to be real! ranges from21 to11. The squeezed vacuum
state ~5.1! can be obtained by the action of the squeezing
operatorŜ(r ) given by Eq.~4.15! on the vacuum stateu0&,
i.e., uh&5Ŝ(r )u0&, where the squeezing parameterr is
related to the parameterh as h5tanhr. The mean
photon number in the squeezed vacuum~5.1! is given by the
relation n̄5h2/(12h2). The variances of the position and
momentum operators can be expressed in the form

^~Dq̂!2&5\sq
2 , ^~D p̂!2&5\sp

2 , ~5.2a!

with the parameterssq andsp given by the relations

sq
25

1

2 S 11h

12h D5
1

2
1

An̄
A11n̄2An̄

,

sp
25

1

2 S 12h

11h D5
1

2
2

An̄
A11n̄1An̄

. ~5.2b!

If we assume the squeezing parameter to be real andh
P@0,21# then from Eq.~5.2! it follows that fluctuations in
the momentum are reduced below the vacuum state limit
\/2 at the expense of increased fluctuations in the position.
Simultaneously, it is important to stress that the product of
variances^(Dq̂)2& and ^(D p̂)2& is equal to\2/4, which
means that the squeezed vacuum state belongs to the class of
minimum uncertainty states.

The Wigner function of the squeezed vacuum state is of
Gaussian form:

Wuh&~q,p!5
1

sqsp
expF2

1

2\

q2

sq
2 2

1

2\

p2

sp
2G , ~5.3a!

with the parameterssq
2 and sp

2 given by Eq.~5.3!. In the
(Rej;Imj) phase space the Wigner function of the squeezed
vacuum reads

Wuh&~j!5
1

sqsp
expF2

~Rej!2

sq
2 2

~ Imj!2

sp
2 G . ~5.3b!

From Eq.~5.3! it follows that the mean values of the position
and the momentum operators in the squeezed vacuum state
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are equal to zero, while the higher order symmetrically or-
dered moments can be expressed in terms of the second order
moments.

A. Observation levelsO0 and O2

The Wigner function of the squeezed vacuum state~5.1!
on the complete observation levelO0 is given by Eq.~5.3!
and is plotted~in the complexj phase space! in Fig. 1
(O0). This is a Gaussian function, which carries phase infor-
mation associated with the phase of squeezing. On the ther-
mal observation levelOth , which is characterized only by
the mean photon numbern̄, the reconstructed Wigner func-
tion of the squeezed vacuum state is a rotationally symmetric
Gaussian function centered at the origin of the phase space
@see Eq.~4.9! and Fig. 1 (Oth)#. On the observation level
O1 , the reconstructed Wigner function is the same as on the
thermal observation level because the mean amplitudes^â&
and ^â†& are equal to zero. On the other hand, the Wigner
function of the squeezed vacuum can be completely recon-
structed on the observation levelO2 . To see this we evaluate
the entropyS2 for the squeezed vacuum state. The param-
etersM andN can be expressed in terms of the squeezing
parameterh ~we assumeh to be real! as

N5
h2

12h2 , M5
h

12h2 , ~5.4!

so thatN(N11)5M2. Consequently, the parameterx given
by Eq. ~4.18! is equal to zero, from which it follows that
S2 @see Eq.~4.21!# for the squeezed vacuum is equal to zero.

B. Observation levelOA

The squeezed vacuum state~5.1! is characterized by an
oscillatory photon number distributionPn such that

P2n5~12h2!1/2
~2n!!

22n~n! !2
h2n

5
1

~11n̄!1/2
~2n!!

22n~n! !2 S n̄

11n̄
D n, P2n1150.

~5.5!

Using Eq. ~4.27! we can express the Wigner function
Wuh&

(A)(j) of the squeezed vacuum on the observation level
OA as

Wuh&
~A!~j !52~12h2!1/2e22uju2(

n50

`
~2n!!h2n

22n~n! !2
L2n~4uju2!

52expF2S uju2

2sq
2 1

uju2

2sp
2D G I 0S uju2

2sq
2 2

uju2

2sp
2D ,

~5.6!

where I 0(x) is the modified Bessel function. We plot this
Wigner function in Fig. 1 (OA). We see thatWuh&

(A)(j) is not
negative and that it is much narrower in the vicinity of the
origin of the phase space than the Wigner function of the
vacuum state. Nevertheless, the total width of the Wigner
function Wuh&

(A) (j) is much larger than the width of the
Wigner function of the vacuum state.

