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FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY
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Abstrakt - Prehľad cielov dizertačnej práce
V predkladanej dizertačnej práci formulujem matematický rámec, ktorý u-
možňuje jednotným spôsobom definovať kvantové úlohy bezchybného ro-
zlišovania. Ukážem, že apriórna informácia o každom type konštituentu
kvantového experimentu (stav, kanál, meranie) nám umožňuje preformulo-
vať úlohy o rozlišovaní medzi konečným počtom alternatív na úlohy o ro-
zlišovaní konečného počtu stredných konštituentov. S využitím uvedenej
formulácie odvádzam riešenia viacerých úloh bezchybného rozlišovania. Pr-
vou úlohou tohto typu je bezchybné porovnávanie dvoch konečných súborov
kvantových stavov. Vyriešil som dva prípady: 1) porovnávané kvantové stavy
sú čistými stavmi quditov (d-hladinových systémov) 2) porovnávajú sa ko-
herentné stavy jednomódového optického poľa. Pre koherentné stavy som
navrhol jednoduchý optický experiment využívajúci deliče zväzkov a fotode-
tektor. Ďalšia úloha, ktorú skúmam je bezchybná identifikácia koherent-
ných stavov. V tejto úlohe máme k dispozícii kvantové systémy, ktoré sú
pripravené v koherentných stavoch a sú označené ako neznámy stav, či re-
ferenčné stavy. Z definície úlohy vieme, že jeden z referenčných stavov je
rovnaký ako neznámy stav. Našou úlohou je zistiť, ktorý to je, pričom náš
záver musí byť neomylný a pravdepodobnosť zlyhania merania, čo najmenšia.
Konkrétny výber referenčných stavov nepoznáme, vieme len pravdepodob-
nostné rozdelenie podľa, ktorého sú referenčné stavy vybrané. Pre všeobecný
prípad viacerých kópii neznámych a referenčných stavov som navrhol schému
optického experimentu, ktorá využíva deliče zväzkov s fotodetektormi a je
optimálna v rámci lineárnej optiky. Bezchybnú identifikáciu koherentných
stavov môžeme považovať aj za vyhľadávanie v kvantovej databáze, ktorej
elementami sú referenčné stavy a vyhľadávaný prvok je reprezentovaný ne-
známym stavom. Tento pohľad ma motivoval k dokázaniu možnosti čias-
točného obnovenia a opätovného použitia referenčných stavov pre ďalšiu
bezchybnú identifikáciu. Ďalší aspekt úlohy, ktorý som skúmal, je vplyv
šumu v príprave koherentných stavov na spoľahlivosť navrhnutej optickej
schémy. Zaoberal som sa aj bezchybným porovnávaním dvojice unitárnych
quditových kanálov. Charakterizoval som všetky riešenia a našiel tie op-
timálne. Dokázal som, že kvantové previazanie (entanglement) je nevyh-
nutné pre dosiahnutie optimálnych výsledkov. Posledná úloha, ktorú som
študoval je bezchybné porovnávanie nedegenerovaných projektívnych meraní.
Nezávisle skúmam dve variácie: meracie prístroje s označenými / apriori
neoznačenými výsledkami merania. V oboch prípadoch môžeme bezchybne
potvrdiť iba rozdielnosť meraní. Pre meracie prístroje s označenými výsled-
kami odvádzam optimálne riešenie pre qudity a jedno použitie oboch zaria-
dení. Meracie prístroje s neoznačenými výsledkami merania je však nutné
použiť aspoň dva krát. Pre dvojnásobné použitie qubitových (2-hladinových)
meracích prístrojov s neoznačenými výsledkami odvádzam optimálny postup
porovnávania meraní.



Abstract
In the present thesis I formulate a framework that accommodates many

unambiguous discrimination problems. I show that the prior information
about any type of constituent (state, channel, or observable) allows us to re-
formulate the discrimination among finite number of alternatives as the dis-
crimination among finite number of average constituents. Using this frame-
work I solve several unambiguous tasks. I present a solution to optimal
unambiguous comparison of two ensembles of unknown quantum states. I
consider two cases: 1) The two unknown states are arbitrary pure states
of qudits. 2) Alternatively, they are coherent states of single-mode optical
fields. For this case I propose simple and optimal experimental setup com-
posed of beam-splitters and a photodetector. As a second tasks I consider
an unambiguous identification (UI) of coherent states. In this task identical
quantum systems are prepared in coherent states and labeled as unknown
and reference states, respectively. The promise is that one reference state is
the same as the unknown state and the task is to find out unambiguously
which one it is. The particular choice of the reference states is unknown
to us, and only the probability distribution describing this choice is known.
In a general case when multiple copies of unknown and reference states are
available I propose a scheme consisting of beamsplitters and photodetectors
that is optimal within linear optics. UI can be considered as a search in a
quantum database, whose elements are the reference states and the query is
represented by the unknown state. This perspective motivated me to show
that reference states can be recovered after the measurement and might be
used (with reduced success rate) in subsequent UI. Moreover, I analyze the
influence of noise in preparation of coherent states on the performance of the
proposed setup. Another problem I address is the unambiguous comparison
of a pair of unknown qudit unitary channels. I characterize all solutions and
identify the optimal ones. I prove that in optimal experiments for comparison
of unitary channels the entanglement is necessary. The last task I studied
is the unambiguous comparison of unknown non-degenerate projective mea-
surements. I distinguish between measurement devices with apriori labeled
and unlabeled outcomes. In both cases only the difference of the measure-
ments can be concluded unambiguously. For the labeled case I derive the
optimal strategy if each unknown measurement is used only once. However,
if the apparatuses are not labeled, then each measurement device must be
used (at least) twice. In particular, for qubit measurement apparatuses with
unlabeled outcomes I derive the optimal test state in the two-shots scenario.
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Chapter 1

Introduction

Quantum mechanics is a statistical theory, which describes how Nature be-
haves on an atomic scale. As each physical theory it has tools for describing
state, evolution and predictions for measurable quantities of the considered
system [1]. A specific feature of quantum mechanics is that probabilistic
nature of its predictions can not be attributed to our insufficient knowledge
about the state of the system and in general the state can not be inferred
from a single measurement. In classical physics we are used to having a di-
rect relation of the measured property of the physical system to its implicitly
assumed preexisting value before the measurement. In quantum mechanics
it follows from Bells inequalities that for some sets of observables assuming
preexisting values before the measurement is forbidden. On the other hand,
via experiments with quantum systems we either try to acquire information
formerly encoded into the system or we are determining properties of the sys-
tem itself. Usually we are not testing completely unknown quantum system,
but we have some prior knowledge about it. For example there always exists
a subset of orthogonal states that are perfectly distinguishable by some mea-
surement, which for each of those states produces only one distinct outcome.
Therefore, the prior knowledge of this subset from which the measured state
originates, enables us to determine the state by a single measurement. How-
ever as soon as the possible states before the measurement are not mutually
orthogonal, a perfect discrimination is impossible due to nonorthogonality of
outcome probability distributions predicted by quantum mechanics.

At the first glance the impossibility to perfectly discriminate states of
quantum objects might look as a disadvantage in the areas like computation
and communication. Surprisingly quite opposite seems to be true. In quan-
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2 CHAPTER 1. INTRODUCTION

tum mechanics a measurement changes a state of a system. Thus, the use
of nonorthogonal states for quantum communication enables communicating
parties to detect the eavesdropper who inevitably disturbs their measure-
ment statistics. In quantum computation (see e.g. [2]) encoding of a final
result to nonorthogonal states can speed up the computation significantly
even though some repetitions of the computation may be necessary to find
the result. These quantum information processing applications currently
motivate the investigation of state discrimination in situations with different
prior knowledge on states being measured.

The discrimination of quantum states was first considered in 1970s in a
pioneering work by Helstrom [3]. In his case the measured state is guaran-
teed to be in one of the two known states ρ1, ρ2, which appear with prior
probabilities η1, η2, respectively. The task is to determine after each single
measurement which of the two states we were given. If the states are not
orthogonal we inevitably sometimes guess incorrectly and the goal is to min-
imize the probability of making an error. This approach is called minimum
error approach and can be easily generalized also for more states ρi. Although
we will determine the state correctly with the highest possible probability,
we are never sure that our conclusion was correct.

The other (extreme) option to handle the inevitable errors in the dis-
crimination is by ultimately increasing the reliability of some outcomes at
the expense of one totally unreliable outcome (inconclusive result). This ap-
proach, called unambiguous discrimination, is adopted also in this thesis and
each of its conclusive outcomes unambiguously indicates one of the discrim-
inated possibilities. Hence, the outcomes either imply error free conclusion
or they are inconclusive and marked also as a failure of the measurement.

Unambiguous discrimination of a pair of pure states was solved in works
of Ivanovic [4], Dieks[5] and Peres[6] in 1987. They found out that both
states can be unambiguously determined, but the price to pay is the possi-
bility of getting an inconclusive result, which means that the measurement
failed to give an unambiguous answer. Naturally, we would like to maximize
the probability of correct discrimination of the states, which is equivalent
to minimization of the failure probability. The fact that a specific result of
a (single shot) measurement allows us to determine with certainty which of
the non-orthogonal states was prepared is astonishing and still attracts lot
of attention. The original Ivanovic, Dieks and Peres’s scenario with two pure
states appearing with equal prior probability was generalized in several ways.
The case with arbitrary prior probabilities was solved in 1995 by Jaeger and
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Shimony [7]. Chefles [8] showed that in contrast to minimum error approach
only linearly independent states can be unambiguously discriminated. He
also resolved unambiguous discrimination of N symmetric pure states. Es-
sentially no more pure state analytical solutions are known, however Sun
[9] showed that the problem can be efficiently tackled numerically by the
convex optimization. The transition to the unambiguous discrimination of
mixed states yields very interesting and still open problem. The known re-
sults ranges from the upper and lower bounds on the failure probability,
solutions for some special cases and some numerical approaches. The main
focus is certainly on discrimination of a pair of mixed states. There, the
important step on a way to the general solution are Raynal’s reduction theo-
rems [10, 11], which enable uniform derivation of nearly all previously solved
special cases. They simplify the problem by reducing its dimension or split-
ting it into more pieces, which are often unambiguous discrimination of two
pure states. In years 2007 and 2008 very general new results were obtained
by Kleinmann, Kampermann, and Bruss. In particular, in [12] these authors
found commutators, which reveal two dimensional block diagonal structure
in the reduced states. Moreover, they succeeded [13, 14] to rewrite the neces-
sary and sufficient optimality conditions by Eldar, Stojnic, and Hassibi [15]
into an operational form, which enabled them to prove uniqueness of the
optimal measurement within the set of proper USD measurements. Finally,
they completely classify and derive the solutions in four dimensional Hilbert
space. Unfortunately, there does not exist a closed formula for the proba-
bility of success and hence some people still consider the unsolved general
problem as open also in four dimensional Hilbert space.

The unambiguous state discrimination started the investigation of tasks,
in which the certain measurement can lead to unambiguous knowledge about
some property of the system. It is clear that some kind of prior knowledge
is needed for such tasks to be realizable. The closely related example to
discrimination of states is unambiguous discrimination of quantum channels.
The basic version of the task is to unambiguously distinguish among two
fixed channels if we control the preparation of the initial states and the mea-
surement after the channel. Obviously channels are distinguishable if there
exist an input state, which is evolved to unambiguously distinguishable out-
put states. The goal is thus to chose an input state for which the probability
of unambiguously distinguishing final states is highest. The first results were
obtained by G. Wang, and M. Ying [16] and tell us when the discrimination
among N quantum channels is possible if the tested channel is used multiple
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times.
Another intriguing unambiguous discrimination task, was proposed and

solved by S.M. Barnett, A. Chefles, and I. Jex [17]. Imagine we are given two
identical quantum systems, which are guaranteed to be in a product state.
The task, called quantum state comparison, is to say unambiguously whether
the systems are in the same or different state. No prior knowledge of the
pure state of each of the systems implies that only symmetry with respect
to exchange of the systems can be used. Perhaps a bit unexpectedly the
analysis show that equivalence of states can not be concluded unambiguously,
whereas the difference can be. A measurement outcome which would reveal
the equality of the states will be always inconclusive, because a general pair
of pure states can produce any outcome for a given measurement. On the
other hand detection of the difference of the states is possible because a pair
of identical pure states can not produce all measurement outcomes.

So far we have considered as a prior knowledge the information about
the task we are solving and the structure of the expected states together
with their corresponding prior probabilities. However the random choice
of the quantum states in each run of the experiment was considered as a
consequence of our insufficient prior knowledge. Another way how to look on
this situation is to denote the prior knowledge we have about the problem as
a classical information and to call the choice of quantum states as a quantum
information. In this way the quantum state comparison can be also seen as
a special kind of probabilistic quantum processor [18, 19]. In such device
one system serves as the data register and the second quantum system as
the program register telling the machine what to do with the data (in our
case with which state the data should be compared). The processor acts
probabilistically, because we are asking for unambiguous discrimination of
nonorthogonal possibilities.

The unambiguous discrimination task we intensively focus on in this the-
sis is denoted as unambiguous identification (UI). Imagine that we are given
N identical quantum systems each of which is in different unknown pure state
- the so called reference state. We are given one additional system, which is
guaranteed to be in one of the reference states. Our task is to identify un-
ambiguously with which reference state the additional system matches. This
task was first proposed by J. Bergou and M. Hillery. They aptly named their
solution ”Programmable Quantum State Discriminator”, because the refer-
ence states can be seen as a program, which tells the machine between which
states to discriminate. Thus, this task seems to be a nice fusion of ideas from
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quantum processors and unambiguous discrimination of pure states. Its in-
vestigation can help to clarify how the prior knowledge differ if it is given as
classical and quantum information, how those forms of information supple-
ment each other and how they influence the solution of the discrimination
tasks.

