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Abstract. We introduce an `eŒective ’ phase state with which high-sensitivity

phase-shift measurements can be performed. These states can be used for

high-precision operational measurements of phase distributions of states which

in phase space are localized in regions whose angular width is much larger than

p . We propose a method by means of which the corresponding operational phase

distribution can be measured.

1. Introduction

In interferometers with coherent-state inputs the accuracy to which a phase

shift can be measured is proportional to 1/ ¬ N -1/2, where ¬ N - is the total number

of photons which enter the beam splitter. The accuracy can be improved to 1/ ¬ N -
if diŒerent input states are used. In particular, if two single-mode squeezed states

are used as inputs in the two ports of an interferometer, then this accuracy can be

achieved if homodyne measurements are made at the output [1] . This accuracy

can also be achieved in an interferometer in which photon-counting measurements

are performed at the output if more `exotic ’ input states are used [2] .

The work on the detection of phase shifts has led to a renewed interest in the

quantum-mechanical de® nition of the phase of a ® eld mode (for a recent review,

see [3] ). One way of approaching this problem is through a distribution function

for the phase of a ® eld mode. Quantum phase distributions go back to the work

of London [4] in 1926. More recent approaches which are closely related to that

of London are contained in the work of Pegg and Barnett [5] and Shapiro and

Shepard [6] . Pegg and Barnett [5] arrive at a phase distribution by de® ning a

hermitian phase operator and its eigenstates on a ® nite-dimensional Hilbert space

and ® nding the probability that a ® eld state in this space is in one of the phase

eigenstates. A phase distribution for a general ® eld state is de® ned by letting the

number of dimensions go to in® nity. Instead of using a formalism of ® nite-

dimensional Hilbert space and the limiting procedure, Shapiro and Shepard [6]

work with a positive-operator-valued measure in the full in® nite-dimensional

Hilbert space. All three of these analyses lead to the same phase distribution

function.

DiŒerent quantum-phase distributions can be found if one starts with quasi-

probability distribution functions for quantum states, such as the Wigner or
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Husimi functions. These are functions of the real and imaginary parts of the

complex ® eld amplitude and a phase distribution function is derived from them

by expressing their arguments in terms of polar coordinates and integrating out

the radial coordinate [3, 7, 8] . In the case of the Husimi or Q function the

procedure yields a distribution function which is positive. However, in the case of

the Wigner function, as shown by Garraway and Knight [9] , this is not true. Thus

the integrated Wigner phase distribution can be regarded only as a quasidis-

tribution function.

Yet another method of de® ning a phase distribution function is operationally.

That is, one speci® es a procedure for the measuring the phase and determines what

kind of a distribution function is produced. There are at present two such schemes

both of which are based on homodyne measurements. One was developed by Vogel

and Schleich [10] and the other by Noh et al. [11] . Here we shall propose a third

operational scheme based on displaced squeezed states which can supplement the

information provided by the other two.

Before considering the distribution function developed by Vogel and Schleich,

which is closely related to that discussed in this paper, let us ask what properties

we would like a quantum distribution to have. This will help us to determine what

properties of our proposed distribution we should analyse. One of the main reasons

for looking at quantum phase distributions is that we would like them to tell us

something about phase shift measurements. In particular, if we are given the phase

distribution for a particular quantum state, we would like to determine from the

distribution function whether this state would be useful in making phase shift

measurements, and what the accuracy of these measurements would be. The

distributions which are most closely related to phase shift measurements are the

London or Pegg ± Barnett distributions, and the integrated Q function [6, 12] . The

former is better for the analysis of phase-shift sensitivity because it resolves the

phase properties of a state better; the integrated Q function is a broader noisier

distribution. One would also like a phase distribution to be, in some sense,

measurable. This latter requirement is automatically satis® ed for an operationally

de® ned distribution function. Therefore we shall want to consider how our

proposed phase distribution is related to phase shift measurements and how it can

be measured.

Vogel and Schleich [10] have proposed an operational phase distribution PVS( v )

which is de® ned as

PVS( v ) = . |VS ¬ W( v ) |Y-|2, (1)

where . is a normalization constant, |Y- is the state for which a phase distribution

is going to be measured and |W( v )-VS is the `phase ’ state as introduced by Vogel

and Schleich. This state is equal to an eigenstate |x
q + p /2- with eigenvalue 0 of the

rotated quadrature operator xÃ
q + p /2 (see below). In phase space the Vogel ± Schleich

phase state is represented by a line which runs through the origin and which makes

an angle v with the q axis. On the other hand, as was noted by Vogel and Schleich,

a ` true ’ phase state corresponding to the angle v should be represented as a ray

rather than a line, starting at the origin of the phase space and making an angle v
with the positive q axis (for a given reference angle v 0 = 0). Consequently, the

Vogel ± Schleich approach should provide reasonable phase distributions for states

which are localized in phase space in regions of angular width less than p , and it

de® nitely cannot be applied to states such as a superposition of coherent states of
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the form ( | a -+ exp (i f ) | ± a -). In principle, the Vogel ± Schleich phase states

|W( v )-VS º |x
q
- are di� cult to realize because they correspond to single-mode

squeezed states with in® nite squeezing. However, the square of the inner product

appearing in equation (1) can be measured to high accuracy using homodyne

measurements.