FIG. 1. The reconstructed Wigner functions
of the squeezed vacuum stateuh& with n̄52. We
consider the observation levelsO05O2 ,
O15Oth , OA , OB1 , andOB2 ~see indications in
the figure!.
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C. Observation levelOB1

We can easily reconstruct the Wigner function of the
squeezed vacuum state at the observation levelOB1 . Using
general expressions from Sec. IV B we find the following
expression for the Wigner functionWua&

(B1)(j):

Wuh&
~B1!~j !5S P02

12P0

ñ
DWu0&~j!1~12P0!

ñ11

ñ
Wth~j!,

~5.7a!

whereP05(n̄11)21/2, Wu0&(j) is the Wigner function of
the vacuum state given by Eq.~4.27!, andWth(j) is the
Wigner function of the thermal state~4.9! with an effective
number of photons equal toñ:

ñ5
n̄

12~11n̄!21/2
21. ~5.7b!

We plot the Wigner functionWuh&
(B1)(j) in Fig. 1 (OB1), from

which the dominant contribution of the vacuum state is trans-
parent. It is due to the fact that the squeezed vacuum state
has a thermal-like photon number distribution.

D. Observation levelOB2

If the mean photon numbern̄ is an integer, then one may
consider the observation levelOB2 for a nontrivial recon-
struction of the Wigner function of the squeezed vacuum
state. After some algebra we find that this reconstructed
Wigner function reads

Wuh&
~B2!~j !5S 12

11n̄

ZB2
DWu n̄&~j!1

n̄11

ZB2
Wth~j!, ~5.8!

whereWu n̄ &(j) is the Wigner function of the Fock stateun̄&
andWth(j) is the Wigner function of the thermal state with
the mean photon number equal ton̄. If n̄ is eventhen for
Pn̄ @see Eq.~4.33!# we find

Pn̄5
n̄!

2 n̄@~ n̄/2!! #2
n̄ n̄ /2

~11n̄!~11 n̄ !/2
. ~5.9!

We plot this Wigner function in Fig. 1 (OB2). It has a
thermal-like character@compare with Fig. 1 (Oth)# but the
contribution of the Fock stateun̄52& is more dominant com-
pared with the proper thermal distribution. Ifn̄ is an odd
integer, thenPn̄50 and the corresponding Wigner function
can again be reconstructed with the help of Eqs.~5.8! and
~4.33!.

VI. DETECTION OF QUANTUM COHERENCES

Within the framework of the phase-space formalism one
can interpret a reduction of quantum fluctuations as a direct
consequence of quantum interference between component
~coherent! states @19#. Coherent states form a position-
momentum patch of minimum area and may be regarded as
the quantum analogue of classical points in phase space. The
quantum interference between coherent-state components in
phase space~which is intrinsically related to the overcom-

pleteness of the coherent-state basis! is what leads to purely
quantum effects.

To be specific, let us represent the squeezed vacuum state
~5.1! as aone-dimensional superposition of coherent states
on a line @20# @for simplicity we assume a real squeezing
parameterhP@0,1)#,

uh&5
~12h2!1/4

A2ph
E

2`

`

da expF2
12h

2h
a2G ua&, ~6.1!

wherea is a real parameter. The corresponding density op-
eratorr̂ uh& in the coherent-state basis can now be expressed
as

r̂ uh&5
~12h2!1/2

2ph E
2`

`

daE
2`

`

db expF2
12h

2h
a2

2
12h

2h
b2G ua&^bu. ~6.2!

As follows from the above the off-diagonal elements
ua&^bu of the density operator in the coherent-state basis
carry information about the nonclassical properties of quan-
tum states of light, i.e., these elements are associated with
quantum-interference effects in phase space. The quantum
phase-space interference leads to quadrature squeezing@19#
as well as to oscillations in the photon number distribution in
the squeezed vacuum state.

For comparison purposes we can consider a statistical
mixture associated with the squeezed vacuum state~5.1!.
This mixture can be represented as a one-dimensional mix-
ture of noninterfering coherent states on a line. The corre-
sponding density operator reads

r̂mix5S 12h̃

ph̃
D 1/2E

2`

`

da expF2
12h̃

h̃
a2G ua&^au. ~6.3!

The von Neumann entropy of the statistical mixture~6.3! is
larger than zero because the density operator~6.3! does not
describe a unique state~the information about the interfer-
ence between coherent components is inevitably lost even on
the complete observation levelO0).

The mean photon numbern̄ in the statistical mixture~6.3!
is

n̄5
h̃

2~12h̃ !
, ~6.4!

and the thermal-like photon number distribution associated
with this mixture reads

Pn5~12h̃ !1/2S h̃

4 D n ~2n!!

~n! !2

5
1

~112n̄!1/2S 2n̄

112n̄D
n ~2n!!