The thesis is organized as follows. We begin by Chapter 2, which recalls
some basics of quantum mechanics and provides some useful mathematical
statements. In Chapter 3 we formulate a framework which accommodates un-
ambiguous discrimination problems. We shall see that the prior information
about any type of constituent (state, channel, observable) allow us to refor-
mulate the discrimination among finite number of alternatives as discrimina-
tion among finite number of average constituents. In subsequent chapters 4,
5 and 6 we use this framework to investigate unambiguous tasks for states,
channels and measurements, respectively. In each of these chapters we study
discrimination and comparison in general setting. Moreover, for states we
study also unambiguous identification. A more detailed treatment is given
to unambiguous identification of coherent states in Section 4.3. Each chapter
is supplemented by a brief review of recent results obtained in the specific
topic that is covered in the chapter. The original results presented in the
thesis are based on articles [20, 21, 22, 23, 24, 25].
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Chapter 2

Mathematical tools

Quantum mechanics describes Nature and its behavior by mathematical ob-
jects called linear operators. The purpose of this chapter is to provide their
definition together with their basic properties, we will often use. In order to
do that we have to start with the first postulate of quantum mechanics:

To any physical system there exist a complex separable Hilbert space H,
which provides sufficient ground for the complete description of the system.

Hilbert spaceH is a complex vector space endowed with the inner product
〈.|.〉 and complete in the norm derived from the inner product. Separability
of H guarantees that there exist {|i〉}dimH

i=1 a countable orthonormal basis of
H i.e. closure of the span of {|i〉} equals H and 〈i|j〉 = δij. Having a Hilbert
space we can build various mathematical structures based on it. Let us
note that for infinite dimensional Hilbert spaces many complications arise.
We plan to work mostly in finite dimensional H, thus we provide simpler
definitions valid for such case. Complex linear functional fψ : H 7→ C is a
mapping from Hilbert space H to complex numbers for which ∀α, β ∈ C,
∀|φ1〉, |φ2〉 ∈ H fψ(α|φ1〉+ β|φ2〉) = αfψ(|φ1〉) + βfψ(|φ2〉) holds. Thanks to
Riesz lemma, to any complex linear functional fψ there exist a unique vector
|ψ〉 ∈ H, such that fψ(|φ〉) = 〈ψ|φ〉 ∀|φ〉 ∈ H. We denote such functional
by symbol 〈ψ| and the abbreviation for its action on vector |φ〉 coincide with
the resulting scalar product 〈ψ|φ〉. The complex linear functionals from H
also form a Hilbert space isomorphic to H and usually denoted H∗. The
mapping A : H 7→ H which is linear (A(α|φ1〉 + β|φ2〉) = αA|φ1〉 + βA|φ2〉)
and defined on the dense subset of H, we denote as linear operator. If the

7



8 CHAPTER 2. MATHEMATICAL TOOLS

norm of the linear operator A, defined as:

‖A‖ := sup
|φ〉

√
〈Aφ|Aφ〉√
〈φ|φ〉 , A|φ〉 ≡ |Aφ〉, (2.1)

is finite we call operator A bounded. Bounded linear operators form a Ba-
nach space L(H) i.e. a normed vector space complete in its norm. Moreover,
L(H) has also a structure of noncommutative algebra, because bounded lin-
ear operators are closed with respect to composition of operators.

In general any linear operator A is completely determined by its action on
the basis vectors. Therefore in d dimensional Hilbert space H the action of A
can be efficiently specified by d× d matrix. If we use orthonormal basis the
matrix elements are given by Aij = 〈i|A|j〉. The elements Aij i = 1, . . . , d

determine the transformation of vector |j〉 into vector A|j〉 =
∑d

i=1 Aij|i〉.
The simple example of linear operator is |i〉〈j| - a complex linear functional
〈j| whose result rescales the fixed vector |i〉 from H. If indexes i, j run
through 1, . . . , d the set of the operators we obtain form a basis of L(H) and
each A ∈ L(H) can be written as A =

∑d
i,j=1 Aij|i〉〈j|.

Each linear operator A ∈ L(H) defines a linear operator A∗ on H∗:
A∗(〈ψ|) 7→ 〈χ| such that ∀|φ〉 ∈ H 〈χ|φ〉 = 〈ψ|A|φ〉. Thanks to isomorphism
T between H and H∗ operator A∗ uniquely defines the so called adjoint oper-
ator A† := T−1A∗T onH. The adjoint operator therefore obeys the following
property 〈φ|A†|ψ〉 = 〈Aφ|ψ〉. Taking the adjoint of an operator is an antilin-
ear operation i.e. (A + λB)† = A† + λB†, where λ is a complex conjugate of
λ ∈ C. We will further focus only on normal operators. Linear operator A is
normal if and only if AA† = A†A. Different subsets of normal operators are
important in quantum mechanics, so we recall them by listing their defining
properties. Selfadjoint operator is equal to its adjoint (A = A†), projector is
an operator obeying P = P † = P 2. A unitary operator U fulfills the relation
UU † = U †U = I, where I is a unity operator acting trivially I|φ〉 = |φ〉
on each vector |φ〉 from H. Operator A is called possitive if it is selfadjoint
and ∀|φ〉 ∈ H 〈φ|A|φ〉 ≥ 0. For characterization of the internal structure of
operators we will need the following terms. Vector |φ〉 ∈ H is an eigenvector
of operator A and λφ is its corresponding eigenvalue if A|φ〉 = λφ|φ〉. A very
useful Spectral theorem states that any normal operator has the following
decomposition:

A =
∑

k

λkPk, (2.2)
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where λk ∈ C are the eigenvalues of operator A and Pk are projectors onto
mutually orthogonal subspaces corresponding to those eigenvalues. Thus any
vector from the subspace on which Pk projects is an eigenvector with eigen-
value λk. The orthogonality of the subspaces is equivalent to PkPj = PjPk =
0 ∀k 6= j and implies that eigenvectors with different eigenvalues are orthogo-
nal. Let us define a kernel of an operator as a subspace which is mapped into
zero. For normal operators it is a subspace corresponding to eigenvalue zero.
By a support of an operator we will understand an orthocomplement of op-
erators kernel i.e. the biggest orthogonal subspace of the kernel. For normal
operator the support is a subspace corresponding to all nonzero eigenval-
ues. The subsets of normal operators can be defined also through constraints
on their eigenvalues. Selfadjoint operators must have only real eigenvalues,
positive operators positive eigenvalues, unitary operators eigenvalues with
modulus 1 and projectors only eigenvalues 0 and 1.

Description of compound quantum systems requires tensor product of
Hilbert spaces corresponding to the parts of the system. Assume we are
given two Hilbert spaces HA, HB together with their orthonormal bases
{|i〉A}dimHA

i=1 , {|k〉B}dimHB
k=1 . Hilbert space HA ⊗HB is a vector space span by

vectors |i〉A⊗|k〉B endowed with inner product, which is on these vectors de-
fined as (A〈i|⊗B〈k|) (|j〉A⊗|l〉B) = (A〈i|j〉A).(B〈k|l〉B) and linearly extended
to the rest of the space. Completeness of HA, HB in the norm derived from
the scalar product assures completeness of HA ⊗HB which is therefore also
a Hilbert space. Usually we keep the same ordering of the subsystems and
thus we often simplify the notation by omitting the subscripts denoting the
parts of the system. Moreover for ∀z ∈ C, ∀|ϕ〉, |ψ〉 ∈ HA, ∀|φ〉, |ξ〉 ∈ HB,
the following rules hold:

z|ϕ〉 ⊗ |φ〉 = (z|ϕ〉)⊗ |φ〉 = |ϕ〉 ⊗ (z|φ〉),
(|ϕ〉+ |ψ〉)⊗ |φ〉 = |ϕ〉 ⊗ |φ〉+ |ψ〉 ⊗ |φ〉,
|ϕ〉 ⊗ (|φ〉+ |ξ〉) = |ϕ〉 ⊗ |φ〉+ |ϕ〉 ⊗ |ξ〉.

A pair of linear operators A ∈ L(HA), B ∈ L(HB) naturally defines a
bounded linear operator A ⊗ B on HA ⊗ HB. Its action is first defined
on the product states (states of the form |ϕ〉 ⊗ |φ〉) by:

(A⊗B)|ϕ〉 ⊗ |φ〉 := (A|ϕ〉)⊗ (B|φ〉),
and then linearly extended to the whole HA⊗HB. Let us note that L(HA⊗
HB) = L(HA) ⊗ L(HB) and algebras L(HA), L(HB) are contained as a
subalgebras of operators acting by unit on one of the subsystems.
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We should also define the trace which connects linear operators with
numbers. Thus, it is a linear mapping from L(H) to C defined as: Tr(A) =∑d

i=1〈i|A|i〉, where A ∈ L(H) and {|i〉}d
i=1 is any basis of Hd. In practice, use

of orthonormal basis for calculation of the trace is usually more convenient.
The trace has the following properties (A,B, C, U ∈ L(H), λ ∈ C):

Tr(A + λB) = Tr(A) + λTr(B),

T r(ABC) = Tr(BCA) = Tr(CAB),

T r(U−1AU) = Tr(A), U − unitary,

Tr(A⊗B) = Tr(A)Tr(B).

T r(A|ψ〉〈ψ|) = 〈ψ|A|ψ〉

Working with compound quantum systems we often need to focus our atten-
tion only on one of the subsystem. In such situations we frequently use a
mapping called partial trace which transforms operators acting on the whole
Hilbert space HA ⊗ HB onto operators on Hilbert space of one of the sub-
systems. Partial trace over subsystem B is defined as:

TrB(C) =

dimHA∑
i,j=1

(
dimHB∑

k=1

A〈i| ⊗ B〈k|C|j〉A ⊗ |k〉B
)
|i〉A A〈j|,

where C ∈ L(HA ⊗ HB), TrB(C) ∈ L(HA) and {|i〉A}dimHA
i=1 , {|k〉B}dimHB

k=1

are orthonormal bases of HA, HB respectively. Partial trace over subsystem
A is defined analogously and result of both of them does not depend on the
choice of the basis.

Before discussing how all these mathematical notions are used in quantum
physics, let us prove two lemmas and present one recipe, which will become
useful later in chapter about unambiguous identification.

Lemma 1 Let A, B be positive operators acting on H, such that Tr(AB) =
0. Then the support of A is orthogonal to support of B.

Proof 1 Since operators A, B are positive they have spectral decomposition:

A =
rankA∑

i=1

λi|φi〉〈φi|, λi > 0, B =
rankB∑
j=1

κj|χj〉〈χj|, κj > 0 (2.3)
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Now let’s evaluate the trace:

0 = Tr(AB) =
rankA∑

i=1

rankB∑
j=1

λiκj|〈φi|χj〉|2 (2.4)

Eigenvalues λi, κj are positive and |〈φi|〉χj|2 is nonnegative, therefore we
have a sum of nonnegative terms equal to zero. This is possible if and only
if each term in the sum is equal to zero. Thus we have:

〈φi|χj〉 = 0 ∀i, ∀j, (2.5)

which means that eigenvectors of A are orthogonal to all eigenvectors of B
and so concludes the proof.

Lemma 2 Let E, ρ(ψ) = |ψ〉〈ψ| be positive operators acting on H. If for set
S, an integral Ω =

∫
S
|ψ〉〈ψ|dψ exists the following conditions on operator E

are equivalent:

∀|ψ〉 ∈ S Tr(Eρ(ψ)) = 0 ⇐⇒ Tr(EΩ) = 0. (2.6)

In the integral defining Ω we use the Haar unitary invariant integration mea-
sure as well as in all other integrals in this thesis.

Proof 2 Integration of equation from left hand side (LHS) of equivalence
together with linearity of trace obviously implies the right hand side (RHS).
To prove the oposite implication we first rewrite the equation from RHS.

0 = Tr(EΩ) = Tr(E

∫

S

|ψ〉〈ψ|dψ) =

∫

S

〈ψ|E|ψ〉︸ ︷︷ ︸
≥0

dψ (2.7)

Integral of continuous nonnegative function is equal to zero only if the func-
tion is zero in the integration region. Therefore we have:

∀|ψ〉 ∈ S 〈ψ|E|ψ〉 = Tr(Eρ(ψ)) = 0, (2.8)

which completes the proof.

Recipe 1 Construction of Jordan basis for two subspaces
Suppose we are given two orthonormal bases {|a′i〉}dim V1

i=1 , {|b′j〉}dim V2
j=1 of

subspaces V1, V2 respectively. We would like to rotate those bases in such
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a way that the rotated bases {|ai〉}dim V1
i=1 , {|bi〉}dim V2

i=1 of V1, V2 will obey the
following property:

∀i = 1, . . . , dim V1, ∀j = 1, . . . , dim V2, 〈ai|bj〉 = δij cos θi ≥ 0. (2.9)

Such a bases are called Jordan basis. They can always be relabeled so that
cos θi ≥ cos θj for i < j. In order to construct Jordan basis from {|a′i〉},
{|b′i〉} we first create (dim V1)× (dim V2) matrix of overlaps H with elements
Hij = 〈a′i|b′j〉. Next we have to find its Singular value decomposition:

H = U1.D.U †
2 , (2.10)

where Ui (i = 1, 2) is dim Vi×dimVi unitary matrix and dim V1 times dim V2

matrix D has non vanishing only diagonal elements Dii = cos(θi). Choosing
{|ai〉}, {|bi〉} to be:

|ai〉 =

dim V1∑

k=1

(U1)ki|a′k〉 |bj〉 =

dim V2∑

l=1

(U2)lj|b′l〉

we obtain new orthonormal bases of V1, V2, since we have only unitarily
rotated the former bases1, with the following mutual overlap:

〈ai|bj〉 =

dim V1∑

k=1

dim V2∑

l=1

(U1)
∗
ki〈a′k|b′l〉(U2)lj =

=

dim V1∑

k,m=1

dim V2∑

n,l=1

(U †
1)ik(U1)kmDmn(U †

2)nl(U2)lj =

= Dij = δij cos θi

Thus we fulfilled the definition (2.9) i.e. we found the Jordan basis of sub-
spaces V1, V2. Let us note that the basis of the common subspace of V1 and
V2 is given by vectors |ak〉 = |bk〉 such that cos θk = 1. On the other hand
vectors |am〉 such that cos θm = 0 or m > dim(V2) form a basis of a subspace
of V1, which is orthogonal to subspace V2. Analogously, vectors |bn〉 such that
cos θn = 0 or n > dim(V1) define a subspace of V2 orthogonal to V1.

