P R O J E C T   V E G A
VEGA 2/6070/26

Title: Quantum information theory of multipartite systems
Duration: 01/2006 - 12/2008
Principal Investigator:Mário Ziman, PhD

Project Goal:

Researchers: Mario Ziman, Vladimir Buzek, Metod Saniga, Peter Stelmachovic, Martin Plesch

Publications:
  1. Matyas Koniorczyk, Arpad Varga, Peter Rapčan and Vladimír Bužek : Quantum homogenization and state randomization in semi-quantal spin systems, Phys.Rev.A 77,052106 (2008) [arXiv:0712.2136]
  2. Lévay, P., Saniga, M., and Vrana, P: Three-Qubit Operators, the Split Cayley Hexagon of Order Two and Black Holes, Physical Review D, accepted (2008). [arXiv:0808.3849].
  3. Saniga, M., Planat, M., and Pracna, P: Projective Ring Line Encompassing Two-Qubits, Theoretical and Mathematical Physics, Vol. 155, No. 3, pp. 905-913 (2008).
  4. Planat, M., Baboin, A.-C., and Saniga, M.: Multi-Line Geometry of Qubit-Qutrit and Higher-Order Pauli Operators, International Journal of Theoretical Physics, Vol. 47, pp. 1127-1135 (2008).
  5. Havlicek, H., and Saniga, M.: Projective Ring Line of an Arbitrary Single Qudit, Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 1, 015302 (2008).
  6. Planat, M., and Saniga, M.: On the Pauli Graph of N-Qudits, Quantum Information and Computation, Vol. 8, No. 1-2, pp. 0127-0146 (2008).
  7. Michal Sedlak, Martin Plesch : Towards optimization of quantum circuits, Cent.Eur.J.Phys. 6, 128-134 (2008) [quant-ph/0607123]
  8. Jan Bouda, Mário Ziman : Optimality of quantum private channels, J. Phys. A: Math. Theor. 40 (2007) 5415-5426
  9. Vladimír Bužek , Mark Hillery, Mário Ziman : Towards Quantum-based Election Scheme, Quantum Communication and Security (edited by M.Zukowski et al.), 215--223 (IOS Press, 2007)
  10. Mário Ziman, Vladimír Bužek : Entanglement measures: state ordering vs local operations, Quantum Communication and Security (edited by M.Zukowski et al.), 196--204 (IOS Press, 2007) [arXiv:0707.4401]
  11. Havlicek, H., and Saniga, M.: Projective Ring Line of a Specific Qudit, Journal of Physics A: Mathematical and Theoretical, Vol. 40, No. 43, pp. F943-F952 (2007).
  12. Saniga, M., Planat, M., Pracna, P., and Havlicek, H.: The Veldkamp Space of Two-Qubits, Symmetry, Integrability and Geometry: Methods and Applications, Vol. 3, Paper 075, 7 pages (2007).
  13. Saniga, M., and Planat, M.: Projective Line over the Finite Quotient Ring GF(2)[x]/(x^3 - x) and Quantum Entanglement: Theoretical Background, Theoretical and Mathematical Physics, Vol. 151, No. 1, pp. 474-481 (2007).
  14. Saniga, M., Planat, M., and Minarovjech, M.: Projective Line over the Finite Quotient Ring GF(2)[x]/(x^3 - x) and Quantum Entanglement: The Mermin "Magic" Square/Pentagram, Theoretical and Mathematical Physics, Vol. 151, No. 2, pp. 625-631 (2007).
  15. Peter Štelmachovič, Marian Roško : Local control of remote entanglement, [quant-ph/0611252]
  16. Mário Ziman and Vladimír Bužek : Entanglement-induced state ordering under local operations, Phys. Rev. A 73, 012312 (2006), LANL preprint archive quant-ph/0510017
  17. Mark Hillery, Mário Ziman, Vladimír Bužek, Martina Bielikova : Towards quantum-based privacy and voting, Physics Letters A 349, Issues 1-4 , pp 75-81 (2006), [quant-ph/0505041]
  18. Vladimír Bužek, Miguel Orszag, and Marian Roško : Bužek, Orszag, and Roško Reply, Phys.Rev.Lett. 96, 089302 (2006)
  19. Saniga, M., and Planat, M.: Hjelmslev Geometry of Mutually Unbiased Bases, Journal of Physics A: Mathematical and General, Vol. 39, No. 2, pp. 435-440 (2006).
  20. Saniga, M., and Planat, M.: Finite Geometries in Quantum Theory: From Galois (Fields) to Hjelmslev (Rings), International Journal of Modern Physics B, Vol. 20, Nos. 11-13, pp. 1885-1892 (2006).
  21. Planat, M., Saniga, M., and Kibler, M. R.: Quantum Entanglement and Projective Ring Geometry, Symmetry, Integrability and Geometry: Methods and Applications, Vol. 2, Paper 066, 14 pages (2006).