22n~n! !2
. ~6.5!

The variances of the position and momentum operators in the
mixture state~6.3! can be expressed as

^~Dq̂!2&5\s̃ q
2 , ^~D p̂!2&5\s̃ p

2 , ~6.6a!
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where

s̃ q
25

1

2 S 11h̃

12h̃ D , s̃p
25

1

2
, ~6.6b!

which means that due to the absence of quantum interference
between coherent components the quadrature squeezing in
the p̂ quadrature is completely deteriorated@compare with
Eq. ~5.2b!#. The expression for the variances̃ q

2 in terms of
the parameterh̃ looks exactly the same as in the case of the
squeezed vacuum state@see Eq.~5.2b!#, but s̃ p

2 is not re-
duced below the vacuum-state limit. We can express the
variances~6.6a! in terms of the mean photon numbern̄ given
by Eq. ~6.4! and we find that

s̃ q
25

114n̄

2
, s̃ p

25
1

2
. ~6.6c!

Comparing Eqs.~5.2! and ~6.6! we see that for thesame
mean photon number the variances̃ q

2 ~the variance associ-
ated with the statistical mixture! is always smaller thansq

2

~i.e., the variance in theq̂ quadrature of the squeezed
vacuum state!, which reflects the fact that quantum interfer-
ence not only reduces fluctuations in thep̂ quadrature but, on
the other hand, enhance fluctuations in the conjugatedq̂
quadrature in a very specific way; namely, from the above it
follows that the sum of variancessq

2 andsp
2 for the squeezed

vacuum isequal to the sum of variances for the correspond-
ing statistical mixture:

sq
21sp

25s̃ q
21s̃ p

25112n̄. ~6.7!

It is interesting to note that both coherent states and squeezed
vacuum states belong to the class of minimum uncertainty
states~MUS! in the sense thatsq

2sp
251/4. Nevertheless, the

relation~6.7!shows us that in the class of MUS the coherent
states play an exceptional role, because these are the only
states for which the sum of the variancessq

2 andsp
2 takes a

minimum value equal to 1.

The Wigner function of the statistical mixture~6.3! on the
complete observation levelO0 is the same as for the
squeezed vacuum state@see Eq.~5.3b!# except for the vari-
ances, which are given by Eq.~6.6!, i.e., the statistical mix-
ture ~6.3! is described by a Gaussian Wigner function which
is not squeezed in thep̂ quadrature@see Fig. 2 (O0)#.

From our discussion in Sec. IV it follows that the Gauss-
ian Wigner functions can be completely reconstructed on the
observation levelsO2 and the corresponding entropyS2
@given by Eq.~4.21!# is equal to the von Neumann entropy.
The von Neumann entropy of the squeezed vacuum state is
equal to zero~this is a pure state!, while the von Neumann
entropy of the statistical mixture~6.3! is given by Eq.~4.21!
with the parameterx given by the relation

x5
1

2 S 11h̃

12h̃ D 1/22 1

2
5
1

2
~114n̄!1/22

1

2
. ~6.8!

The difference between the von Neumann entropy of the
squeezed vacuum state~6.1! and of the corresponding statis-
tical mixture~6.3! reflects the presence~absence! of quantum
coherences~i.e., the off-diagonal terms in the coherent-state
basis in our one-dimensional representation of the squeezed
vacuum state! and can be used for a quantification of the
degree of quantum interference in the phase space between
coherent components of superposition states. In the case of
Gaussian states this degree of quantum interference can be
completely determined on the observation levelO2 . On the
other hand, on the observation levelO1 both the squeezed
vacuum state and the corresponding mixture are described by
the thermal Wigner function~this is due to the fact that for
both these stateŝâ&5^â†&50). Consequently, their entro-
pies are equal@see Eq.~4.8!# and therefore, in this particular
case, we cannot recover the presence of the quantum-phase-
space interference on the observation levelO1 .

In Fig. 2 (OA) we plot the Wigner function of the statis-
tical mixture ~6.3! reconstructed on the observation level
OA ~for details see Sec. IV!. For completeness we plot in
Fig. 2 (OB1) and Fig. 2 (OB2) the Wigner functions of the

FIG. 2. The reconstructed Wigner functions
of the statistical mixture~6.3! with n̄52. We
consider the observation levelsO05O2 ,
O15Oth , OA , OB1 , andOB2 ~see indications in
the figure!.
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statistical mixture~6.3! reconstructed on the observation lev-
els OB1 and OB2 , respectively. We see that the shape of
Wuh&