In the present paper we introduce an `eŒective ’ phase state which shares one

of the attractive features of the Vogel ± Schleich formalism, a high sensitivity to

phase shifts. In addition these states can be used for measurements of phase

distributions of states which in phase space are localized in regions whose angular

width is much larger than p .
Our paper is organized as follows. In section 2 we brie¯ y review the Vogel ±

Schleich formalism and we introduce new operational phase states. In section 3

we propose a method by means of which the corresponding operational phase

distribution can be measured. In section 4 we analyse properties of the operational

phase distribution. We ® nd that it can be used in determining the utility of a state

for phase-shift measurements and that in a certain limit it can be used to ® nd the

Pegg ± Barnett or London phase distribution of a state.

2. Operational phase states

Let us consider a single-mode light ® eld associated with the annihilation and

creation operators aÃ and aÃ ² respectively, such that [aÃ , aÃ ² ] = 1. These operators can

be expressed as a complex linear combination of quadrature operators qÃ and pÃ ,

where [qÃ , pÃ ] = i ò (in what follows we use units such that ò = 1):

aÃ =
1

21/2
(qÃ + ipÃ ), aÃ ² =

1

21/2
(qÃ ± ipÃ ). (2)

The operators qÃ and pÃ represent special realizations of a more general rotated

quadrature operator xÃ
q
:

xÃ
q º

1

21/2
[aÃ exp ( ± i v ) + aÃ ² exp (i v )] . (3)

From equations (2) and (3) it follows that qÃ = xÃ
q = 0 and pÃ = xÃ

q = p /2 . Generally, two

operators xÃ
q

and xÃ
q + p /2 which are mutually ` shifted ’ by p /2 are conjugate operators

which have the property that

[xÃ
q
, xÃ

q + p /2 ] = i. (4)

The eigenstates |x, v - of the rotated quadrature operator xÃ
q
, that is

xÃ
q
|x, v -= x |x, v - (5)

are, in general, characterized by two parameters. The ® rst is an eigenvalue of the

operator xÃ
q

(for instance, the mean amplitude of an electromagnetic ® eld). The

second parameter is the phase v . The eigenstates |x, v - of the operator xÃ
q

have an

in® nite energy, that is the mean photon number NÃ = aÃ ² aÃ in these states diverges.

Therefore it is very useful to introduce `regularized ’ states which in some limit

tend to |x, v -. To be more speci® c, let us consider the eigenstate |q- º |q, v = 0-
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of the position operator qÃ . This state can be represented as the displaced squeezed

state |q, ± r- [13] in the limit of in ® nite squeezing, that is

|q-= lim
r ® `

[ h (r) |q, r-] , (6)

where h (r) is an appropriate normalization factor (for d -function normalization

h (r) = (exp r)/2 p 1/2 ). The displaced squeezed state |q, r- is de® ned by the action

of the displacement operator DÃ (q, p) [14] :

DÃ (q, p) = exp [i(pqÃ ± qpÃ )] , (7)

and the squeezing operator SÃ (r) (with real squeezing parameter r) [15]

SÃ (r) = exp 3 ir

2
(qÃ pÃ + pÃ qÃ ) 4 (8)

on the vacuum state |0-, so that

|q, r- º DÃ (q, 0)SÃ (r) |0-. (9)

The action of the position operator qÃ on the state |q, r- is

qÃ |q, r-= q |q, r-+ exp ( ± r)
1

21/2
DÃ (q, 0)SÃ (r) |1-, (10)

where |1- is a Fock state with one photon. For the mean value of the operator qÃ n

in the state |q, r- we ® nd that

¬ q, r |qÃ n |q, r-=
[
n/2]å
m= 0

1 n

2m 2 qn Å 2m (2m ± 1)!! 1 exp ( ± 2r)

2 2 m

, (11)

where [x] denotes the largest integer smaller than x. From equations (10) and (11)

it is clear that in the limit of in® nite squeezing (i.e. in the limit r ® ` when

¬ q, r |qÃ n |q, r- ® qn ) the state |q, r- is the eigenstate of the operator qÃ . We also note

that the mean photon number in the state |q, r- is

¬ q, r |NÃ |q, r-=
q2

2
+ sinh2 r, (12)

from which it is clear that in the limit r ® ` the energy of the eigenstate of the

position operator diverges exponentially.

2.1. Vogel ± Schleich phase distribution

Following Vogel and Schleich [10] one can identify the phase state |W( v )-VS

with the eigenstate of the operator xÃ
q + p /2 with the zero eigenvalue (here the

reference angle, i.e. the phase window, is chosen in such way that v = 0 corresponds

to the direction of the positive q axis in phase space). From equation (9) we see

that the Vogel ± Schleich phase state |W( v )-VS is in some sense the limit of a

squeezed vacuum state as the squeezing goes to in® nity. In particular, the

Vogel ± Schleich phase distribution of a particular state |Y- can now be de® ned in

a straightforward quantum-mechanical way as an overlap of the state |Y- with the

state |W( v )-VS , that is

PVS( v ) = . | ¬ Y |W( v )-VS |2 = . lim
r ® `

| ¬ Y |SÃ (r exp (2i v + i p )) |0-|2, (13)
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where the normalization constant . is de® ned in such way that

# p /2

Å p /2
PVS( v ) d v = 1. (14)

We note that as a consequence of the de® nition (13) the phase distribution PVS( v )

is p periodic rather than 2 p periodic which one would expect for a ` true ’ phase

distribution, such as the London [4] or Pegg ± Barnett [5] phase distribution.