1Transpose of a unitary matrix is also unitary
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After the brief summary of mathematics we will use, we should describe
how those mathematical structures are used in quantum mechanics. The
entity of a quantum system determines the Hilbert space H appropriate
for its description. Our knowledge about the state of a quantum system
is expressed by a density matrix ρ - a positive linear operator on H with
trace one. The set of all possible density matrixes we denoted as S(H)
and its elements are often also called mixed states. If the density matrix
ρ is a projector or equivalently Tr(ρ2) = 1 we call the state pure, because
ρ = |ψ〉〈ψ| for some vector |ψ〉 ∈ H with norm one. Vectors eiϕ|ψ〉, ϕ ∈ R
represent the same pure state. Pure states can therefore be identified with
elements of projective Hilbert space, which is formed by cosets of the type
λ|ψ〉, λ ∈ C. We will denote the set of all pure states of a d-dimensional
quantum system (qudit) Spure.

Physical quantities, which can be measured, are called observables and
correspond to self-adjoint operators. If the observable A is measured, only
the eigenvalues of operator A can appear as measurement outcomes. The
experience from experiments tells us that the immediate repetition of a mea-
surement always gives the same outcome. This property of measurement is
guaranteed by the projection postulate. It claims that the measurement of
observable A collapses the state of the system into an eigenstate of A, corre-
sponding to the observed eigenvalue. The statistics of measurement outcomes
for the observable A can be collected by repeating the whole experiment many
times. Quantum mechanics predicts that the mean value of these outcomes
will be 〈A〉 =

∑
k λkp(λk|ρ) =

∑
k λkTr(Πkρ) = Tr(Aρ), where ρ is the state

of the system immediately before the measurement, p(λk|ρ) is the probability
of obtaining the outcome λk and Πk projects onto a subspace corresponding
to λk. The measurement of an observable A can be therefore characterized
as a projective measurement and might be specified by a set of orthogonal
projectors {Πk} and the corresponding measurement outcomes.

However, quantum mechanics permits a broader class of measurements
to be performed. The most general measurement is described by a Posi-
tive Operator Valued Measure (POVM). From a mathematical point of view
POVM is a mapping A from the set of outcomes {ω1, . . . , ωn} into the set
of effects E(H), i.e. a set of positive operators E on a Hilbert space H such
that O ≤ E ≤ I, where O is the zero operator and I is the identity operator.
Moreover, the POVM is normalized to identity i.e. A1 + · · ·+An = I, where
Ai ≡ A(ωi).

We say that an observable or a measurement is sharp or equivalently pro-
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jective if each effect composing the corresponding POVM is a projection, i.e.,
Aj = A2

j for all j. If, moreover, AjH is a one-dimensional subspace of H for
each j, then the observable is non-degenerate. In such a case we can write
Aj = |ψj〉〈ψj| ≡ ψj and 〈ψj|ψk〉 = δjk. In fact, each orthonormal basis of
the Hilbert space defines a sharp non-degenerate POVM. We denote by M
the set of all non-degenerate sharp observables. From the point of view of a
physicist a POVM is specified by a set of positive operators {Ei ≡ Ai}, which
sum up to identity operator

∑
i Ei = I. The probability of obtaining an out-

come corresponding to the measurement operator Ei is p(Ei|ρ) = Tr(Eiρ).
The change of state associated with the measurement is not specified in this
concept and in general depends on the particular realization of the POVM.
Neumark [26] showed that each POVM can be realized as a projective mea-
surement on the quantum system supplemented with an auxiliary quantum
system. The auxiliary system is usually called the ancilla and its Hilbert
space can have as many dimensions as the number of the POVM elements.

The description of discrimination tasks we consider does not require char-
acterization of the dynamics of quantum systems, thus the aforementioned
terms should suffice for our discussion.



Chapter 3

Model of quantum experiment

The purpose of this chapter is to define a perspective through which we will
look on quantum experiments. For us, an experiment is a sequence of three
consecutive events: preparation, evolution and measurement of the consid-
ered quantum system. In practice executing any of these events involves
several steps and takes a finite amount of time. However, for the purposes of
this thesis we will not need the details of the execution procedure, but rather
its final effects. Thus, in our view the preparation part of an experiment is
sufficiently described by the quantum state ρ to which the system was set.
The overall effect of the evolution part of an experiment is characterized by
a channel 1, i.e. a completely positive trace preserving map on the state
space of the quantum system. A measurement of a quantum system has
two important aspects. One is the classical information about the obtained
outcome of the measurement and the other is the state change inevitably
induced by the measurement. The more information we gain about the state
of the system before the measurement the more disturbed is the state of the
quantum system by the measurement. In principle, we can further evolve
the system after the measurement and then measure it again. However, the
additional amount of information we acquire about the state of the system
before the first measurement goes to zero as we iterate this process. More-
over, the whole development of the system starting by the first measurement
can be always perceived as the realization of one big complicated measure-
ment (see figure 3.1). We adopt this point of view, because our goal will
be to exploit the information of a particular measurement outcome to maxi-

1In each run of the experiment the state after the evolution will be measured, so post
selection can not be involved in the evolution part of the experiment.

15
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Figure 3.1: The schematical model of quantum experiment.

mize our knowledge about the constituents of an experiment. Hence, we do
not need to work with the quantum system after the measurement and we
are only interested in the probabilities that quantum mechanics predicts for
the possible measurement outcomes. This is the reason why we describe the
measurement part of an experiment by a positive operator valued measure
(POVM).

3.1 Unambiguous discrimination problem

Having established all three constituents of a quantum experiment (prepa-
ration, evolution, and measurement) let us now define the tasks we want to
study. Imagine we are given one of these constituents i.e. either a preparator
or a quantum channel or a measurement apparatus. The considered device
is equipped with an incomplete description of its function. We are given a
question about the operation of the device which we should answer by using
the device only once. Our answers are required to be unambiguous, that is
error free, and also an inconclusive answer indicating failure is allowed. The
goal is to design an experiment, which gives a correct conclusive answer as
often as possible.

More formally, this task called the unambiguous discrimination problem
(UDP), can be defined in the following way. Let the labels P, C, and M
indicate the preparator, channel, and measurement, respectively. We will
call SX(H) for X ∈ {P, C, M} the set of all possible constituents of type X for
the Hilbert space H. The incomplete knowledge about the constituent we
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investigate should be reflected by a probability measure dA defined on SX(H).
Thus,

∫
SX(H)

dA = 1 and the measure dA represents the probability density

that the tested constituent is actually A. In the studied problem a valid
question is such that its conceivable answers divide all possibly appearing
elements of SX(H) (i.e. support of dA) into a finite number M of disjoint
subsets Si. Hence, it must hold that Si

⋂
Sj = ∅ for i 6= j and

∑M
i=1

∫
Si

dA =
1. Let pj(A) be the probability of concluding answer j if constituent A ∈
SX(H) is tested in the experiment we have designed. The probability of
obtaining an inconclusive answer, denoted as j = 0, will be p0(A). The
unambiguity of conclusive answers is mathematically stated by the following
no error conditions:

∀i, j ∈ {1, . . . , M}, i 6= j, ∀A ∈ Si; pj(A) = 0. (3.1)

The objective is to design an experiment that maximizes

Psucc =
M∑
i=1

∫

Si

pi(A)dA , (3.2)

the probability of successfully answering the investigated question about the
constituent.

One might ask what is the motivation for defining this slightly artifi-
cially looking UDP. Although it might not be obvious at first sight, but the
definition of UDP covers all the unambiguous tasks discussed in the introduc-
tion. Thus, understanding some aspects of the unambiguous discrimination
problem might give us some insight to a wide variety of unambiguous dis-
crimination tasks. In the next section we will see that in finite dimensional
Hilbert spaces UDP can be reformulated as unambiguous discrimination of
M known constituents of a given type. This suggests that investigation of
discrimination of known states, channels, and measurements is certainly an
important thing to study. Unfortunately, regardless of effort made by many
authors, even the discrimination of two mixed states is still not completely
solved. Much less is known for discrimination of more than two states or for
discrimination of channels and observables. The investigation of state com-
parison and identification has lead to progress in discrimination of certain
types of states and in a similar way the study of comparison and identifica-
tion could help in discrimination of certain types of channels or observables.
UDP allows us to see these tasks in a unified way and hopefully observe simi-
larities and differences between the tasks for states, channels and observables
more clearly.
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3.2 Reformulation of UDP

Let us now consider a finite dimensional Hilbert space H. We define the
average constituents2

Ai =
1

ηi

∫

Si

A dA, (3.3)

where the factor ηi =
∫

Si
dA guarantees that Ai is a convex combination

of constituents from Si. Hence, Ai is a valid state, channel or measure-
ment. Probabilities predicted by quantum mechanics are linear with respect
to states, channels and measurements, which allow us to rewrite Psucc in
terms of average constituents

Psucc =
M∑
i=1

∫

Si

pi(A)dA =
M∑
i=1

pi

(∫

Si

A dA

)
=

M∑
i=1

ηipi(Ai). (3.4)

Let us now integrate the original no error conditions from Eq. (3.1)

∀i 6= j, ∀A ∈ Si : pj(A) = 0 ⇒ pj(Ai) =
1

ηi

∫

Si

pj(A) dA = 0. (3.5)

We see that the no error conditions from Eq. (3.1) imply the no error condi-
tions for unambiguous discrimination of the constituents Ai. The converse is
also true, because if integral of non negative continuous function is zero then
the integrated function must be zero in the integrated region. Hence UDP
can be equivalently reformulated as unambiguous discrimination of average
constituents Ai appearing with prior probabilities ηi.

3.3 Mathematical apparatus for discrimina-

tion

Let us now sketch a general experiment for discrimination of a given type of
constituent and briefly discuss its mathematical description. An experiment

2Under some strange circumstances it may happen that
∫

Si
dA = 0 for some i. We can

remove these answers from the definition of UDP, because they are forbidden to appear
(∀A /∈ Si pi(A)dA = 0

∧ ∫
Si

dA = 0 ⇒ ∫
SX(H)

pi(A)dA = 0) and the elements A from Si

can not spoil the unambiguity (
∫

Si
pj(A)dA = 0). Hence such sets Si do not influence the

UDP.
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for discrimination of states inevitably starts by an action of the investigated
preparator, which sets the system into one of the possible states ρi. Any-
thing that happens afterwards (e.g. use of ancillary quantum systems, any
kind of evolution, processing of measurement results) is incorporated into the
measurement part of the experiment described by a positive operator valued
measure. The most general POVM {Ei} for unambiguous discrimination of
M states consists of M + 1 elements. Without loss of generality we require
that the observation of outcome i ∈ {1, . . . , M} indicates the preparation of
state ρi and the outcome 0 is inconclusive. The optimal measurement max-
imizes the probability of success Psucc =

∑M
i=1 ηipi(ρi) =

∑M
i=1 ηiTr(ρiEi),

while preserving normalization
∑M

i=0 Ei = I and positivity (Ei ≥ 0) of the
POVM elements.

A general experiment for the discrimination of quantum channels is more
complicated. Except for the principal quantum system exposed to the tested
channel we have to consider also an ancillary system, whose evolution is
incorporated into the preparation or measurement of the compound system.
The class of such experiments is very broad, because the Hilbert space of an
ancilla can be arbitrary. Fortunately, as Ziman [27] showed one can restrict
the ancilla to have a Hilbert space isomorphic with the principal quantum
system. Moreover, he showed that the experiment is uniquely described
by a process positive operator valued measure (PPOVM) {Mi}. The tested
channel E is equivalently represented via the Choi-Jamiolkowski isomorphism
as a process state ωE and consequently the probability of observing the result
i reads pi(E) = Tr(ωEMi). The most general PPOVM {Mi} for unambiguous
discrimination of M channels consists of M + 1 elements. We associate the
observation of result i ∈ {1, . . . , M} with the use of channel Ei and declare
the outcome 0 as inconclusive. The optimal measurement should maximize
the probability of success Psucc =

∑M
i=1 ηipi(Ei) =

∑M
i=1 ηiTr(ωiMi), while

preserving positivity of PPOVM elements Mi and normalization
∑M

i=0 Mi =
ξT ⊗ I with ξ being a state of the principal quantum system. Thus, from the
mathematical point of view, the optimization is similar to the discrimination
of states except for the normalization of the operator measure. In particular,
the choice of this normalization ξ outlines the additional freedom, which
complicates the optimization.

The testing of measurements is a bit different from the experiments for
channels and states, because the outcomes of the investigated measurement
apparatus may not be directly linked to the results of the test. For example,
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imagine the discrimination of M POVMs each having N possible outcomes.
For N < M , a single outcome of the tested measurement could not indi-
cate each of the possibly used POVMs. Hence, the most general strategy
uses the principal system measured by the tested POVM as well as an an-
cillary quantum system, whose measurement depends on the outcome of the
tested POVM. One can show that it suffices to consider ancilla with the
same Hilbert space as the principal quantum system. Unfortunately, a suit-
able mathematical framework for describing these type of experiments is not
yet developed. Moreover, sometimes it may happen that we are not allowed
to use any other measurement then the tested one. In such a situation the
possible experiment consists of the preparation that we control and a tested
measurement, whose outcomes can be linked to test results in many ways.