(B1)(j) andWr̂mix

(B1)(j) are essentially the same except the

value ofWuh&
(B1)(j) at the origin of the phase space is much

larger than the value ofWr̂mix

(B1)(j). This is associated with the

fact that the contribution of the vacuum state into the
squeezed vacuum state is more dominant than into the statis-
tical mixture. The difference between the reconstructed
Wigner functionsWuh&

(B2)(j), andWr̂mix

(B2)(j) and the Wigner

functionW(th)(j) @see Eq.~4.9!# consists in the contribution
P2(n̄) of the Fock stateu2& into the given state. To be more
specific, for n̄52 we have P2

uh&(n̄).P2
(th)(n̄).P2

r̂mix(n̄)
@compare Eqs.~5.5!, ~4.7!, and~6.5!#.

In what follows we will address the problem of whether
we can quantify the degree of quantum interference on the
phase-insensitive observation levelOA with the help of the
entropySA associated with this observation level. Using the
general expression for the Shannon entropySA @see Eq.
~4.26!# and the expressions for the photon number distribu-
tion ~5.5! and ~6.5! of the squeezed vacuum state and the
corresponding statistical mixture, respectively, we find the
relation

SA
uh&~2n̄!5SA

r̂mix~ n̄!, ~6.9!

where

SA
r̂mix~ n̄!5

kB
2
ln~2n̄11!1n̄kBlnS 2n̄11

2n̄ D
1kB(

n
Pn~ n̄!lnS 22n~n! !2~2n!! D , ~6.10!

andPn(n̄) is given by Eq.~6.5!. From Eq.~6.10! it follows

that the entropySA
r̂mix(n̄) is an increasing function ofn̄. Con-

sequently, from Eq. ~6.9! it then follows that

SA
uh&(n̄),SA

r̂mix(n̄) which means that the Shannon entropy re-
flects the presence of quantum interference in phase space.
We plot these functions in Fig. 3~b!.

Generally speaking, the lower~i.e., less complete! the ob-
servation level is, the smaller is the difference between the
entropy of the squeezed vacuum state and the corresponding
statistical mixture~see Fig. 3!. The maximum difference can
obviously be found on the complete observation levelO0 ,
while there is no difference on the thermal observation level
Oth .

A. Decay of quantum coherences

From our previous discussion it follows that the detection
of quantum coherences depends on the choice of the obser-
vation level. The higher~the more complete! the observation
level is, the better we can distinguish between a pure super-
position state and the corresponding statistical mixture. This
difference can be quantified with the help of the correspond-
ing entropies. In addition to the choice of the observation
level, the measurement process can be affected by nonunit
efficiency of the measurement apparatus itself, i.e., the mea-
sured data are biased by an additional noise in an uncontrol-
lable way. One possibility to model this deterioration of in-
formation about quantum-mechanical systems is to consider
the interaction of the system under consideration with a large
reservoir~heat bath!.

For simplicity we will consider a zero-temperature heat
bath to model a nonunit efficiency quantum-mechanical mea-
surement. We can interpret this model as the detection of
quantum coherences of the single-mode light field decaying
into a zero-temperature heat bath. We will analyze the time
evolution of entropies associated with different observation
levels and we will discuss how the quantum coherences are
affected by the presence of the reservoir. In other words, we
will study to what extent the entropies under consideration
can be used for quantification of the degree of quantum co-
herence associated with the state.

To be specific, we shall assume that the density operator
r̂ for the field mode obeys a zero-temperature master equa-
tion in the Born-Markov approximation. This equation in the
interaction picture can be written as

]r̂

]t
5

g

2
~2âr̂â†2â†âr̂2 r̂â†â!, ~6.11!

FIG. 3. The entropiesSX
uh&(n̄)

~short-dashed line! and SX
r̂mix(n̄)

~long-dashed line! of the squeezed
vacuum state and the correspond-
ing statistical mixture, respec-
tively, on different observation
levelsOX as functions of the mean
photon numbern̄: ~a! O05O2 , ~b!
OA , and~c! OB1 . On the observa-
tion level OB2 @see~d!# entropies

SB2
uh&(n̄) (!) andSB2

r̂mix(n̄) (n) are
evaluated only for discrete values
of n̄. For reference purposes we
plot the entropySth(n̄) ~solid line!
associated with the thermal obser-
vation levelOth .