2.2. Phase distribution via displaced squeezed states

To overcome the problem of p periodicity of the Vogel ± Schleich phase

distribution we utilize a displaced squeezed state |W( v )-:

|W( v )- º DÃ (s exp (i v ))SÃ (r exp (2i v )) |0-= UÃ ( v )DÃ (s)SÃ (r exp (i p )) |0- (15 a)

or

|W( v )- º UÃ ( v ) |W-, |W- º DÃ (s)SÃ (r) |0- (15 b)

as an eŒective phase state. The phase shift operator UÃ ( v ) in equations (15) is de® ned

as

UÃ ( v ) = exp (iNÃ v ), (16)

and the displacement operator DÃ ( a ) (see equation (7)) is given in terms of photon

creation and annihilation operators by DÃ ( a ) = exp ( a aÃ ² ± a *aÃ ), where Re a = q/21/2

and Im a = p/21/2. In equations (15), a is taken to be equal to s which is assumed

to be real and greater than or equal to zero. In particular, for s = 0 we obtain from

equations (15) the expression for the squeezed vacuum state:

lim
s ® 0

|W( v )-= SÃ (r exp (2i v )) |0-, (17 a)

which for v = 0 can be expressed in the Fock basis as

lim
s ® 0

|W( v = 0)-= exp 1 r

2
[(aÃ ² )2 ± aÃ 2 ] 2 |0-=

1

(cosh r)1/2

`

å
n= 0

[(2n)!]1/2

2nn!
(tanh r)n |2n-.

(17 b)

The variances of the operators qÃ and pÃ in the squeezed vacuum (17) are

¬ ( D qÃ )2-= 1
2 exp (2r), ¬ ( D pÃ )2-= 1

2 exp ( ± 2r), (18)

which means that phase ¯ uctuations are reduced in the direction perpendicular to

the q axis.

Using the above de® nition of eŒective phase states (15) we can introduce the

corrsponding phase distribution P( v ; s, r) as

P( v ; s, r) = . | ¬ Y |W( v )- |2 = . | ¬ Y |DÃ (s exp (i v ))SÃ (r exp (2i v + i p )) |0-|2. (19)

The normalization constant . is such that

# p

Å p
P( v ; s, r) d v = 1. (20)
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From the de® nition (15) of the eŒective phase state |W( v )- we see that this state

is displaced and stretched in the direction v which signi® cantly reduces the

contribution of the phase ¯ uctuations of the phase states themselves to the

distribution P( v ; s, r). Moreover, owing to the displacement the 2 p periodicity of

the phase distribution is (partially) restored. If s = 0 (i.e. when there is no

displacement), then |W( v )- given by equations (15) serves as a prototype of the

Vogel ± Schleich phase state.

2.3. Example A

To illustrate the ideas presented above let us analyse the phase distribution of

a coherent state | x -= DÃ ( x ) |0- with a real displacement parameter x = q/21/2. After

some algebra we ® nd that

| ¬ x |W( v )- |2 =
1

cosh r
exp [± s2 exp ( ± 2r) tanh r ± x 2 ± s2 exp ( ± 2r)]

´ exp 3 x 2 tanh r cos (2 v ) +
2

cosh r
x s exp ( ± r) cos v 4 , (21)

from which the phase distribution (19) can be obtained. From (21) it follows

that the mean angle v Å = ò p
Å p P( v ; s, r) v d v is equal to zero as it has to be for real x .

We note that, in the limit r ® 0, equation (21) reduces to

lim
r ® 0

| ¬ x |W( v )-|2 = exp [± | x ± s exp (i v ) |2 ] , (22)

which re¯ ects the fact that the state |W( v )- in the limit r ® 0 is equal to a coherent

state |s exp (i v )-. The normalized phase distribution (19) corresponding to this

situation, that is when the phase state is approximated by a coherent state

|s exp (i v )-, is 2 p periodic.

If on the other hand we assume that s ® 0, then equation (21) reduces to

lim
s ® 0

| ¬ x |W( v )-|2 =
1

cosh r
exp { ± x 2 [1 ± tanh r cos (2 v )]} . (23)

Using this expression we obtain a phase distribution which corresponds to a

situation when the ` true ’ phase state is approximated by a squeezed vacuum

SÃ (r exp (2i v )) |0-. This distribution is just p periodic and in the limit r ® ` is

equal to the Vogel ± Schleich phase distribution of a coherent state | x -.

Let us now consider the mean photon number of the phase state |W( v )- to be

® xed and equal to the mean photon number of the measured coherent state | x -,

that is nÅ = sinh2 r + s2 = x 2. In ® gure 1 (a) we plot the variance ( D v )2 of the

distribution corresponding to equation (21). This variance is (we remind ourselves

that v Å = 0)

( D v )2 = # p

Å p
d v v 2 | ¬ x |W( v )-|2 @ # p

Å p
d v | ¬ x |W( v )-|2. (24)

The variance ( D v )2 is plotted as a function of the parameter s which range from 0

to nÅ 1/2 in such a way that

nÅ = sinh2 r + s2 = x 2 = constant. (25)
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(a) (b)

Figure 1. (a) Plot of the variance ( D v )2 corresponding to the phase distribution

normalized on the interval [± p , p ] given by equation (24) as a function of s. (b) The

phase distribution considered to be normalized on the interval [ ± p /2, p /2] (see

equation (26)).