The following three chapters are devoted to states, channels and mea-
surements. Each of them first summarizes the crucial known results on dis-
crimination and then investigates the comparison and the identification of
the given constituents. For states, these tasks are also studied for coherent
states, which in this case do not allow the average constituent approach to
the problem. Nevertheless, we are able to find and compare several solutions,
which are also easily optically realizable.



Chapter 4

Unambiguous tasks for states

4.1 Unambiguous discrimination of two mixed

states

The aim of this section is to collect in one place the most useful construc-
tive procedures proposed for unambiguous discrimination of a pair of gen-
eral mixed states. The material we present further in this section is mainly
adopted from the PhD thesis of P. Raynal [11], which provides a thorough
review on unambiguous discrimination of two mixed states until year 2006.
In years 2007 and 2008 other very general results were obtained by Matthias
Kleinmann et. al. and we summarize them at the end of the section.

The notation we use is the following: The quantum system we are given
is guaranteed to be either in the mixed state ρ1 or in the mixed state ρ2. This
two possibilities appear with a priori probabilities η1, η2 = 1 − η1, respec-
tively. The POVM elements E1, E2 correctly identify states ρ1, ρ2, respec-
tively and element E0 correspond to an inconclusive result. The unambiguity
of the measurement is ensured by fulfilling a pair of the no-error conditions:
0 = Tr(E1ρ2) = Tr(E2ρ1). We use the superscript opt to indicate that
the Unambiguous State Discrimination(USD) measurement maximizes the
probability of discrimination PD ≡ Psucc = η1Tr(E1ρ1) + η2Tr(E2ρ2). Due
to validity of the no-error conditions this is equivalent to minimization of the
probability of failure Q = η1Tr(E0ρ1) + η2Tr(E0ρ2) = 1− PD.

Let us note that it suffice to focus on a subspace S given by the span
of the supports of the density matrices ρ1, ρ2. If we denote by ΠS the
projector onto S then we have Tr(Ekρi) = Tr(EkΠSρiΠS) = Tr(E ′

kρi),

21



22 CHAPTER 4. UNAMBIGUOUS TASKS FOR STATES

where E ′
k = ΠSEkΠS is the part of the operator Ek acting only on S. Due to

normalization of POVM {Ek} we have
∑2

k=0 E ′
k = ΠS

∑2
k=0 EkΠS = ΠS , so

{E ′
k} forms a POVM on a subspace S of the Hilbert space H (E ′

k are positive
operators supported on S and sum up to identity on subspace S). Hence, the
no error conditions hold for E ′

k and the probability of discrimination stays
the same as for the measurement {Ek}. This means that the search for the
optimal measurement can be done in the smaller Hilbert space specified by
the subspace S and any choice of POVM {Ek} leading to {E ′

k} performs
the unambiguous discrimination equally well. For S 6= H there are infinitely
many POVMs {Ek} leading to {E ′

k}. For example Ek = E ′
k+Fk with positive

operators Fk supported in S⊥ and summing to I−ΠS defines one such class.
An USD measurement corresponding to F1 = F2 = 0, F0 = I − ΠS is called
proper USD measurement.

P. Raynal is the author of the following three reduction theorems, which
can be used to simplify the problem by contracting its effective Hilbert space
H.

The first theorem tells us that the common subspace of the supports of
the mixed states ρ1, ρ2 cannot be used for unambiguous discrimination and
thus can be split off from the problem.

Theorem 1 Reduction Theorem for a Common Subspace

Suppose supports Sρ1 and Sρ2 have a non-empty common subspace H⋂.
We denote by H′ the orthogonal complement of H⋂ in H while ΠH⋂ and ΠH′
denote respectively the projector onto H⋂ and H′. Then the optimal USD
measurement is characterized by POVM elements of the form

Eopt
1 = E ′opt

1

Eopt
2 = E ′opt

2 (4.1)

Eopt
0 = E ′opt

0 + ΠH⋂

where the operators E ′opt
0 , E ′opt

1 , E ′opt
2 form a POVM E ′opt

k with support on H′

describing the optimal USD measurement of a reduced problem defined by

ρ′1 =
1

N1

ΠH′ρ1ΠH′ , η′1 =
N1η1

N
, N1 = Tr(ρ1ΠH′)

ρ′2 =
1

N2

ΠH′ρ2ΠH′ , η′2 =
N2η2

N
, N2 = Tr(ρ2ΠH′) (4.2)

N = N1η1 + N2η2
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And finally, the optimal failure probability Qopt can be written in terms of
Q′opt, the optimal failure probability of the reduced problem, as

Qopt = 1−N + NQ′opt. (4.3)

The second reduction theorem proves that Eopt
1 , the conclusive element

of the optimal measurement, is a projector on the part of the support of ρ1,
which is orthogonal to the support of ρ2 and analogously for Eopt

2 . Thus these
parts of the supports can be eliminated and it suffices to vary the POVM
elements on a smaller Hilbert space, which corresponds to USD of two mixed
states with reduced rank.

Theorem 2 Reduction Theorem for Orthogonal Subspaces

Let us assume that supports Sρ1 and Sρ2 have no common subspace. Then
one can construct a decomposition

H = H′ ⊕H′⊥ (4.4)

with H′⊥ = S⊥1 + S⊥2 , S⊥1 = Kρ1

⋂
Sρ2 and S⊥2 = Kρ2

⋂
Sρ1. The solution of

the optimal USD measurement problem can be given, with help of ΠS⊥1
and

ΠS⊥2
, the projection onto S⊥1 and S⊥2 , respectively, in H = H′ ⊕H′⊥, by

Eopt
1 = E ′opt

1 + ΠS⊥2

Eopt
2 = E ′opt

2 + ΠS⊥1
(4.5)

Eopt
0 = E ′opt

0

the operators E ′opt
0 , E ′opt

1 , E ′opt
2 form a POVM E ′opt

k with support on H′ de-
scribing the optimal USD measurement of a reduced problem defined by

ρ′1 =
1

N1

ΠH′ρ1ΠH′ , η′1 =
N1η1

N
, N1 = Tr(ρ1ΠH′)

ρ′2 =
1

N2

ΠH′ρ2ΠH′ , η′2 =
N2η2

N
, N2 = Tr(ρ2ΠH′) (4.6)

N = N1η1 + N2η2

And finally, the optimal failure probability Qopt can be written in terms of
Q′opt, the optimal failure probability of the reduced problem, as

Qopt = NQ′opt. (4.7)
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The third reduction theorem tells us that if we have an orthonormal basis
in which matrices of ρ1, ρ2 are simultaneously block diagonal then it suffice
to optimally solve the USD of two mixed states for each subblock.

Theorem 3 Reduction Theorem for two block diagonal density matrices

Suppose that ρ1 and ρ2 are block diagonal (in other words, there ex-
ists a set of orthogonal projectors Πk such that

∑n
k=1 Πk = I and ρi =∑n

k=1 ΠkρiΠk, i = 1, 2. Then the optimal USD measurement can be chosen
block diagonal where each block is optimal onto its restricted subspace.

More precisely, the optimal USD measurement is characterized by POVM
elements of the form

Eopt
i =

n∑

k=1

Ekopt
i (4.8)

For k = 1, . . . , n, the operators Ek
0

opt, Ek
1

opt, Ek
2

opt form a POVM Ekopt
j with

support on SΠk
describing the optimal USD measurement of the reduced prob-

lem defined by

ρk
1 =

1

Nk
1

Πkρ1Πk, ηk
1 =

Nk
1 η1

Nk
, Nk

1 = Tr(ρ1Πk)

ρk
2 =

1

Nk
2

Πkρ2Πk, ηk
2 =

Nk
2 η2

Nk
, Nk

2 = Tr(ρ2Πk) (4.9)

Nk = Nk
1 η1 + Nk

2 η2

And finally, the optimal failure probability can be written in terms of Qkopt,
the failure probability of the reduced problems, as

Qopt =
n∑

k=1

NkQ
opt
k . (4.10)

The problem one obtains after application of the above three theorem is called
a Standard form of USD of two mixed states. The three reduction theorems
are powerful in a sense that all previously (prior to P. Raynal thesis) solved
cases of USD of two mixed states can be using these theorems reduced to
unambiguous discrimination of two known pure states. Therefore, we remind
the form of optimal measurement for this basic unambiguous discrimination
problem.
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4.1.1 Unambiguous discrimination of two known pure
states

We are given one instance of a quantum system guaranteed to be either in
a pure state |ψ1〉 or in a pure state |ψ2〉. The states |ψ1〉, |ψ2〉 are known
to us and appear with a priori probabilities η1, η2 = 1 − η1. The goal is to
design a measurement, which unambiguously distinguishes the two possibili-
ties with the highest possible probability. The existence of the inconclusive
measurement element E0 is implied by the fact that in quantum mechanics
nonorthogonal quantum states cannot be perfectly distinguished, when only
finite number of copies is provided. Thus the presence of inconclusive results
is the price we are paying for the unambiguity of the measurement.

This task was first formulated and solved for equal prior probabilities
in the works of Ivanovic, Dieks and Peres [4, 5, 6] in 1987. However the
solution for arbitrary prior probabilities was obtained 8 years later by Jaeger
and Shimony [7] in 1995.

The construction of the optimal measurement is relatively simple. First,
one observes that the relevant part of the Hilbert space is only a plane in
which states |ψ1〉, |ψ2〉 lay. This is because the support of the measurement
also in the orthocomplement of the plane does not affect the overlap with |ψi〉
and implies the same positivity conditions for the POVM elements. Secondly,
the requirement of unambiguity implies (see figure 4.1) E1 = c1|ψ⊥2 〉〈ψ⊥2 |,
E2 = c2|ψ⊥1 〉〈ψ⊥1 |, where ci ∈ R, |ψ⊥i 〉 is orthogonal to |ψi〉 and lays in the span
of |ψ1〉, |ψ2〉. Finally, the maximization of the probability of discrimination
PD can be done explicitly, because it is constrained only by the positivity of
elements Ek (k=0,1,2), which have rank at most two.

The final form of the optimal measurement depends on the relation of
the overlap λ = |〈ψ1|ψ2〉| to the prior probability η1 = 1 − η2. For a given
overlap of the states λ, there always exist three regimes:

• If η1 ∈ [0, λ2

1+λ2 ] the optimal measurement is a projective measurement,
which either unambiguously identify state |ψ2〉 or produce an inconclu-
sive result:

Eopt
1 = 0, Eopt

2 = |ψ⊥1 〉〈ψ⊥1 |, Eopt
0 = |ψ1〉〈ψ1|, (4.11)

The corresponding probability of discrimination is:

PD = η2(1− λ2) = (1− η1)(1− |〈ψ1|ψ2〉|2) (4.12)
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Figure 4.1: Measurement directions for the unambiguous discrimination of
two known pure states.

• If η1 ∈ [ λ2

1+λ2 ,
1

1+λ2 ] the optimal measurement is a true POVM measure-
ment, which conclusively identify both states ψ1, ψ2:

Eopt
1 =

1−
√

η2

η1
λ

1− λ2
|ψ⊥2 〉〈ψ⊥2 |, Eopt

2 =
1−

√
η1

η2
λ

1− λ2
|ψ⊥1 〉〈ψ⊥1 |, (4.13)

Eopt
0 = I − Eopt

1 − Eopt
2 .

The resulting probability of discrimination is:

PD = 1− 2
√

η1η2λ = 1− 2
√

η1η2|〈ψ1|ψ2〉| (4.14)

• If η1 ∈ [ 1
1+λ2 , 1] the optimal measurement is a projective measurement,

which either unambiguously identify state |ψ1〉 or produce an inconclu-
sive result

Eopt
1 = |ψ⊥2 〉〈ψ⊥2 |, Eopt

2 = 0, Eopt
0 = |ψ2〉〈ψ2|, (4.15)

and gives the probability of discrimination:

PD = η1(1− λ2) = η1(1− |〈ψ1|ψ2〉|2) (4.16)

The position of the borders between the three regimes depending on the
overlap of the states λ is depicted on figure 4.2.



4.1. UNAMBIGUOUS DISCRIMINATION OF TWO MIXED STATES 27

0 0.2 0.4 0.6 0.8 1
Λ=<Ψ1ÈΨ2>

0.2

0.4

0.6

0.8

1

Η
1

Figure 4.2: Dependence of prior probability η1 transitions between the three
regimes of the optimal POVM on the overlap of discriminated pure states λ.

Let us now come back to the unambiguous discrimination of two general
mixed states and summarize some of the very general results found in the last
two years by Kleinmann, Kampermann, and Bruss. We will use notion of
the weighted density operators γµ = ηµρµ µ = 1, 2. As we already illustrated
the subspace orthogonal to supports of discriminated states ρ1, ρ2 provides
freedom in the choice of the optimal measurement. However, one might ask
whether at least the part of the measurement operators (E ′

k) acting only on
S, the span of the supports of ρ1, ρ2, is uniquely determined. For this purpose
we can work without loss of generality with the proper USD measurements.
This is because any USD measurement {Ek} can be turned into proper USD
measurement with the same operators E ′

k and the same probability of success.
Kleinmann [13] shows that a POVM {Ek} is a proper USD measurement if
and only if E0 acts as identity on S⊥, E0 ≥ 0, I−E0 ≥ 0, and γ1(I−E0)γ2 =
0. Hence, the inconclusive element E0 uniquely determines the proper USD
measurement.