54 815QUANTUM STATE RECONSTRUCTION AND DETECTION OF . . .



whereg is the decay constant. Following Barnett and Knight
@21# we find the time-dependent expression for the density
matrix of the squeezed vacuum state~6.2! decaying into the
zero-temperature heat bath as

r̂ uh&~ t !5
~12h2!1/2

2ph E
2`

`

daE
2`

`

db expF2
12h

2h
~a21b2!G

3^bua&12mum1/2a&^m1/2bu, ~6.12!

wherem5exp(2gt).
The Wigner function of the decaying squeezed vacuum

state~6.17! reconstructed on the complete observation level
O0 is given by Eq.~5.3b! with the time-dependent param-
eterssq

2(t) andsp
2(t) given by the relations

sq
2~ t !5

1

2
1m

An̄
A11n̄2An̄

, sp
2~ t !5

1

2
2m

An̄
A11n̄1An̄

.

~6.13!

We see that the decaying squeezed vacuum state is described
by a Gaussian Wigner function with time-dependent param-
eters. We note that the Wigner function of the decaying
squeezed vacuum state can be obtained from the Wigner
function ~5.3b! of the squeezed vacuum state att50 via a
coarse-graining procedure, which can be used to model a
nonunit efficiency measurement process@22#.

From Eq.~6.13! it follows that at timet.0 the decaying
squeezed vacuum state isnot a minimum uncertainty state
anymore, i.e.,

^~Dq̂!2&^~D p̂!2&5\2sq
2~ t !sp

2~ t !5
\2

4
@114~m2m2!n̄ #

>
\2

4
. ~6.14!

The photon number distribution of the decaying squeezed
vacuum state~6.12! can be written in the form

Pn~m!5~12h2!1/2 (
k5@~n11!/2#

`
~2k!!

~k! !2 S mh

2 D 2k
3S 12m

m D 2k2nS 2kn D . ~6.15!

The mean photon numbern̄(t) evaluated with the help of the
distribution ~6.15! describes exponential decay induced by
the zero-temperature reservoir, i.e.,n̄(t)5mn̄5exp(2gt)n̄.

Analogously, we find the solution of Eq.~6.11! for the
density operator describing the decay of the statistical mix-
ture ~6.3!:

r̂mix~ t !5S 12h̃

ph̃
D 1/2E

2`

`

da

3expF2
12h̃

h̃
a2G um1/2a&^m1/2au. ~6.16!

The Wigner function of the decaying statistical mixture re-
constructed on the complete observation levelO0 has the

form ~5.3b! with the time-dependent parameterss̃ q
2(t)

and s̃ p
2(t) given by the relations

s̃ q
2~ t !5

1

2
12mn̄, s̃ p

2~ t !5
1

2
. ~6.17!

Here we briefly turn our attention to the fact that the relation
~6.7! is valid also in the case when the squeezed vacuum
state and the corresponding statistical mixture are decaying
into the zero-temperature heat bath, i.e., for any timet>0
we have

sq
2~ t !1sp

2~ t !5s̃ q
2~ t !1s̃ p

2~ t !5112mn̄5112n̄~ t !.
~6.18!

The photon number distribution of the decaying statistical
mixture ~6.16! reads

Pn~ n̄;t !5
1

~112mn̄!1/2
S 2mn̄

112mn̄
D n ~2n!!

22n~n! !2
. ~6.19!

We note that the photon number distribution of the decaying
thermal state and the statistical mixture~6.16! can be ob-
tained from their initial (t50) values by simple rescaling of
the mean photon number, i.e.,Pn(n̄;t)5Pn„n̄(t);t50…,
where n̄(t)5mn̄. This is in sharp contrast with the time
evolution of the photon number distribution of the decaying
squeezed vacuum state~6.15!, because in this case quantum
coherences are decaying on a different time scale than the
mean photon number~for more details see Ref.@19#!.

Both the decaying squeezed vacuum state and the corre-
sponding statistical mixture are described by Gaussian
Wigner functions t.0 and consequently can be recon-
structed in the most reliable way on the observation level

O2 . The corresponding entropiesS2
uh&(t) andS2

r̂mix(t) ~which
in the present case are equal to the von Neumann entropy!
are given by Eq.~4.21!, where the time-dependent param-
eters for the squeezed vacuum statex uh&(t) and for the cor-
responding mixturexr̂mix

(t) read

x uh&~ t !5@~m2m2!n̄11/4#1/221/2, ~6.20a!

xr̂mix
~ t !5@mn̄11/4#1/221/2, ~6.20b!

respectively.
The von Neumann entropy of the statistical mixture de-

caying into the zero-temperature heat bath is a monotonically
decreasing function, while the von Neumann entropy of the
squeezed vacuum state decaying into the zero-temperature
heat bath increases during the first period of its time evolu-
tion and after reaching its maximum starts to decrease. To
find the moment at which the entropyS2

uh&(t) reaches its
maximum value we solve the equation

]

]t
S2

uh&~ t !5kB
]x uh&~ t !