This means that for s = 0 the phase state is approximated by the squeezed vacuum

characterized by the squeezing parameter r such that nÅ = sinh2 r (see equation

(22)). On the other hand, if s2 = nÅ , then the phase state is approximated by a

coherent state (see equation (22)). From ® gure 1 (a) we see that in the case of the

squeezed vacuum used as a phase state (s = 0) the ¯ uctuations ( D v )2 in the phase

distribution are very large owing to the p periodicity of this distribution. On the

other hand for small values of r the ¯ uctuations ( D v )2 are approximately equal to

those of the case when the true phase state is approximated by a coherent state

with the amplitude s « x . For comparison purposes we plot in ® gure 1 (b) the

variance ( D v )2 in the case when the phase distribution is normalized on the interval

[± p /2, p /2] :

( D v )2 = # p /2

Å p /2
d v v 2 | ¬ x |W( v )-|2 @ # p /2

Å p /2
d v | ¬ x |W( v )-|2. (26)

In the limit s = 0 this is a prototype of the variance obtained of the phase

distribution of a coherent state obtained in the framework of the Vogel ± Schleich

formalism. From ® gure 1 (b) we see that in this case ¯ uctuations ( D v )2 are smallest

for a given value of nÅ when s = 0, but what is important is that, even for a signi® cant

displacement s (which is performed at the expense of a reduction in the squeezing;

see condition (25)), ¯ uctuations in phase remain constant and approximately at the

level of the squeezed vacuum case. In other words, a very modest squeezing of a

coherent state, which plays a role of the phase state, improves signi® cantly the

precision with which the phase can be determined. This means that, if we plan to

implement the Vogel ± Schleich scheme in a real experiment, that is instead of

eigenstates of the rotated quadrature operator we consider (highly) squeezed states

with ® nite mean photon number, the best accuracy that we can obtain is the same

as in the case when we measure the phase distribution with slightly squeezed

coherent states of the same intensity nÅ . Taking into account that it is much easier

to displace than to squeeze, the advantage of the eŒective phase state given by

equations (15) is transparent.
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2.4. Example B

There are states for which the Vogel ± Schleich phase distributions does not

work even approximately. To illustrate this let us consider the so-called odd

coherent state [16] which is de® ned as a particular superposition of two coherent

states | x - and | ± x -:

| x -odd = {2[1 ± exp ( ± 2 x 2)]} Å 1/2( | x - ± | ± x -), (27)

where we assume x to be real. It is easy to see that the Vogel ± Schleich phase states

|W( v )-VS given by equation (13) are orthogonal to the odd coherent state, that is

VS ¬ W( v ) | x -odd = 0, which means that |W( v )-VS cannot be de® ned. On the other

hand, if we approximate phase states by displaced squeezed states, then we ® nd

|odd ¬ x |W( v )- |2 =
1

cosh r [1 ± exp ( ± 2 x 2)]

´ exp [± s2 exp ( ± 2r) tanh r ± x 2 ± s2 exp ( ± 2r)]

´ exp [ x 2 tanh r cos (2 v )] 3 cosh 1 2

cosh r
x s exp ( ± r) cos v 2

± cos 1 2

cosh r
x s exp ( ± r) sin v 2 4 . (28)

From equation (28) it directly follows that

lim
s ® 0

|odd ¬ x |W( v )-|2 = | ¬ 0 |SÃ ² (r exp (2i v )) | x -odd |2 = 0, (29)

which illustrates the fact that the squeezed vacuum is orthogonal to the odd

coherent state. This result can be easily understood if we remind ourselves that

the squeezed vacuum is, in the Fock basis, represented as a superposition of even

Fock states |2n- (see equation (17 b)] while the odd coherent state (27) is

represented as a superposition of only odd Fock states |2n + 1-.

In ® gure 2 we plot the phase distribution P( v ; s, r) (see equation (19)) which

is evaluated with the help of equation (28). We assume that the mean photon

number of the `phase ’ state |W( v )- is equal to the mean photon number of the

measured odd coherent state, that is

nÅ = sinh2 r + s2 =
x 2[1 + exp ( ± 2 x 2)]

1 ± exp ( ± 2 x 2)
= constant, (30)

which is chosen to be equal to 100. In ® gure 2 (a) we plot P( v ; s, r) in the case

when r = 0 and s = 10, that is the ` true ’ phase state is approximated by a coherent

state |s exp (i v )-. The two-peak structure of the phase distribution corresponding

to the odd coherent state is transparent. This structure is even better pronounced

if we suppose the state |W( v )- to be slightly squeezed. In ® gure 2 (b) we consider

the squeezing parameter r to be such that sinh2 r = s2 = 50, while in ® gure 2 (c)

we assume that sinh2 r = 36 and s2 = 64. From these ® gures we again see that even

a very small amount of squeezing of the coherent states which serve as an

approximation of the true phase states signi® cantly improves the sensitivity with

which the phase distribution can be measured.
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Figure 2. The phase distribution P( v ; s, r) of the odd coherent state (see equation (28)),

where the mean photon numbers in the odd coherent state | x -odd and the phase state

|W( v )- are considered to be equal to 100: (a) the phase state approximated by a

coherent state with s2 = 100; (b) s2 = sinh2 r = 50; (c) s2 = 64 while sinh2 r = 36.