For proper USD measurements the first two Raynal’s reduction theorems
are show [13] to commute and to be idempotent. Hence, only one application
of each of them is needed. Moreover, the application of this two theorems
can be done using Jordan basis of the supports of γ1, γ2. The supports of
the reduced states (denoted Sρ1 , Sρ2) are strictly skew, i.e. Sρ1

⋂
S⊥ρ2

= {0},
Sρ2

⋂
S⊥ρ1

= {0}, and do not have common subspace Sρ1

⋂
Sρ2 = ∅.
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In general it is not known how to check whether the reduced states have
some common block diagonal structure. Nevertheless, in [12] Kleinmann et.
al. shows that for operators without common part of support two dimensional
block diagonal structure exists if and only if [γ1, γ1γ2γ1] = 0, [γ2, γ2(γ1)

2γ2] =
0, and [γ1, γ1(γ2)

2γ1] = 0. If these commutators vanish then they provide a
method to construct Jordan basis, which using the third Raynal’s reduction
theorem splits the problem into several independent discriminations of two
known pure states. Each of these subproblems has a unique solution (see
Section 4.1.1) as well as the whole optimal USD measurement that it forms.

However, proof of the uniqueness in general situation requires a different
approach. Kleinmann et. al. succeeded to rewrite the necessary and suffi-
cient conditions on the optimality of USD measurement by Eldar, Stojnic,
and Hassibi [15] into operational form. If we denote by Λ1 the projector
onto kerγ2

⋂S and by Λ2 the projector onto kerγ1

⋂S then the rewritten
optimality conditions for proper USD measurement read:

(Λ1 − Λ2)E0(γ2 − γ1)(Λ1 + Λ2) ≥ 0 (4.17)

(Λ1 − Λ2)E0(γ2 − γ1)(I − E0) = 0 (4.18)

It turns out that Eq. (4.18) in a compact way expresses the following three
conditions:

Λ1E0(γ2 − γ1)E0Λ1 ≥ 0 (4.19)

Λ2E0(γ1 − γ2)E0Λ2 ≥ 0 (4.20)

Λ1E0(γ2 − γ1)E0Λ2 = 0 (4.21)

An important consequence of the optimality conditions is the fact that op-
timal E0 and hence also the whole optimal and proper USD measurement
is completely determined by Π0 the projector onto the support of E0. An-
other thing needed in the proof of the uniqueness is the knowledge of the
rank of the POVM element E0. For optimal proper USD measurements this
can be shown to be rankE0 = rankγ1γ2 + dim ker(γ1 + γ2). Let us consider
two optimal proper USD measurements {Ek}, {Ek}. Due to linearity of the
probability rule and convexity of measurements POVM {1

2
(Ek +Ek)} is also

optimal. However, all these three measurements must have the same rank
of the inconclusive POVM element. Positivity of operators E0, E0 implies
that this is possible only if all the three inconclusive elements have the same
support given by projector Π0. Since Π0 completely determines the POVM
one concludes that the optimal and proper USD measurement is unique.
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Rank of the conclusive POVM elements E1, E2 can be used to classify the
optimal USD measurement. For operators γ1, γ2 with strictly skew supports
the ranks e1 = rankE1, e2 = rankE2 obey (see [13]) inequalities e1 ≤ r,
e2 ≤ r, r ≤ e1 + e2 ≤ 2r, where r = rankγ1 = rankγ2. Among these (r +
1)(r+2)/2 possibilities for (e1, e2) three are better understood. Measurement
types (0, r) and (r, 0) correspond to the so called single state detection, where
only state ρ2 or state ρ1, respectively, is unambiguously detected by projective
measurement. For fixed ρ1, ρ2 single state detection is always optimal for a
prior probability η1 or η2 sufficiently small1.

Measurement type (r, r) corresponds to the so called fidelity form mea-
surement. The name comes from the Uhlmann’s fidelity

F (ρ1, ρ2) = Tr(|√ρ1
√

ρ2|) = Tr(
√√

ρ1ρ2
√

ρ1),

which is closely related to this measurement. An upper bound on the prob-
ability of success PD ≤ 1 − 2

√
η1η2|〈ϕ1|ϕ2〉| follows from considering USD

measurement among maximally overlapping purifications |ϕ1〉, |ϕ2〉 of states
ρ1, ρ2. Uhlmann’s fidelity is equal to the overlap |〈ϕ1|ϕ2〉|, so we have
PD ≤ 1 − 2

√
η1η2 F (ρ1, ρ2) = 1 − 2 Tr(

√√
γ1γ2

√
γ1). It can be shown

[13],[28], [29] that this bound is tight2 if and only if γ1 ≥
√√

γ1γ2
√

γ1 and

γ2 ≥
√√

γ2γ1
√

γ2. In such case the inconclusive POVM element of optimal
and proper USD measurement has the following form:

E0 = I − (γ1 + γ2)
−{√γ1(γ1 − F1)

√
γ1 +

√
γ2(γ2 − F2)

√
γ2}(γ1 + γ2)

−,

where (γ1 + γ2)
− denotes the inverse of γ1 + γ2 on its support and F1 =√√

γ1γ2
√

γ1, F2 =
√√

γ2γ1
√

γ2. Let us note that for fixed ρ1, ρ2 the re-
gion of η1, in which the fidelity form measurement is optimal, might be
empty. For USD of two known pure states this region covers the whole in-
terval between the two single state detections. Hence, the aforementioned
types of USD measurements describe the whole solution from Section 4.1.1
originally found by Jaeger and Shimony. On the other hand, already for
r = rankγ1 = rankγ2 = 2 there are weighted density operators γ1, γ2 with
strictly skew supports for which none of the aforementioned types of USD
measurement is optimal. Kleinmann et. al. applied their optimality criteria

1Region in which single state detection is optimal can be calculated exactly (see [13])
thanks to the optimality conditions (4.17),(4.18)

2Here we still assume strictly skew supports of ρ1, ρ2
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and for each measurement type belonging to r = 2 reduced potentially op-
timal POVMs to a finite number of candidates. Because of the uniqueness
of the optimal POVM only one of the candidates really exists and forms a
valid USD measurement. Construction of the candidates is quite technical
and involves solving of high degree polynomials. For rank γ1 = r > 2 the
measurement types were not yet investigated. Unfortunately, they are not
expected to give some clear insight into the problem.

4.2 Quantum state comparison

In the classical world it is relatively easy to compare (quantitatively, as well
as qualitatively) features of physical systems and to conclude with certainty
whether two systems exhibit the same properties, or not. On the other hand,
the statistical nature of the quantum theory restricts our ability to provide
deterministic conclusions/predictions even in the simplest experimental sit-
uations. Therefore comparison of quantum states is different compared to
classical situation. To be specific, let us consider that we are given two inde-
pendently prepared quantum systems of the same physical origin (e.g., two
photons). Our task is to determine unambiguously whether these two pho-
tons have been prepared in the same polarization state. That is, we want to
compare the two states and we want to know whether they are identical or
not. If we have just a single copy of each state and no further information
then the scenario according to which we first measure each state does not
work. For that we would need an infinite ensemble of identically prepared
systems. In this case also all other strategies would fail, because our knowl-
edge about the states is insufficient [30]. Simply if each photon can also be
in any mixed state, then it is impossible to test equality of states of the two
photons. However, there are often situations in which we know something
more about the states we need to compare. For example, we might know
that each photon was prepared in the pure state. Barnett, Chefles, and Jex
[17] were the first who considered this kind of scenario for two qudits. We
shall call it comparison of unknown states. Here unknown means that there
is still a continuum of possibilities for each of the compared states. In the
same paper Barnett et al. discuss also different kind of prior information we
might have about the compared states. We call the scenario comparison of
states chosen from a finite set, because the compared states are known to
be randomly chosen from a finite set of possible states |ϕi〉 with probability
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qi. These two scenarios have distinct features, therefore we discuss them
separately.

4.2.1 Comparison of states chosen from a finite set

The simplest version of this problem is a comparison of two quantum sys-
tems, each of them guaranteed to be prepared either in state |ϕ1〉 or in state
|ϕ2〉 with equal prior probabilities q1 = q2 = 1/2. In this case two USD
measurements can be used to determine the state of each individual system.
This strategy fails if one or both outcomes are inconclusive. Otherwise, we
can unambiguously conclude equality as well as difference of the compared
states. Barnett et al. proposed and proved optimality of the strategy that
measures simultaneously both systems and succeeds more often. It unam-
biguously detects both equality and difference of the states, but in contrast
to the former strategy it does not tell us in which states the systems were.
However, for this problem the emergence of inconclusive results is unavoid-
able and it is the price we are paying for the unambiguity of the conclusions.
Rudolph, Spekkens, and Turner reformulated this comparison problem as
discrimination the following two mixed states

ρ1 =
(q1)

2

(q1)2 + (q2)2
|ϕ1, ϕ1〉〈ϕ1, ϕ1|+ (q2)

2

(q1)2 + (q2)2
|ϕ2, ϕ2〉〈ϕ2, ϕ2|

ρ2 =
1

2
|ϕ1, ϕ2〉〈ϕ1, ϕ2|+ 1

2
|ϕ2, ϕ1〉〈ϕ2, ϕ1| (4.22)

appearing with prior probabilities η1 = (q1)
2 + (q2)

2, η2 = 2q1q2 respectively.
They considered q1 = q2 and using their upper and lower bounds on USD
of mixed states confirmed the optimality of the solution by Barnett et al..
Later, Kleinmann et. al. [31] for arbitrary q1, q2 used Raynal’s reduction the-
orems to reduce the problem to the discrimination of two known pure states.
Applications of this comparison problem in quantum information processing
are e.g. quantum fingerprinting [32] and quantum digital signatures [33].

The problem was generalized in two ways. First, the extension to more
quantum systems in pure states was studied by Chefles et. al. [34]. While
for two systems their states can be either equal or different for more systems
there are more possibilities. For example, one might ask whether are all
systems in the same state, called identicality confirmation, or there is at
least one different state. Similarly, we might want to know whether all the
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states of the N compared systems are different from each other or at least
one pair of states is the same.

Chefles et al. showed that identicality confirmation is possible3 if and only
if the set of possible states {|ϕi〉}M

i=1 is linearly independent. Let us note that
linear independence of the possible states allows incoherent strategy, which
determines each of the compared states by USD measurement. Certainly,
if no inconclusive outcome arise then the individual measurement outcomes
fix the conclusion. For two possible pure states (M = 2) and arbitrary
N Kleinmann et. al. [31] found the optimal solution for arbitrary prior
probabilities q1, q2. They have used Raynal’s reduction theorems to turn the
problem into USD of two mixed states of rank 2. Unfortunately, except for
q1 = q2, where the problems splits into two USD of two known pure states
the solution is cumbersome and we will not discuss it here.

Surprisingly, Chefles et al. in [34] found that linear independence restric-
tion does not apply if we want to unambiguously confirm that not all states
are the same. This is exactly the point that is used in comparison of un-
known states. There we will present a strategy proposed by Chefles, who
also proved its optimality for wide range of circumstances.

Similar requirements as those above apply also to confirmation that all
the compared systems are in different states. Let us note that this task is
meaningful only if M ≥ N i.e. there are at least as many possible states
as there are quantum systems. As Chefles et.al. in [34] shows unambiguous
confirmation of all states of the compared systems being different is possi-
ble4 if and only if any N element subset of the set of possible states {|ϕi〉}M

i=1

is linearly independent. Also universal strategy exists for this task, which
means that the measurement has nonzero probability to detect that all sys-
tems are in different states for any N tuple of linearly independent states. If
any product state can enter the measurement then it is optimal (for details
see [34]) to project onto totally antisymmetric subspace Santi of the Hilbert
space of N compared quantum systems. If the projection succeeds then we
conclude unambiguously that the states were linearly independent and hence
all mutually different. This happens with probability equal to 1

N !
det Γ, where

Γ is Gram matrix of the overlaps of the N compared states. On the other
hand, projection onto S⊥anti is inconclusive.

3Here all N-tupples of states |ϕi〉⊗N are required to have nonzero probability of iden-
ticality confirmation.

4Here all such N-tupples of mutually different states are expected to be detectable with
nonzero probability.
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Except for looking on more than two quantum systems one can generalize
comparison of states chosen from a finite set also by allowing finite sets of
mixed states ϕi. Kleinmann et.al. considered this task in [31]. They showed
that the identicality of states can be confirmed if and only if Sϕi

*
∑

k 6=i Sϕk
,

where Sϕi
denotes the support of mixed state ϕi.

The unambiguous state comparison as introduced by Barnett et al. is a
positive-operator-value-measure (POVM) measurement that has two possible
outcomes associated with the two answers: the two states are different, or
outcome of the measurement corresponds to an inconclusive answer.

4.2.2 Comparison of unknown states

In this section we consider comparison of states of quantum systems, which
are known to be pure. Apart from that we have no other information that
would further restrict the set of possible states. Hence, there is a continuum
of possible states for each of the compared systems. It is important to know
that there is a nonzero prior probability ηsame, ηdiff of compared systems
being in the same or different states respectively. Otherwise, the conclusion
of the comparison would be clear just from our prior knowledge and no
measurement would be needed. The first who formulated and solved this
task were Barnett, Chefles, and Jex [17]. They considered two qudits each
of them prepared in the arbitrary pure state. The task was to determine
unambiguously whether the qudits are in same or different states.