]t
lnS 11xuh&~ t !

xuh&~ t !
D50. ~6.21a!

Using the explicit expression forx uh&(t) we find that
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]x uh&~ t !

]t
52

gmn̄~122m!

2A~m2m2!n̄11/4
50 ~6.21b!

for m51/2 irrespectiveof the initial mean photon num-
ber n̄ of the squeezed vacuum state.

The other important property of the von Neumann entro-

pies S2
uh&(t) and S2

r̂mix(t) is that S2
uh&(t),S2

r̂mix(t) for any
t.0 andn̄.0, that is, using the entropy associated with the
observation levelO2 we can discriminate between the pure
squeezed vacuum state and the corresponding mixture, i.e.,
we can ‘‘detect’’ the presence of quantum coherences even
in the case of nonunit efficiency measurement. It is interest-
ing to note that at the moment when the von Neumann en-
tropy of the decaying squeezed vacuum states reaches its
maximum value~i.e., atm51/2) the parametersx uh&(t) and
xr̂mix

(t) read

x uh&~ t !um51/25@ n̄/411/4#1/221/2,

xr̂mix
(t)um51/25[ n̄/211/4]1/221/2, ~6.22!

which means that at this moment the von Neumann entropy
of the decaying squeezed vacuum state with the initial mean
photon number equal ton̄ is equal to the von Neumann en-
tropy of the decaying statistical mixture with the initial mean
photon number equal ton̄/2. In other words, even at
m51/2 there is a significant difference betweenS2

uh&(t) and

S2
r̂mix(t). In Fig. 4 we plot the time evolution of these entro-
pies forn̄51 @Fig. 4~a!# andn̄54 @Fig. 4~b!#. We see that on
the observation levelO2 we can clearly ‘‘detect’’ the pres-

ence of quantum coherence associated withGaussianstates
at least for the detector efficiencym>1/2.

As we have said earlier, the lower~i.e., the less complete!
the observation level, the smaller is the difference between
the entropy of the pure squeezed vacuum state and that of the
corresponding statistical mixture~see Fig. 3!. This differ-
ence, which reflects the presence of quantum coherences, is
even smaller when a nonunit efficiency measurement is un-
der consideration. In particular, in Fig. 5 we plot the time

evolution of the Shannon entropiesSA
uh&(t) andSA

r̂mix(t) of the
decaying squeezed vacuum state and of the decaying statis-
tical mixture with the initial mean photon numbern̄ equal to
1 @Fig. 5~a!# and 4@Fig. 5~b!#, respectively. Here we stress
that for Gaussian states the observation levelO2 is identical
to the complete observation levelO0 ; consequently,OA is
reduced with respect toO2 .

B. Decay of quantum coherences of a superposition
of two coherent states

From our previous discussion it follows that quantum co-
herence observed onO2 , which is responsible for quadrature
squeezing of the squeezed vacuum state, is veryrobustwith
respect to dissipative processes. This robustness is reflected
by a significant difference between entropiesS2

uh&(t) and

S2
r̂mix(t) even at timegt5 ln2 whenS2

uh&(t) reaches its maxi-
mum value irrespective of the initial intensity of the
squeezed vacuum state.

To illuminate this property more clearly, we will consider
now superposition of just two coherent statesua& and

FIG. 4. The time evolution of the von Neumann entropies

S2
uh&(t) ~dashed line! and S2

r̂mix(t) ~solid line! of the squeezed
vacuum state and the corresponding statistical mixture, respec-
tively, on the observation levelO05O2 for the initial mean photon
numbern̄51 ~a! and n̄54 ~b!.

FIG. 5. The time evolution of the Shannon entropiesSA
uh&(t)

~dashed line! andSA
r̂mix(t) ~solid line! of the squeezed vacuum state

and the corresponding statistical mixture, respectively, on the
observation levelOA for the initial mean photon numbern̄51 ~a!
and n̄54 ~b!.
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u2a& ~we will assume the amplitudea to be real!. It is well
known that for a proper choice of the relative phase between
coherent components the corresponding superposition state
exhibits significant squeezing@19#. This effect appears as a
consequence of quantum interference betweenua& and
u2a&. To be more specific, let us consider the so-called even
coherent state@23# described by the density operator in the
coherent-state basis as

r̂ uae&
5Ne$ua&^au1u2a&^2au1ua&^2au1u2a&^au%,

Ne5
1

2@12exp~22a2!#
. ~6.23a!