2.5. Phase-shift measurement with displaced squeezed states

To understand more clearly how sensitive the displaced squeezed states (15)

are with respect to phase shifts, we shall evaluate the overlap between two identical

displaced squeezed states |W( v )- and |W( f )- which are mutually shifted by a phase

v ± f :

| ¬ W( v ) |W( f )- |2 =
1

[1 + ( s 2
1 ± s 2

2)
2 sin2 ( v ± f )] 1/2

´ exp 3 s2

4[(c2

q
+ c2

f ) s 2
2 + (s2

q
+ s2

f ) s 2
1] 1 ± 8(s2

q
+ s2

f ) ±
(c

q
± c f )2

s 4
1

+
[(s

q
+ s f ) [1 + cos ( v ± f )] s 2

1 ± (c
q
± c f ) sin ( v ± f ) s 2

2 ]2

s 4
1 [1 + ( s 2

1 ± s 2
2)

2 sin2 ( v ± f )] 2 4 ,

(31)
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where

s 2
1 = 1

2 exp (2r), s 2
2 = 1

2 exp ( ± 2r), (32 a)

and

c
q
= cos v , s

q
= sin v , c f = cos f , s f = sin f . (32 b)

In the limit of r ® 0 we obtain from equation (31) the result for a phase distribution

(see equation (22)) of a coherent state | x exp (i f )- when the phase state is

approximated by a coherent state |s exp (i v )- (in addition we assume that s = x ):

lim
r ® 0

| ¬ W( v ) |W( f )-|2 = exp { ± 2s2 [1 ± cos ( v ± f )]} = | ¬ s exp (i v ) |s exp (i f )- |2.

(33)

This single-peaked function is plotted in ® gure 3 (a). As shown in [1] in this case

the phase shift can be measured with an accuracy proportional to 1/s. In the limit

of s = 0 we ® nd from equation (31) the expression

lim
s ® 0

| ¬ W( v ) |W( f )-|2 =
1

[1+ ( s 2
1 ± s 2

2 )2 sin2 ( v ± f )] 1/2
=| ¬ r exp (2i v ) |r exp (2i f )-|2,

(34)

Figure 3. The phase distribution P( v ; s, r) ( f is assumed to be ® xed and equal to zero),

where it is assumed that the total number of photons of two overlapping `phase ’ states

|W( v )- and |W( f )- is ® xed and equal to 100 (i.e. s2 + sinh2 r = 100): (a) s2 = 100 while

sinh2 r = 0 and so from the phase distribution under consideration the phase shift

measured with the help of two mutually shifted coherent states can be estimated; (b)

s2 = 0 while sinh2 r = 100 (in this case an overlap between two squeezed vacua is

considered; this is a prototype of the Vogel ± Schleich phase distribution); (c) s2 =
sinh2 r = 50; (d) s2 = 64 and sinh2 r = 36.
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which describes an overlap between two squeezed vacua which are mutually shifted

by an angle v ± f . As seen from ® gure 3 (b) the phase distribution corresponding

to equation (34) has two peaks around v = f and v = f + p . In ® gure 3 (c) we plot

the phase distribution when the displaced squeezed states are considered with

sinh2 r = s2 = 50. From this ® gure we see that the corresponding distribution

P( v ; s, r) is around v = f as narrow as in the case of squeezed vacua (compare with

® gure 3 (b)). On the other hand, contributions from tails around the phase

v = f + p are suppressed. This suppression is even better seen when in ® gure 3 (d)

the number of squeezed photons is smaller than the number of displaced photons.

In particular, in ® gure 3 (d) we consider sinh2 r = 36 and s2 = 64.

3. Measurement of phase distribution based on displaced squeezed states

We now want to show how the phase distribution based on displaced squeezed

states can be measured. The quantity that we are interested in ® nding, for a given

state |Y-, is

| ¬ Y |UÃ ( f )DÃ (s)SÃ (r) |0- |2 = | ¬ 0 |SÃ ( ± r)DÃ ( ± s)UÃ ( ± f ) |Y-|2. (35)

The right-hand side of this equation suggests how the measurement can be

accomplished. The state |Y- enters a phase shifter which shifts its phase by ± f .

It is displaced and then sent through a degenerate parametric ampli® er where it is

squeezed. Finally, the probability that the transformed state has zero photons in

it is determined by photocount measurements. This is depicted in ® gure 4.

The shift can be accomplished by means of a beam splitter and a large-

amplitude coherent state [17] . Let us suppose that the beam splitter is described

by a transformation

3 aÃ 1, out

aÃ 2, out
4 = 3 T 1/2

R 1/2
± R 1/2

T 1/2 4 = 3 aÃ 1, in

aÃ 2, in
4 . (36)

Figure 4. Method for measuring the phase distribution. The state whose distribution is

to be measured is ® rst sent through a phase shifter, next to a beam splitter where it

is mixed with a strong local oscillator, and then through a degenerate parametric

ampli® er (DPA). The resulting signal is measured with a photodetector, and the

probability of detecting no photons is determined. This probability gives the overlap

of the original state with a displaced squeezed state. The phase distribution is

constructed by repeating this procedure for diŒerent values of f .
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If the input state is |Y-1 |s Â -2 , that is mode 1 is in the state |Y-1 and mode 2 is

in the coherent state |s Â -2 = DÃ
2(s Â ) |0-2 with amplitude s Â , then, if R « 1 and

|s Â R1/2 | « 1, the output state in the mode 1 is approximately DÃ
1( ± R1/2s) |Y-1. If

s Â = s/R1/2, we obtain the desired displacement. It is this procedure which allows

us to call our phase distribution operational.