We shall discuss slightly more general version of the task solved by Chefles
et al. in [34], where N instead of two systems are compared and we have to
decide whether are all systems in the same state or not. More precisely we
want to either unambiguously confirm identicality of the compared states or
prove existence of at least one difference among them. We will rephrase this
task in the spirit of unambiguous discrimination problem defined in Chapter
3. In this case state ρ of the N compared systems plays the role of the tested
constituent A. Our prior knowledge about the possible constituents/states
is the following: any pure product state ρ can emerge and with probability
ηsame state ρ = |ψ〉〈ψ|⊗N for some |ψ〉 ∈ H. Hence, the set of possibly emerg-
ing states splits into two subsets S1, S2 that correspond to all states being
identical and some states being different, respectively. Moreover, the prob-
ability measure dA describing the occurrence of the compared states should
be uniform on the set Si (i = 1, 2), because we have no further information,
which would make some states from the set Si more favoured. This deter-
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mines dA to be ηsamedψ on S1 and ηdiffdψ1 . . . dψN on S2. Consequently, we
can calculate the average states/constituents to be

A1 ≡ ρ1 =
1

ηsame

∫

S1

AdA =

∫
|ψ〉〈ψ|⊗Ndψ (4.23)

A2 ≡ ρ2 =
1

ηdiff

∫

S2

AdA =
1

ηdiff

∫
ψ1 ⊗ . . .⊗ ψN ηdiffdψ1 . . . dψN

=

(∫
|ψ〉〈ψ|dψ

)⊗N

=
1

dN
I (4.24)

where we used ηsame =
∫

S1
dA, ηdiff =

∫
S2

dA and abbreviated ψk ≡ |ψk〉〈ψk|.
Furthermore, as it is shown for example in [35] the integral in Eq. 4.23 is
equal to 1

(d+N−1
d−1 )

P sym
1...N , where P sym

1...N is the projector onto the totally symmet-

ric subspace of H⊗N . The considered version of comparison problem is thus
equivalent to USD of mixed states ρ1 = N !(d−1)!

(d+N−1)!
P sym

1...N , ρ2 = 1
dN I appearing

with prior probabilities ηsame, ηdiff , respectively. Kernel of ρ2 is a trivial sub-
space {0}, which implies that state ρ1 can not be unambiguously detected.
This means that it is impossible to unambiguously confirm identicality of the
compared states. This impossibility is suggested also by the linear depen-
dence of the possible states that form a continuum of all pure states in H.
Hence, E1 = 0 and the Raynal reduction theorems quickly tell us that for
ηsame 6= 0 optimal POVM has E2 = I−P sym

1...N , E0 = P sym
1...N . Simply the totaly

symmetric subspace is common support of ρ1, ρ2 and its orthocomplement is
due to the second Raynal’s reduction theorem optimally used to detect state
ρ2 i.e. to indicate existence of at least one difference among the compared
states. On average the success probability reads (see Eq. 3.4)

Psucc = ηsameTr(E1ρ1) + ηdiffTr(E2ρ2) = ηdiff (1− 1

dN
Tr(P sym

1...N)). (4.25)

It depends on the ratio of dimensions of the totaly symmetric subspace(
d+N−1

d−1

)
and the whole Hilbert spaceH⊗N . We may also ask what is the prob-

ability of detecting at least one difference for particular states |ψ1〉, . . . |ψN〉
entering the comparison measurement. Chefles et. al. showed that this
conditional probability is given by the permanent of Γ the Gram matrix of
overlaps of the compared states

P (|ψ1〉, . . . |ψN〉) = Tr(E2ψ1 ⊗ . . .⊗ ψN) = 1− 1

N !
perΓ, (4.26)
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where per Γ =
∑

σ∈S(N) Γ1σ(1) . . . ΓNσ(N) =
∑

σ∈S(N)〈ψ1|ψσ(1)〉 . . . 〈ψN |ψσ(N)〉.
Moreover, Chefles et.al. in [34] showed that the above measurement is opti-
mal for detection of at least one difference whenever all states |ψ〉〈ψ|⊗N |ψ〉 ∈
H can appear. This can be seen also through average states/constituents. If
all systems can be identically prepared in any pure state |ψ〉 then state ρ1 has
the same kernel whatever is the measure dA on the set S1. Only the kernel of
ρ1 can be used for detection of at least one difference5, hence E2 = I −P sym

1...N

obviously maximizes Tr(E2ρ2) for any ρ2.

4.2.3 Comparison of two ensembles of pure states

The aim of this part of the thesis is to find the optimal unambiguous state
comparison procedure in the case we have more copies of the two quantum
states which we need to compare. The compared states are guaranteed to be
pure and to belong to a d-dimensional Hilbert space H. The dimensionality
of the Hilbert space is known, otherwise the only information about the
states is the probability of them being the same ηsame 6= 0. In more physical
terms this means that we have two preparators A and B. First preparator
produce the state |ψ1〉, while the second produces state |ψ2〉. Suppose we are
given k copies of states produced by the preparator A and l copies of states
originated from the second preparator B. We want to decide whether the
states prepared by the preparators A and B are the same, or different. Thus,
want to distinguish between two sets of states S1 = {|ψ〉⊗k

A ⊗ |ψ〉⊗l
B : ψ ∈ H}

and S2 = {|ψ1〉⊗k
A ⊗ |ψ2〉⊗l

B : |ψ1〉 6= |ψ2〉}. The first set corresponds to
the situation when the two preparators prepare the same (though unknown)
states, while the second set corresponds to the situation when the prepared
states are different.

In the same way as in the previous section we can calculate the average

5The requirement can be mathematically stated as E2 ≤ I−P sym
1...N and the claim follows

using any pure state decomposition of ρ2
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states to be:

A1 ≡ ρ1 =
1

ηsame

∫

S1

AdA =

∫
|ψ〉〈ψ|⊗k+ldψ

=
1

dk+l

P sym
1...k+l (4.27)

A2 ≡ ρ2 =
1

ηdiff

∫

S2

AdA =
1

ηdiff

∫
ψ⊗k

1 ⊗ ψ⊗l
2 ηdiffdψ1dψ2

=

∫
|ψ〉〈ψ|⊗kdψ ⊗

∫
|ψ〉〈ψ|⊗ldψ

=
1

dkdl

P sym
1...k ⊗ P sym

k+1...k+l , (4.28)

where we abbreviated by dk ≡
(

d+k−1
d−1

)
the dimension of the symmetric sub-

space of k systems. Also for more copies of the two compared states it is
not possible to unambiguously conclude that the compared states are the
same, because support of ρ1 is included in the support of ρ2 i.e. P sym

1...k+l ≤
P sym

1...k ⊗P sym
k+1...k+l. Thus, E1 = 0 and the comparison procedure succeeds with

the probability of detecting the difference of the compared states Psucc =
ηdiffTr(E2ρ2). The measurement for detecting of at least one difference, dis-
cussed in the previous section, is optimal also for this task, because it opti-
mally reveals any dissimilarity from the totally symmetric states of N = k+ l
systems. Raynal’s reduction theorems lead to the same proper USD measure-
ment6

E1 = 0, E2 = I − P sym
1...N , E0 = P sym

1...N . (4.29)

The optimal measurement can be derived also directly by optimizing the
probability of success under the constraint of unambiguity and preservation
of positivity and normalization of the POVM elements. We present this
derivation, because it will guide us in the case when the average constituent
approach can not be used. For simplicity we will omit the indexes A,B in the
rest of the section. In order to construct the optimal POVM for detecting the
difference of the compared states we first use the unambiguity requirement
expressed by the (no-error) condition

∀|ψ〉 ∈ H, T r[E2(|ψ〉〈ψ|)⊗k+l] = 0 . (4.30)

6There is freedom provided by the trivial subspace and amounts to division of I −
P sym

1...k ⊗ P sym
k+1...k+l among Ei.
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that guarantees that whenever we obtain the result E2 we can conclude that
the states were indeed different. Integrating uniformly over all pure states
Spure = {|ψ〉 ∈ H} we obtain an equivalent no-error condition that reads

0 =

∫

Spure

dψTr
[
E2(|ψ〉〈ψ|)⊗k+l

]
= Tr[E2∆] , (4.31)

where

∆ =

∫

Spure

dψ(|ψ〉〈ψ|)⊗k+l =
1(

k+l+d−1
d−1

)P sym
1...N , (4.32)

and P sym
1...N is the projector onto a completely symmetric subspace of H⊗(k+l).

Because of the positivity of the operators E2 and ∆ the equation (4.31) im-
plies that these two operators have orthogonal supports (see Lemma 1 in
Chapter 2). Hence, the biggest support operator E2 can have is the or-
thogonal complement to the support of ∆. POVM element E2 is an effect
(0 ≤ E2 ≤ I) so the latter requirement can be written as E2 ≤ I−P sym

1...N . The
average success probability of detecting the difference between the compared
states can be written as

Psucc ≡ Psucc(k, l) = ηsame.0 + ηdiff

∫

Spure

∫

Spure

dψ1dψ2P (|ψ1〉, |ψ2〉),

P (|ψ1〉, |ψ2〉) = 〈ψ1|⊗k ⊗ 〈ψ2|⊗lE2|ψ1〉⊗k ⊗ |ψ2〉⊗l, (4.33)

The requirement on the support of E2 implies inequality 〈Ψ|E2|Ψ〉 ≤
〈Ψ|I − P sym

1...N |Ψ〉 ∀|Ψ〉 ∈ H⊗k+l, which is saturated if E2 = I − P sym
1...N . This

choice obviously maximizes P (|ψ1〉, |ψ2〉) ∀|ψ1〉, |ψ2〉 ∈ H and consequently
also Psucc(k, l). Thus, the optimal comparison of k and l copies of unknown
pure states prepared by the two preparators is accomplished by the projective
measurement given in Eq. (4.29).

In what follows we calculate the probability of revealing the difference of
the states |ψ1〉, |ψ2〉 measured by the optimal comparator, i.e.

P (|ψ1〉, |ψ2〉) = Tr[(I − P sym
1...N)|Ψ〉〈Ψ|]

= 1− 〈Ψ|ΨS〉 , (4.34)

where |Ψ〉 ≡ |ψ1〉⊗k ⊗ |ψ2〉⊗l and

|ΨS〉 ≡ P sym
1...N |Ψ〉 =

1

(k + l)!

∑

σ∈S(k+l)

σ(|Ψ〉) . (4.35)
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In the above formulas we denoted by S(N) a group of permutations of N
elements and σ(|Ψ〉) denotes the state |Ψ〉 in which subsystems have been
permuted via the permutation σ. For example, a permutation νk exchanging
only the k-th and the (k + 1)-th position acts as

νk(|Ψ〉) = |ψ1〉⊗k−1|ψ2〉|ψ1〉|ψ2〉⊗l−1 . (4.36)

The state |Ψ〉 has N subsystems defining N positions, which are interchanged
by the permutation σ. Let us denote by N1 the subset of the first k positions
(originally copies of |ψ1〉) and by N2 the remaining l positions (originally
occupied by systems in the state |ψ2〉). For our purposes it will be useful
to characterize each permutation σ ∈ S(k + l) by the number of positions
m in the subset N1 occupied by subsystems originated from the subset N2.
Literally, m(σ) is the number of states |ψ2〉 moved into the first k subsystems
(N1) by the permutation σ acting on the state |Ψ〉. Using this number we
can write

〈Ψ|σ(Ψ)〉 = |〈ψ1|ψ2〉|2m(σ) . (4.37)

For instance,

〈Ψ|νk(|Ψ〉) = 〈ψ1|⊗k〈ψ2|⊗l|ψ1〉⊗k−1|ψ2〉|ψ1〉|ψ2〉⊗l−1

= |〈ψ1|ψ2〉|2m(νk) = |〈ψ1|ψ2〉|2 .

In order to evaluate the scalar product

〈Ψ|ΨS〉 =
1

(k + l)!

∑

σ∈S(k+l)

〈Ψ|σ(|Ψ〉). (4.38)

we need to calculate the number of permutations Cm with the same value
m = m(σ). For each permutation σ there are exactly k!l! permutations
leading to the same state σ(|Ψ〉). The number of different quantum states
σ1(|Ψ〉), σ2(|Ψ〉), . . . having the same overlap |〈ψ1|ψ2〉|2m with the state |Ψ〉
(i.e. the same m) is

(
k
m

)(
l
m

)
. This is because each such state is fully specified

by enumerating m from the first k subsystems to which |ψ2〉 states were
permuted and by enumerating m from the last l subsystems to which |ψ1〉
states were moved. To sum up our derivation, we have Cm = k!l!

(
k
m

)(
l
m

)
,

and consequently Eq. (4.38) can be rewritten as

〈Ψ|ΨS〉 =

min(k,l)∑
m=0

(
k
m

)(
l
m

)
(

k+l
k

) |〈ψ1|ψ2〉|2m . (4.39)
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The optimal probability reads

P (|ψ1〉, |ψ2〉) = 1−
min(k,l)∑

m=0

(
k
m

)(
l
m

)
(

k+l
k

) |〈ψ1|ψ2〉|2m . (4.40)

Before calculating the average probability of success Psucc(k, l) it is useful to
evaluate the mean values of the overlaps

|〈ψ1|ψ2〉|2m =

∫

Spure

∫

Spure

dψ1dψ2〈ψ1|ψ2〉m〈ψ2|ψ1〉m

=

∫

Spure

dψ1〈ψ1|⊗m

(∫

Spure

dψ2|ψ2〉〈ψ2|⊗m

)
|ψ1〉⊗m

=
1(

m+d−1
d−1

)
∫

Spure

dψ1〈ψ1|⊗mP sym
1...N |ψ1〉⊗m

=
1(

m+d−1
d−1

) , (4.41)

where we exploited the identity in Eq. (4.32).
We will insert Eqs. (4.40) and (4.41) into the definition (4.33) and utilize

the Vandermonde’s identity

(
a + b

r

)
=

r∑
m=0

(
a

m

)(
b

r −m

)

to evaluate the summation to obtain

1

ηdiff

Psucc(k, l) = 1− 1(
k+l
k

)
min(k,l)∑

m=0

(
k
m

)(
l
m

)
(

m+d−1
d−1

)

= 1− k!(d− 1)!

(k + d− 1)!

1(
k+l
k

)
k∑

m=0

(
k + d− 1

k −m

)(
l

m

)

= 1− k!(d− 1)!

(k + d− 1)!