The mean photon numbern̄ in the even coherent state
~6.23a! is given by the relationn̄5a2tanha2, which in the
limit of large a is equal toa2. The quantum interference
terms in the superposition state~6.23a! are described by the
off-diagonal elementsua&^2au and u2a&^au.

A statistical mixture corresponding to the pure superposi-
tion state~6.23a! is described by the density operatorr̂mix ,

r̂mix5
1

2
$ua&^au1u2a&^2au%. ~6.23b!

The von Neumann entropy of the statistical mixture~6.23b!
is nonzero foraÞ0. The maximum value of the von Neu-
mann entropy of the mixture of two coherent states equals
kBln2 in the limit a→`, which corresponds to the entropy
of a ‘‘two-state’’ quantum-mechanical system with equal
probabilities of population of each state.

Density operators describing the decay of the even coher-
ent state and the corresponding statistical mixture into the
zero-temperature heat bath@i.e., the solutions of Eq.~6.11!
with the initial conditions~6.23a! and ~6.23b!, respectively#
read

r̂ uae&~ t !5Ne (
k,l50

1

^~21!kau~21! la&12mu~21!km1/2a&

3^~21! lm1/2au, ~6.24a!

and

r̂mix~ t !5
1

2 H (
k50

1

u~21!km1/2a&^~21!km1/2auJ . ~6.24b!

To describe the deterioration of quantum coherence of the
even coherent state due to the interaction with the zero-
temperature heat bath, we evaluate the von Neumann entropy
S0

uae&(t) of this state at timet and compare it with the von
Neumann entropy of the corresponding statistical mixture
S0
mix(t). The von Neumann entropy in the case of the decay-
ing even coherent state~6.24a! can be expressed as

S0
uae&~ t !52kB(

j51

2

P j
uae&~ t !lnP j

uae&~ t !, ~6.25!

whereP j
uae&(t) ( j51,2) are the eigenvalues of the density

operatorr̂ uae&
(t) and they read

P j
uae&~ t !5

1

2 F16
e22ma21e22~12m!a2

11e22a2 G , j51,2.

~6.26a!

The von Neumann entropyS0
r̂mix(t) of the decaying statistical

mixture ~6.24b! has the form~6.25! but with the eigenvalues

P j
r̂mix(t) of the density operatorr̂mix(t), which read

P j
r̂mix~ t !5

1

2
@16e22ma2#, j51,2. ~6.26b!

The entropyS0
r̂mix(t) of the statistical mixture is a monotoni-

cally decreasing function of time. On the other hand, the
entropyS0

uae&(t) of the decaying even coherent state rapidly
increases during the first instants of the time evolution, and
after reaching its maximum at timegt5 ln2 it starts to de-
crease. We have to stress here that, unlike the von Neumann
entropy of the squeezed state, the increase of the von Neu-
mann entropy of the even coherent state during the first in-
stants of the time evolution depends on the intensity of the
mean photon number in the field. To be more specific, the
larger the mean photon number is, the faster the entropy
S0

uae&(t) increases, and after a very short time its value be-

comes essentially equal to the entropyS0
r̂mix(t) of the corre-

sponding statistical mixture~see Figs. 6!. In particular, at

time gt5 ln2 the eigenvaluesP j
uae&(t) andP j

r̂mix(t) are re-
lated as

FIG. 6. The time evolution of the von Neumann entropies

S0
uae&(t) ~dashed line! andS0

r̂mix(t) ~solid line! of the decaying even
coherent state and the corresponding statistical mixture, respec-
tively, for the initial mean photon numbern̄51 ~a! and n̄54 ~b!.
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P j
uae&~ t ! U

m51/2
5
16e2a2

11e22a2
P j

r̂mix~ t ! U
m51/2,

j51,2,

~6.27!

from which it follows that fora large enough the corre-
sponding eigenvalues are almost equal, and, consequently,

the entropiesS0
r̂mix(t) andS0

uae&(t) are equal as well. This is
in contrast with the case of the squeezed vacuum state and its
corresponding statistical mixture@see the discussion follow-
ing Eq. ~6.22! and Fig. 4#.