4. Properties of phase distribution

In this section we would like to discuss some properties of our phase

distribution which make it useful in determining the utility of a state for phase-shift

measurements. A phase-shift measurement is made by sending a state |Y- through

a phase shifter. The output state from this phase shifter is UÃ ( f ) |Y-. We want to

determine f by comparing |Y- and UÃ ( f ) |Y-. If the states are very diŒerent, it

should be possible to determine f with considerable precision. As a measure of

the distinguishability of these two states we use the inner product [18, 19]

F( f ) = | ¬ Y |UÃ ( f ) |Y-| . (37)

This function has a maximum at f = 0. The width of this maximum gives us an

estimate of the accuracy with which f can be determined. Thus we want to

determine what P( f ) can tell us about F( f ). Let us ® rst examine the behaviour of

F( f ) near f = 0. The ® rst derivative of F( f ) vanishes at f = 0 while the second

derivative is ± ( D N )2. Therefore near f = 0 we can approximate F( f ) as

F( f ) « 1 ± 1
2 ( D N )2 f 2. (38)

The phase distribution de® ned by equation (19) is of the form (in what follows we

omit the parameters s and r from the notation for the phase distribution)

P( v ) = . | ¬ Y |UÃ ( v ) |W- |2, (39)

where . is a normalization constant and |W- is the state from which the phase

distribution is generated. In section 2 it was taken to be a displaced squeezed state.

We can compare |Y- with UÃ ( f ) |Y- by comparing P( v ) with P( v ± f ). In

particular, if we de® ne

G( f ) = # 2 p

0

d v | ¬ Y |UÃ ( v ) |W- | | ¬ Y |UÃ ² ( f )UÃ ( v ) |W- | , (40)

then

dG( f )

d f )
f = 0

= 0, (41)

d2G( f )

d f 2 )
f = 0

= ± # 2 p

0

d v 1 d

d v
| ¬ Y |UÃ ² ( f )UÃ ( v ) |W-| f = 0 2 2

=
1

4 #
2 p

0

d v
( ¬ Y | [NÃ , QÃ ( v )] |Y-)2

¬ Y |QÃ ( v ) |Y-
, (42)

where

QÃ ( v ) = UÃ ( v ) |W-¬ W |UÃ ² ( v ) = |W( v )-¬ W( v ) | . (43)



1645Operational phase distributions

From these equations it is clear that G( f ) has a maximum at f = 0. It would be

useful to ® nd a relation between the second derivative of G( f ) at f = 0 to that of

F( f ) at zero. This would allow us to compare the local behaviour of G( f ) and F( f )

near their maximum at zero. We begin by noting that, if we de® ne D NÃ º NÃ ± ¬ NÃ -,

then

[ D NÃ , QÃ ( v )] = [NÃ , QÃ ( v )] . (44)

We then can apply the Schwarz inequality to give

| ¬ Y | [ D NÃ , QÃ ( v )] |Y-| < 2( D N ) [ ¬ Y |QÃ ( v ) |Y-] 1/2. (45)

Finally, we can use the fact that ¬ Y | [ D NÃ , QÃ ( v )] |Y- is imaginary to give

( ¬ Y | [ D NÃ , QÃ ( v )] |Y-)2 = ± | ¬ Y | [ D NÃ , QÃ ( v )] |Y-|2 > ± 4( D N )2 ¬ Y |QÃ ( v ) |Y-,

(46)

which give us

1

2 p
d2G( f )

d f 2 )
f = 0

> ± ( D N )2. (47)

This implies that the maximum of the function (1/2 p )G( f ) is broader than that of

F( f ). Therefore, by measuring G( f ), we can obtain a limit on how fast F( f ) falls

oŒnear f = 0; that is it must fall oŒat least as fast as (1/2 p )G( f ).

We can supplement the local information about the peak with some global

information. This is useful because, although the peak may fall oŒrapidly near

f = 0, it may have large tails which limit the accuracy to which f can be measured.

We can obtain this information by using the inequality (which is proved in

appendix A):

| ¬ Y1 |J-¬ J |Y2- | < 1
2 (1 + | ¬ Y1 |Y2-|), (48)

where |Y1-, |Y2- and |J- are any three vectors of norm 1 in Hilbert space.

Choosing |Y1-= |Y-, |Y2-= UÃ ( f ) |Y- and |J-= UÃ ( v ) |W-, and taking the maxi-

mum over all v we have

sup

q

| ¬ Y |UÃ ( v ) |W-¬ W |UÃ ² ( v )UÃ ( f ) |Y-| < 1
2 [1 + F( f )] . (49)

This relation provides us with a lower bound on F( f ) in terms of our operational

phase distribution. Note that this bound is useful only if the left-hand side of

equation (49) is greater than 1
2 .

The inequality (49) can give us information about the peak in F( f ) at f = 0 if

the overlap between |Y- and UÃ ( v Â ) |W- is large for some values of v Â , that is

| ¬ Y |UÃ ( v Â ) |W-| is close to unity. For f not too large the left-hand side of equation

(49) will then provide us with a useful lower bound for the peak of F( f ).

As a simple example let us consider the case when |Y- is the coherent state

|s-, where s = |s | exp (i h ), and |W- is the coherent state with a real amplitude |s | .

We ® nd that, for |s |« 1 (see equation (33) where the exact expression for |F( f ) |2

with v = 0 is presented):

F( f ) « exp 1 ±
|s |2 f 2

2 2 , (50)
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Figure 5. The two sides of the inequality in equation (49) plotted for a coherent state

with a mean photon number of 9 (s = 3). The upper curve is the right-hand side, and

the lower curve is the left-hand side. We see that the information provided by the

measureable phase distribution (lower curve) gives a good description of the peak of

F( f ) near f = 0.

and

sup

q

| ¬ Y |UÃ ( v ) |W-¬ W |UÃ ²
( v )UÃ ( f ) |Y-| « exp 1 ±

|s |2 f 2

4 2 . (51)

These quantities are then inserted into the left- and right-hand sides of equation

(48) and the results are plotted in ® gure 5. We see that we can obtain useful

information about F( f ) from measured quantity in equation (51).