(
k+l+d−1

k

)
(

k+l
k

)

= 1−
(

k+l+d−1
k+l

)
(

k+d−1
k

)(
l+d−1

l

) .
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The previous steps are valid for k < l, however we can perform analogous
calculation for l ≤ k and obtain the same final result, which can be nicely
written as

Psucc(k, l) = ηdiff

(
1− dim(H⊗k+l

sym )

dim(H⊗k
sym) dim(H⊗l

sym)

)
, (4.42)

where H⊗k
sym stands for a completely symmetric subspace of H⊗k. Thus,

we see that the success rate is essentially given by one minus the ratio of
dimensionality of the failure subspace to the dimension of the potentially
occupied space.

Additional copy of an unknown state

Next we will analyze properties of P (|ψ1〉, |ψ2〉) with respect to k, l. In par-
ticular, we will study how it behaves as a function of the number k, l of
available copies of the two compared states. We are going to confirm a very
natural expectation that any additional copy of one of the compared states
always increases the probability of success. Stated mathematically, it suffices
to prove that

P (|ψ1〉, |ψ2〉, k + 1, l) ≥ P (|ψ1〉, |ψ2〉, k, l), (4.43)

since P (|ψ1〉, |ψ2〉, k, l) is symmetric with respect to k, l. For k ≥ l

δ ≡ P (|ψ1〉, |ψ2〉, k + 1, l)− P (|ψ1〉, |ψ2〉, k, l)

=
1(

k+l
k

)
min(k,l)∑

m=0

(
1− (k + 1)2

(k + 1−m)(k + l + 1)

)

×
(

k

m

)(
l

m

)
|〈ψ1|ψ2〉|2m . (4.44)

For k < l the additional term −|〈ψ1|ψ2〉|2k+2
(

k+l+1
k+1

)
/
(

l
k+1

)
appears in the

expression for δ, however it is possible to proceed in the same way in both
cases. We can think of δ as being a polynomial in x ≡ |〈ψ1|ψ2〉|2, which
vanishes for x = 1, because P (|ψ〉, |ψ〉) = 0. The coefficients am of the
polynomial δ =

∑
m amxm are nonnegative for m ≤ (k + 1)l/(k + l + 1) and

negative otherwise. Therefore, we can apply the Lemma from Appendix A.1
to conclude that δ(x) ≥ 0 for x ∈ [0, 1], which is equivalent to Eq.(4.43). We
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have proved that for any pair of compared states the additional copies of the
states improve the probability of success, so the statement holds also for the
average success probabilities, i.e.

Psucc(k + 1, l) ≥ Psucc(k, l) . (4.45)

Optimal choice of resources

Now we consider the situation when the total number N of copies of the two
states is fixed, i.e. N = k+ l. Our aim is to maximize the success probability
with respect to the splitting of the N systems into k copies of the state |ψ1〉
and l copies of the state |ψ2〉. In order to find the solution to this problem
we prove the following inequality

Λ ≡ P (|ψ1〉, |ψ2〉, k + 1, N − k − 1)− P (|ψ1〉, |ψ2〉, k,N − k)

≥ 0 for k ≤ bN/2c , (4.46)

where bac indicates the floor function, i.e. the integer part of the number.
The previous inequality automatically implies Λ ≤ 0 for k > bN/2c, because
P (|ψ1〉, |ψ2〉, k, l) is symmetric in k and l. Therefore, this would mean that
the optimal value is k = bN/2c.

Thus, to complete the proof it is sufficient to confirm the validity of Eq.
(4.46). This is done in the same way as for Eq. (4.43) i.e. by looking on Λ as
on a polynomial in x ≡ |〈ψ1|ψ2〉|2 and showing that the assumptions of the
Lemma from Appendix A.1 hold.

Hence, given the total number N of copies it is most optimal to have half
of them in the state |ψ1〉 and the other half in the state |ψ2〉. In this case
the average probability of success

Psucc(bN/2c, N − bN/2c) = max
k

Psucc(k, N − k) (4.47)

is maximized.
More quantitative insight into the behavior of P (|ψ1〉, |ψ2〉) and Psucc(k, k)

is presented in figures (4.3) and (4.4). The figure (4.3) illustrates that the
more copies of the compared states we have and the smaller is their overlap,
the higher is the probability of revealing the difference between the states.
The overlap of a pair of randomly chosen states decreases with the dimension
of H. Therefore the mean probability Psucc(k, k) for a fixed number of copies
k grows with the dimension d. This fact is documented in Fig. 4.4.
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Figure 4.3: The probability of revealing the difference between the compared
states |ψ1〉, |ψ2〉. The gray dashed lines are valid for the optimal state com-
parison among all pure states. Each line corresponds to a different number of
copies of the compared states. The solid black lines indicate the performance
of the optimal comparison if we are restricted to coherent states only.

10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

d

P
 H

k,
kL

k=1

k=2

k=4

k=10

Figure 4.4: The mean probability of the detection of a difference between
the compared states |ψ1〉, |ψ2〉 as a function of the dimension of the Hilbert
space of the compared systems.
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Comparison with large number of copies

Let us now study the situation when k = 1 and l →∞. In this case the sum
in Eq. (4.40) has only two terms, which can be easily evaluated to obtain

P (|ψ1〉, |ψ2〉) = lim
l→∞

(
1− 1 + l|〈ψ1|ψ2〉|2

l + 1

)
=

= 1− |〈ψ1|ψ2〉|2 . (4.48)

In this limit the same probability of success can be reached also by a different
comparison strategy. We can first use the state reconstruction techniques to
precisely determine the state |ψ2〉 and then by projecting the remaining |ψ1〉
state onto I − |ψ2〉〈ψ2| reveal the difference between the states.

For the limit, where the number of both compared states goes to infinity
simultaneously (k = l →∞), from Eq. (4.42) we recover for any finite d the
classical behavior i.e.

lim
k→∞

Psucc(k, k) = 1 . (4.49)

Therefore we can conclude that larger the number of the copies k and
l of the two states higher the probability to determine that the two states
are different is. In the limit k = l → ∞ we essentially obtain a classical
comparison problem.

4.2.4 Comparison of two ensembles of coherent states

In any quantum information processing the prior knowledge about the system
in which information is encoded plays an important role. The most explicit
example one can name is the state estimation when the prior knowledge
about the state is crucial. In what follows we will analyze the quantum state
comparison and instead of assuming that the two compared states are totally
arbitrary we will restrict a class of possible states. To be more specific, we
will consider a harmonic oscillator and we focus our attention on comparison
of two ensembles of coherent states.

Coherent states [36] are defined as eigenstates of the annihilation operator
a (acting on H∞) associated with eigenvalues taking arbitrary value in the
complex plane. The set of coherent states is defined as

Scoh = {|α〉 ∈ H∞ : α ∈ C , a|α〉 = α|α〉} . (4.50)
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The first, who considered unambiguous quantum state comparison of co-
herent states were E. Andersson, M. Curty and I. Jex [37]. They proposed
a simple optical setup realizing the comparison of a pair of coherent states,
which consisted of a beamsplitter and a photodetector. The optimality of
the setup was an open question, hence in [21] we proved optimality of the
setup and derived its POVM description. The aforementioned results are
a special case (k = l = 1) of the comparison of two ensembles of coherent
states, which we shall investigate now. Our next task is two-fold: Firstly
we introduce an optimal protocol for comparison of two ensembles of coher-
ent states. Secondly we propose an experimental realization of the optimal
coherent states comparator.

Following the same line of reasoning as in the previous section the mea-
surement operator Ecoh

1 unambiguously revealing that the coherent states (k
copies of state |α1〉 and l copies of the state |α2〉) are different must obey the
following “no-error” conditions

Tr
(
Ecoh

1 (|α〉〈α|)⊗k+l
)

= 0 ∀ |α〉 ∈ Scoh , (4.51)

or equivalently

0 =

∫

Scoh

dα Tr
(
Ecoh

1 |α〉〈α|⊗k+l
)

= Tr(Ecoh
1 ∆) , (4.52)

where dα is an arbitrary positive measure such that its support contains all
coherent states7.

Since the operators Ecoh
1 and ∆ are positive, the identity Tr(Ecoh

1 ∆) = 0
implies that their supports are orthogonal. As before (in the case of all pure
states) it is optimal to choose Ecoh

1 to be a projector onto the orthocomple-
ment of the support of ∆. Denoting by ∆N

coh the projector onto the support
of ∆ we can write Ecoh

1 = I −∆N
coh. As it is shown in Appendix A.2 using a

properly normalized Lebesgue measure on a complex plane we can write

∆ =
N

π

∫

C
dα|α〉〈α|⊗N = ∆N

coh . (4.53)

Consider |Ψ〉 = |α1〉⊗k⊗|α2〉⊗l to be a general input state of the coherent-
state comparison machine. Using the Eq.(4.53) we obtain the following ex-

7Under
∫
C dβf(β) we mean

∫
R2 dxdyf(x + iy).
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pression for the success probability P (|α1〉, |α2〉)
P (|α1〉, |α2〉) = Tr

(
Πcoh

1 |Ψ〉〈Ψ|) = 1− 〈Ψ|∆k+l
coh |Ψ〉

= 1− k + l

π

∫

C
dβ|〈α1|β〉|2k|〈α2|β〉|2l

= 1− k + l

π

∫

C
dβe−k|α1−β|2−l|α2−β|2

= 1− k + l

π
e−

kl
k+l

|α1−α2|2
∫

C
dβe

−
∣∣∣√k+lβ− 1√

k+l
(kα1+lα2)

∣∣∣
2

= 1− e−
kl

k+l
|α1−α2|2 , (4.54)

where we used the following modification of the rectangular identity

k |α1 − β|2 + l|β − α2|2

=
∣∣∣
√

k + lβ − kα1 + lα2√
k + l

∣∣∣
2

+
kl

k + l
|α1 − α2|2.

Optical setup for unambiguous comparison of coherent states

In this subsection we will describe an optical realization of an unambiguous
coherent-states comparator that achieves the optimal value of the success
probability (see above). The experimental setup we are going to propose
will consist of several beam-splitters and only a single photodetector. A
beam-splitter acts on a pair of coherent states in a very convenient way, in
particular, the output beams remain unentangled and coherent, i.e.

|α〉 ⊗ |β〉 7→ |
√

Tα +
√

Rβ〉 ⊗ | −
√

Rα +
√

Tβ〉 , (4.55)

where T, R stand for transmissivity and reflectivity, respectively, and T +R =
1. The aforementioned property of the beam-splitter transformation enables
us to consider each of its outputs separately.

Our setup is composed of k + l− 1 beam-splitters and one photodetector.
The k − 1 beam-splitters are used to “concentrate” (focus) the information
encoded in k copies of the first state. Namely, they are arranged according
to Fig. 4.5 and they perform the unitary transformation |α1〉⊗k 7→ |

√
kα1〉 ⊗

|0〉⊗k−1. To do this the transmissivities of the beam-splitters must be set as
follows

Tj =
j

j + 1
Rj =

1

j + 1
.
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Figure 4.5: The beam-splitter setup for the comparison of two finite-size
ensembles composed of k copies of the coherent state |α1〉 and l copies of the
coherent state |α2〉, respectively.
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Similarly, l − 1 beam-splitters are used to “concentrate” the l copies of the
second state. The “concentrated” states |

√
kα1〉, |

√
lα2〉 are then launched

into the last beam-splitter in which the comparison of input coherent states
is performed. It performs the following unitary transformation

|
√

kα1〉 ⊗ |
√

lα2〉 7→ |
√

Tfkα1 +
√

Rf lα2〉
⊗|

√
Tf lα2 −

√
Rfkα1〉 , (4.56)

where Rf , Tf is the reflectivity and transmissivity of the last beam-splitter.
To obtain the vacuum in the upper output (see Fig. 4.5) we need to adjust
the values of reflectivity and transmissivity so that the identity kRf = lTf

holds, i.e.

Tf =
k

k + l
, Rf =

l

k + l
.

Finally, a photodetector will measure the presence of photons in the upper
output port of the last beam-splitter (see Fig. 4.5). If the two compared
states are identical, in the output port we have zero photons - that is this
port is in the vacuum state. Therefore a detection of at least one photon
unambiguously indicates the difference between the compared states. On
the other hand the observation of no photons is inconclusive, since each
coherent state has a nonzero overlap with the vacuum. As a result we obtain
the success probability

P (|α1〉, |α2〉) = 1− |〈0|
√

kl

k + l
(α2 − α1)〉|2

= 1− e−
kl

k+l
|α1−α2|2 , (4.57)

which is the optimal one. Analyzing the last equation we find out that
P (|α1〉, |α2〉,m, n) > P (|α1〉, |α2〉, k, l) if and only if mn

m+n
> kl

k+l
. This equiva-

lence implies that P (|α1〉, |α2〉, k+1, l) > P (|α1〉, |α2〉, k, l). Thus, also in the
case of coherent states the additional copy of one of the compared states helps
to increase the mean success of the state comparison. For a fixed number of
copies of both compared states N the fraction k(N − k)/N is maximized for
k = N/2. Therefore, the probability of revealing the difference of the states
is maximized if k = l.
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4.2.5 Summary

Let me summarize my original results on the comparison of ensembles of
quantum states derived in this part of the chapter. The difference of arbi-
trary unknown pure states |ψ1〉, |ψ2〉 can be unambiguously detected with
the probability

P (|ψ1〉, |ψ2〉) = 1−
min(k,l)∑

m=0

(
k
m

)(
l
m

)
(

k+l
k

) |〈ψ1|ψ2〉|2m , (4.58)

providing that we have k copies of state prepared by the first preparator and
l copies produced by the second preparator. This result does not depend on
the dimension of the system in contrast to the average success probability,
which reads

Psucc(k, l) = ηdiff

(
1− dim(H⊗k+l

sym )

dim(H⊗k
sym) dim(H⊗l

sym)

)
. (4.59)

Given the a priori knowledge that the states are coherent one can increase
the probability (see Fig. 4.3) to

P (|α1〉, |α2〉) = 1− e−
kl

k+l
|α1−α2|2 . (4.60)

The improvement is significant (Fig. 4.3) for small number of copies.
We also addressed the problem of maximizing the success probability

providing that the total number of available copies is fixed. We have shown
that it is optimal if the number of copies is the same, i.e. k = l = N/2. In
the limit of the large number of copies the comparison approach reduces to
“classical” comparison based on the quantum-state estimation.