From the above we can conclude that quantum coherences
which are established due to quantum interference between
two coherent componentsua& and u2a&of the superposition
state~6.23! deteriorate very rapidly under the influence of
the zero-temperature heat bath. To be more specific, quan-
tum coherences deteriorate with a rate proportional toga2

~for more details see the review article by Buzˇek and Knight
@19# and references therein!. This deterioration is clearly
seen already on the observation levelO0 . One of the conse-
quences of this fact is that it is almost impossible to recon-
struct a Wigner function of the even coherent state on the
observation levelO0 , providing a nonunit efficiency mea-
surement is considered~obviously, in the case of reduced
observation levels the situation is even worse!. As we said,
this is in a sharp contrast with the case when the squeezed
vacuum state of the same intensity is considered. On the
other hand, we have to underline that the squeezed vacuum
state can be expressed as aninfinite sum of ‘‘interfering’’
pairs of coherent states of the form~6.23!. We have seen that
quantum coherences established between two coherent states
deteriorate very rapidly under the influence of the zero-
temperature heat bath. Nevertheless, thetotal quantum co-
herence of the squeezed vacuum state isrobustwith respect
to the decay. This robustness is in a sense a ‘‘collective’’
effect of an infinite number of mutually interfering coherent
components of the squeezed vacuum state.

We note that a very similar effect can be observed in the
case of a Fock stateun&, which can be expressed as a one-
dimensional superposition of coherent states on a circle. One
can find that the Shannon entropy~which in this case is equal
to the von Neumann entropy, i.e., for Fock states the obser-
vation levelOA is identical to the complete observation level
O0) of the decaying Fock state reaches its maximum at
gt5 ln2, and its value is significantly different from the en-
tropy of the corresponding statistical mixture. In this case
again a collective interference between an infinite number of
coherent components preserves the global quantum coher-
ence associated with the Fock state@24#.

To complete our discussion, we briefly note that on the
observation levelO2 the reconstructed Wigner function of
the even coherent state~6.23! has a Gaussian form~5.3b!
with the parameterssq

2 andsp
2 given by the relations

sq
25~ n̄11/2!1a2, sp

25~ n̄11/2!2a2 ~6.28a!

~here we recall that the mean photon number in the even
coherent state isn̄5a2tanha2). The Wigner function of the
corresponding statistical mixture reconstructed on the obser-
vation levelO2 also has a Gaussian shape@see Eq.~5.3b!#
with the variancess̃ q

2 and s̃ p
2 , which read

s̃ q
252a211/252n̄11/2, s̃ p

251/2. ~6.28b!

It is interesting to note that the Wigner functions of statistical
mixtures corresponding to the squeezed vacuum state and the
even coherent state, respectively, are on the observation level
O2 identical @compare Eqs.~6.6c! and ~6.28b! for the vari-
ances characterizing the corresponding Gaussian Wigner
functions#.

Using the general expression~4.21! we can evaluate the

entropiesS2
uae&(t) andS2

r̂mix(t) associated with the even co-
herent state and the corresponding statistical mixture on the
observation levelO2 , where the parametersx uae&

(t) and

xr̂mix
(t) are given by the relations

x uae&~ t !5Fmn̄2m2
a4

cosh2a2 11/4G1/221/2 ~6.29a!

and

xr̂mix
~ t !5@mn̄11/4#1/221/2, ~6.29b!

respectively. From Eqs.~4.21! and ~6.29! it follows that the
entropyS2

uae&(t) of the even coherent state on the observation
level O2 is nonzero even att50, which simply reflects the
fact that this is a non-Gaussian state. Moreover, in the limit
of large a when tanha2→1, the entropiesS2

uae&(t) and

S2
r̂mix(t) are equal for any timet. This means that for inten-
sities large enough we are not able on the observation level
O2 to distinguish between the even coherent state and the
corresponding statistical mixture~even in the case of an ideal
measurement, which in our model corresponds tog50).

VII. CONCLUSIONS

We have presented a universal method for reconstruction
of Wigner functions of quantum-mechanical states of light.
This method allows us to reconstruct Wigner functions with
a certain degree of credibility~quantified with the help of the
entropies! from a set of measured values of system observ-
ables. This set of observables defines a given observation
level. We have to stress that the concept of observation lev-
els plays a very important role in our attempt to measure and
understand nonclassical effects associated with quantum
states of light. In particular, a measurement of the second
order quadrature squeezing is implicitly associated with the
observation levelO2 . We know that reduction of quantum
fluctuations ~i.e., quadrature squeezing! has its origin in
quantum interference between coherent components of su-
perposition states of light. We have shown in our paper that
the entropiesSk associated with quantum-mechanical states
reconstructed on the observation levelOk can be used for
quantification of the degree of quantum coherence, which
has its origin in the phase-space interference between coher-
ent components of superposition states. We have discussed
in detail the role of nonunit measurement efficiency modeled
as the decay of a quantum-mechanical state into a zero-
temperature heat bath. We have shown that, in spite of the
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fact that the quantum coherence between two interfering co-
herent states deteriorates very rapidly, the global coherence
associated with the squeezed vacuum state is very robust and
can be easily ‘‘detected’’ on the observation levelO2 , which
is identical to the complete observation level forGaussian
states.
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