Finally, let us determine when our phase distribution of a given state is

approximately the same as the London phase distribution [4, 5] of that state. The

London phase distribution is based on the unnormalized phase states

| v -=
1

(2 p )1/2

`

å
n= 0

exp (in v ) |n-, (52)

and for the state |Y- is given by

PL( v ) = | ¬ v |Y- |2. (53)

This distribution is normalized as it stands. We shall compare P( v ) and PL( v ) by

examining the number state expansions of | v - and UÃ ( v ) |W-, where |W-=

DÃ (s)SÃ (r) |0-. We begin by considering the matrix elements ¬ n |W-. We have that

[15]

¬ n |W-= 1 sech r

n! 2 1/2
exp [± 1

2s2 exp ( ± 2r) (1 + tanh r)] ( ± i)n

´ 1 tanh r

2 2 n/2
Hn 1 i

s exp ( ± r) sech r

(2 tanh r)1/2 2 , (54)

where Hn is the nth Hermite polynomial. In order to proceed, we need to consider

in what regime we are working. Let us assume that the states |Y- for which we

are computing the phase distribution satisfy the condition

| ¬ Y |aÃ |Y-| « ( D N )1/2. (55)



1647Operational phase distributions

Figure 6. Phase-space representations of the state that we wish to measure, |Y-, and the

state on which the phase distribution is based, |W-.

This means that in phase space |Y- is represented by a blob which is contained

in a circular band whose centre is the origin of the phase space and whose width

is much smaller than its radius (® gure 6). We want our state |W-, on which our

phase distribution will be based, to ® t roughly inside this circular band. The state

|W- is centred at the point s of phase space and its width is (exp r)/2. We are

therefore interested in the regime

s « exp r. (56)

If this condition is satis® ed, then the number states |n-which will have a substantial

overlap with |W-will be those for which n1/2 « s. On the other hand, the magnitude

of the argument of the Hermite polynomial, which we shall denote by x , is

approximately given by

x « 21/2 exp ( ± 2r), (57)

for r of order one or greater. This means that for the Hermite polynomials we

shall be interested in the regime n « x and we can use an appropriate asymptotic

expansion for Hn . The details of this calculation are given in appendix B.
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The result is

¬ n |W- « (sech r)1/2

2
exp [± 1

2s2 exp ( ± 2r) (1 + tanh r)]

´ exp [± x 2 + (2n)1/2 x ] 1 2

p n 2 1/4
(tanh r)n/2. (58)

We now want to look at this expression for n in the neighbourhood of s2. In

order to do so we ® rst express the n-dependent part as an exponential

1 1

n 2 1/4
exp [(2n)1/2 x ] (tanh r)n/2 = exp [g(n)] , (59)

where

g(n) « 1
4 ln n +

n

2
ln [1 ± 2 exp ( ± 2r)] + (2n)1/2 x . (60)

The function g(n) has a maximum at

n « 2 1 x
| ln [1 ± 2 exp ( ± 2r)] |2 2

« s2. (61)

Expanding g(n) about this maximum, we ® nd that

g(s2 + d n) « g(s2) ±
1

4s2
( d n)2 exp ( ± 2r). (62)

This implies that the width of the peak at s2 is approximately given by s exp r.

Therefore, if d n « s exp r, then g(s2 + d n) = g(s2). This implies that, for |n ± s2 |«
s exp r, the matrix element ¬ n |W- is approximately independent of n. For n in this

range the state |W- `looks like ’ the phase state | v = 0- which is given by equation

(52).

This means that, for some states |Y-, the phase distributions P( v ) and PL( v )

are almost the same. Let us suppose that | ¬ n |W- | is appreciable only for

n1 < n < n2 where n1 « 1 and n2 ± n1 « n1. If we choose a displaced squeezed state

|W- given by equation (15 b) such that s = ((n1)
1/2 + (n2)

1/2)/2, n2 ± n1 « s exp r,

and | ¬ 0 |W-| « 1, then the two phase distributions will be approximately the same.

This provides a method of measuring the London distribution for states which

satisfy these conditions.

5. Conclusions

At present there are two operational phase distributions. The ® rst was proposed

by Noh et al. [11] and is based on an eight-port homodyne measurement. This

approach has been shown to be equivalent to measuring the integrated Q function

of a state [20, 21] . The second is the scheme of Vogel and Schleich [10] which is

based on quadrature eigenstates.

Each of these methods has its limitations. The Noh et al. scheme measures a

rather noisy phase distribution. This is a result of open ports in their measuring

device which mix the vacuum noise with the state whose distribution is being
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determined. The result is a smeared phase distribution which can obscure the

quantum-mechanical properties of a state. The Vogel ± Schleich scheme is limited

to states whose angular width in phase space is not too great. For example, we saw

that the Vogel ± Schleich distribution for an odd coherent state does not exist.

The operational phase distribution based on displaced squeezed states over-

comes some of these di� culties. It will not be as noisy as the distribution resulting

from the method of Noh et al. and it will be capable of providing phase

distributions for states for which the Vogel ± Schleich distribution does not work.

Unlike the other two methods the measurement scheme presented in this paper

is state dependent. Our phase states are displaced squeezed states. One wants to

pick the squeezing and displacement parameters so that the state which is being

measured is ` covered ’ by the squeezing ellipses which are acting as the phase states.

As we saw when considering the measurement of a coherent state, it often does

not take much squeezing to sharpen a phase distribution signi® cantly. This is

consistent with the work of Freyberger and Schleich [22] . They examined the

phase width of a displaced squeezed state and found that for a ® xed number of

photons in the state the width is smallest when there is considerably more

displacement than squeezing.

The phase distribution presented in this paper is also of use in determining

whether a state is useful for detecting small phase shifts. This suggests that it could

be useful in the analysis of interferometric measurements.

We were also able to relate our operational phase distribution to the London

or Pegg ± Barnett phase distribution. We found that under certain conditions they

are identical. Because the phase distribution based on displaced squeezed states is

measurable it can, for some states, provide a means of actually measuring their

London phase distribution.

In summary, the operational phase distribution presented here has a number

of useful properties; we believe that it can be useful in the measurement of phase

shifts and phase diŒerences. We are at present studying these possibilities.
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Appendix A

We wish to prove the inequality in equation (48), that is, if |Y1-, |Y2- and |J-
are three vectors in a Hilbert space of unit norm, then

| ¬ Y1 |J-¬ J|Y2-| < 1
2 (1 + | ¬ Y1 |Y2- |). (A 1)

We ® rst note that, if |J- is expressed as

|J-= |Ji -+ |J
^
-, (A 2)

where |Ji - is a linear combination of the vectors |Y1- and |Y2-, while |J
^
- is

orthogonal to both of these vectors, that

| ¬ Y1 |J-¬ J |Y2- | = | ¬ Y1 |Ji -¬ J i |Y2- | < | ¬ Y1 |J Â i -¬ J Â i |Y2-| , (A 3)

where |J Â i -= |Ji -/ ¬ Ji |Ji -. This allows us to conclude that, if equation (A 1) is

valid for all vectors of norm one which are linear combinations of |Y1- and |Y2-,

then it is true for all vectors of norm one.
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We shall now assume that |J- is a norm-one vector in the space spanned by

|Y1- and |Y2-. De® ne the orthogonal unit vectors

| u 1-=
¬ Y1 |Y2-
| ¬ Y1 |Y2- |

|Y1-, | u 2-=
1

(1 ± | ¬ Y2 |Y2-|2)1/2
( |Y2- ± |Y1-¬ Y1 |Y2-).

(A 4)

Then the state |Y2- can be expressed as

|Y2-= | ¬ Y1 |Y2-| | u 1-+ (1 ± | ¬ Y1 |Y2-|2)1/2 | u 2-, (A 5)

and we can express |J- as

|J-= c1 | u 1-+ c2 | u 2-, (A 6)

where |c1 |2 + |c2 |2 = 1. The left-hand side of equation (A 1) becomes

| ¬ Y1 |J-¬ J |Y2-| = |c
1
| ) c1 | ¬ Y1 |Y2- | + c2(1 ± | ¬ Y1 |Y2-|2)1/2 ) . (A 7)

From this equation it is clear that this expression will attain its largest value when

c1 and c2 have the same phase. We shall choose them both to be real and positive.

Let us set

c1 = cos g , c2 = sin g , (A 8)

where 0 < g < p /2, and, in addition, let us de® ne an angle b by

cos b = | ¬ Y1 |Y2-| . (A 9)

With these de® nitions we have

| ¬ Y1 |J-¬ J |Y2- | = cos g cos ( g ± b ). (A 10)

We can now ® nd the maximum of this expression considered as a function of g .
The maximum value occurs at g = b /2 and is equal to the right-hand side of

equation (A 1). This proves our result.

Appendix B

We want to ® nd an expression for Hn(ix), where x is real and n « x. We start

from the integral representation [23]

Hn(ix) =
(2i)n

p 1/2 # `

Å `

dt (x + t)n exp ( ± t2)

=
(2i)n

p 1/2
n(n+1)/2 # `

Å `

dz 1 x

n1/2 + z 2 n

exp ( ± nz2), (B 1)

where z = t/n1/2. In order to ® nd an asymptotic form valid for large n, Laplace’ s

method can be applied to the integral in equation (B 1) [24] . This is most easily

accomplished if the integral is expressed in the form

# `

Å `

dz 1 x

n1/2 + z 2 n

exp ( ± nz2) = ( ± 1)n # Å x/n1 /2

Å `

dz exp [nW
Å
(z)]

+ # `

Å x/n1 /2

dz exp [nW+(z)] , (B 2)
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where

W
Å
(z) = ln 1 ±

x

n1/2
± z 2 ± z2, W+(z) = ln 1 x

n1/2
+ z 2 ± z2. (B 3)

The dominant contributions for large n are given by the maximum of W+(z) at z+,

where

z+ =
1

2 3 ±
x

n1/2
+ 1 x2

n
+ 2 2 1/2 4 , (B 4)

and the maximum of W
Å
(z) at z

Å
, where

z
Å
=

1

2 3 ±
x

n1/2
± 1 x2

n
+ 2 2 1/2 4 . (B 5)

These two contributions gives us the result

Hn(ix) « (2i)n

21/2 1 n

2 2 n/2
exp 1 ±

(n + x2)

2 2 {exp [x(2n)1/2] + ( ± 1)n exp [± x(2n)1/2]} .

(B 6)

Substitution of this result into equation (54) and application of the Stirling

approximation to the 1/(n!)1/2 factor yields equation (58).
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