We have proposed an optical implementation of the optimal quantum-
state comparator of two finite ensembles of coherent states. This proposal is
relatively easy to implement, since it consists only of N − 1 beam-splitters
and a single photodetector. Unfortunately, the success of unambiguous state
comparison is very fragile with respect to small imperfections. The reason
is that the device can be only used for pure states. Therefore our device
can be used only in the situation when sources of a noise N can be mod-
eled as quantum channels preserving the validity of the no-error conditions
Tr(Ecoh

1 N [∆N
coh]) = 0. An example of such noise is an application of random

unitary channel (simultaneously on all copies) transforming coherent states
into coherent states.
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4.3 Unambiguous identification

Unambiguous identification is a discrimination task in which the description
of the quantum states we should distinguish is partly given by the classi-
cal information and partly by the states of additional quantum systems. In
order to unify the notation of the problems which fit into this concept we
first define a sufficiently wide framework. Next, we summarize the previously
known results. The aim is to sketch the scenarios, which were solved and
name the techniques that were used. Afterwards we explain the relation of
UI to discrimination of mixed states, which can be used to re-derive many of
the known results in a uniform fashion. The remaining part of the chapter
is devoted to investigation of influence of prior knowledge on unambiguous
identification. This means we analyze how the distribution of the prior in-
formation between quantum states and the classical description affects the
probability of success and the form of optimal measurement.

4.3.1 Definition of the framework

The problems considered further in this chapter can be described within
the following framework. Suppose we are given identical quantum systems,
each of them living in d dimensional Hilbert space H. The systems are
divided into M + 1 groups: A,B, C, . . ., containing nA, nB, nC , . . . systems
respectively. Systems in one group are prepared in the same unknown pure
state. Furthermore state of systems in A is guaranteed to be the same as
the state of systems in one of the other groups. The task further denoted as
Unambiguous Identification(UI) is to unambiguously recognize which group
systems in A match. Strategy working for any choice of pure states we denote
as universal UI. From mathematical point of view we should discriminate
among the following M types of states:

|Ψi〉ABC... ≡ |ψi〉⊗nA
A ⊗ |ψ1〉⊗nB

B ⊗ |ψ2〉⊗nC
C ⊗ . . . i = 1, 2, . . . , M (4.61)

via a positive operator value measure (POVM) consisting of M +1 elements.
Element Ei will correspond to correct identification of |Ψi〉 type of state and
E0 corresponds to an inconclusive result. These elements must obey no error
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conditions (equation (4.62)) and constitute a valid POVM (equations (4.63)):

∀i 6= j Tr[EiΨj] = 0, Ψj ≡ |Ψj〉〈Ψj| (4.62)

Ei ≥ 0, E0 ≥ 0, E0 +
M∑
i=1

Ei = I. (4.63)

We assume that states of the type |Ψi〉 appear with a prior probability ηi. We
will refer to states |ψi〉 as being reference states and denote the state of indi-
vidual quantum systems in group A as an unknown state. The performance
of the UI measurement can be quantified by a probability of identification
for a particular choice of reference states

P (|ψ1〉, . . . , |ψM〉) =
M∑
i=1

ηiTr[EiΨi] (4.64)

However, more adequate figure of merit is its average value
∫

P (|ψ1〉, . . . , |ψM〉) χ(|ψ1〉, . . . , |ψM〉) dψ1 . . . dψM ,

where χ(|ψ1〉, . . . , |ψM〉) is the probability distribution describing our knowl-
edge about the choice of reference states. Usually, there is no reason to expect
any correlations in the choice of reference states and hence our classical in-
formation leads to an assumption that the reference states are independently
and uniformly chosen from subset of pure states, further denoted by S. Con-
sequently, the average probability of identification reads

Psucc ≡ P(S) =

∫

S

. . .

∫

S︸ ︷︷ ︸
M

P (|ψ1〉, . . . , |ψM〉) dψ1 . . . dψM (4.65)

and the optimality of UI measurement is defined with respect to it. How-
ever, we will see that optimization of P (|ψ1〉, . . . , |ψM〉) is in some situations
closely related to maximization of the average probability of identification.
We denote the set of all pure states of a d-dimensional quantum system Spure

and the subscript of P will indicate the used UI measurement.

4.3.2 Previous work

Quantum information processing most often deals with systems of qubits.
Qubits are two-dimensional quantum systems, which implies that also Hilbert
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space for systems of small number of qubits is relatively simple and allow
different tasks to be solved explicitly. Thus, many tasks are first formulated
and solved for qubits and afterwards the solution is generalized to qudits.
This was the case also for unambiguous identification.

Qubits

One copy

J. Bergou and M.Hillery [38] first formulated and solved the basic version
of the UI problem. In this case we have only one copy of unknown and two
reference states and all of them are qubits (M = 2, nA = nB = nC = 1,
d = 2). Thus two types of states:

|Ψ1〉ABC ≡ |ψ1〉 ⊗ |ψ1〉 ⊗ |ψ2〉 |Ψ2〉ABC ≡ |ψ2〉 ⊗ |ψ1〉 ⊗ |ψ2〉. (4.66)

enter the UI measurement, which distinguishes whether state of qubit A
matches the state of qubit B or qubit C. The optimal measurement should
maximize the mean probability of identification P(Spure). Bergou and Hillery
first derived anzatz for the measurement from the symmetry considerations.
The result of it’s parameter optimization depends on the prior probabilities
η1, η2. There are three different regimes in which the optimal measurement
is either two-valued projective or a true POVM measurement with three
outcomes:

0 ≤ η1 < 1/5 E1 = 0, E2 = Pasym
AB ⊗ IC ,

1/5 ≤ η1 ≤ 4/5 E1 = λPasym
AC ⊗ IB, E2 =

4− 4λ

4− 3λ
Pasym

AB ⊗ IC , (4.67)

4/5 < η1 ≤ 1 E1 = Pasym
AC ⊗ IB, E2 = 0,

where Pasym ≡ |ψ−〉〈ψ−| is a projector onto the antisymmetric subspace
of the two qubit Hilbert space H⊗2, |ψ±〉 = 1/

√
2(|01〉 ± |10〉) and λ =

2
3
(2 −

√
η2

η1
). The inconclusive result is associated with the POVM element

E0 = I−E1−E2. The optimal UI measurement is closely related to quantum
state comparison as we illustrate in next few lines. This relation will later
serve us also as a motivation for the proposition of the UI measurement for
coherent states.

Relation to Quantum state comparison
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Let us examine how the optimal UI works for a prior probability η1 < 1
5
.

The measurement (4.67) has effectively two outcomes, which are either un-
ambiguously identifying the more probable |Ψ2〉ABC type of state or signaling
inconclusive result. The unambiguous decision is not based on testing the
equality of the unknown and the second reference state, but rather on re-
vealing the difference between unknown and the first reference state – stored
in qubits AB. Hence, qubit C is not used and the measurement distinguishes
antisymmetric and symmetric states of the subsystem AB. States of the type
|Ψ1〉 are symmetric in qubits AB, whereas |Ψ2〉 type of states are not. There-
fore, the projection onto antisymmetric subspace of qubits AB unambigu-
ously identifies |Ψ2〉 type of state and the projection onto symmetric sub-
space is inconclusive, because of |Ψ2〉 having overlap with it. This is exactly
what happens in quantum state comparison of two unknown pure states.
Two equal states are in symmetric subspace, therefore projection onto anti-
symmetric subspace unambiguously indicate that the compared states were
different. On the other hand, projection onto symmetric subspace is incon-
clusive, because each pair of pure states has nonzero overlap with it. Thus,
for η1 < 1

5
the optimal UI measurement is a quantum state comparison of

unknown and the less probable reference state. The corresponding mean
probability of identification is 1

4
(1 − η1). Analogous consideration hold for

η1 > 4
5

for which P(Spure) is 1
4
(1−η2) = 1

4
η1. For equal prior probabilities the

optimal POVM elements E1, E2 are 2/3 multiples of the above mentioned
quantum state comparison measurement elements Pasym

AC , Pasym
AB . In this case

the mean probability of identification equals 1/6.

More copies of unknown states

J. Bergou et. al. in [39] investigated also the situation with more copies
of an unknown state and with different prior knowledge of the two reference
states. They used a technique based on the relation of UI to discrimination
of known mixed states, which we explain in detail in next sections. For the
already discussed case of only one copy of unknown state (M = 2, nA =
nB = nC = 1) the corresponding mixed states are:

ρ1 =
1

3
P sym

AB ⊗ 1

2
IC , ρ2 =

1

2
IA ⊗ 1

3
P sym

BC (4.68)

In this case Bergou et. al. explicitly used the no-error conditions to determine
the most general form of the UI measurement. Its parameters were optimized
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to yield the maximum probability of identification, while keeping the POVM
conditions satisfied. This optimization is quite technical, but finally yields
the measurement (4.67) from [38]. Although this technique is essentially
equivalent to that from the first paper of Bergou and Hillery [38] it can be
more easily modified to consider different prior knowledge on the reference
states. If one of the reference states is known (this corresponds to nB →∞)
one expects that the probability of UI should be higher and Bergou et. al.
confirmed it. In this case the UI can be reformulated as an unambiguous
discrimination of two-qubit mixed states:

ρ1 = |0〉〈0|A ⊗ 1

2
IC , ρ2 =

1

3
P sym

AC , (4.69)

where the known reference state (from group B) is for convenience denoted
as a basis state |0〉. For the generalizations of this two scenarios, which
differ by having m copies of unknown state instead of one, a more sophis-
ticated technique was used. It is essentially a solution to discrimination of
a pair of certain mixed states, and it is called unambiguous subspace dis-
crimination according to task it originally solves. Thanks to that technique
the aforementioned scenarios (M = 2, nA = m, nB = nC = 1), (M = 2,
nA = m,nB 7→ ∞, nC = 1) were solved for arbitrary prior probabilities η1,
η2. From the results we see that the more copies of unknown state we have
the more quantum information is provided and thus the probability of iden-
tification is higher.

More copies of unknown and reference states

Bing He and J. Bergou [40] managed to apply the same technique also to
a scenario where the number of copies for each of the two reference states was
also varied (M = 2, nA = m, nB = nC = n). However it is not easy to express
the solution explicitly for all prior probabilities η1, η2. Thus, for arbitrary
n, m we have an optimum identification probability and the corresponding
measurement only for prior probability η1 in a small interval around 1/2. In
general work of J. Bergou et. al. in [39] shows that the more prior knowledge
(more copies of the states or their more detailed classical description) we
have about the states to be identified the higher is the possible probability
of unambiguous identification.
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Qudits

After the first results for unambiguous identification of qubits were obtained
it was natural to investigate also more general situations. These certainly
include the use of d dimensional quantum systems instead of qubits and
varying both the number of different reference states and the number of
copies per reference state.

Many copies of two reference states

The scenario with one copy of unknown state and n copies per each of the
two reference states (M = 2, nA = 1, nB = nC = n) was considered by A.
Hayashi, M. Horibe, and T. Hashimoto [41]. They found analytical solution
for the case of equal prior probabilities η1 = η2 = 1

2
and any dimension d of

the used quantum systems. The situation offers symmetries whose exploita-
tion substantially simplifies the form of the general UI measurement to such
extend that for equal prior probabilities it was possible to solve the problem
completely. The relevant symmetries are given by representations of permu-
tation group S(n) and unitary group U(n). They arise from the possibility
of exchanging the copies without changing the state of the system and from
uniformity of the averaging in the probability of identification. Furthermore,
the equality of the prior probabilities permits restriction to measurements,
where the conclusive elements are the same except for acting on different sub-
systems. The final form of the optimal UI measurement is most conveniently
written as:

E1 = e.IB ⊗ Pasym
AC , E2 = e.IC ⊗ Pasym

AB , e =
∑

λ

eλΓλ, (4.70)

where λ specifies both U(d) and S(n) type of the irreducible representa-
tion, Γλ is the projector onto that invariant subspace of H⊗n, and eλ is
non-negative real number depending on n and λ. The authors managed to
express the average probability of identification as a finite sum depending
only on n and d. The sum can be evaluated numerically, but in large n
limit it can be also rewritten as an integral using Stirling formula and then
explicitly evaluated. As n increases we can extract more information about
the reference states and in the large n limit the reference states become
known to us. Thus, as expected, the integral yields the same result as an
average of the probability of discrimination of two known pure states over
all their possible choices. The authors finally employed numerics to produce
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graphs, which show how for a chosen dimensionality d of the systems the
average probability of identification grow with the increasing n till it reaches
its aforementioned asymptotic value.

One copy per M reference states

Unambiguous identification of M types of reference states presents quali-
tatively different type of generalization to basic UI problem. In this direction
the first results were obtained by C. Zhang and M. Ying [42]. They consid-
ered the situation with one copy per each reference state and one copy of the
unknown state (nA = 1, nB = nC = · · · = 1). The no-error conditions (4.62),
which guarantee the correctness of the conclusive results, can be combined
to express the constraints on the measurement in more compact and easily
testable way. Precisely this was done by Zhang and Ying, who derived the
following necessary and sufficient criterion for judging whether the chosen
measurement performs unambiguous identification:

POVM {Ei}M
i=0 performs UI of M reference states if and only if ∀i = 1, . . . , M

supp(Tri(Ei)) is in the totally antisymmetric subspace of H⊗M .

For the special case, when the dimension of the quantum systems d is
equal the number of reference states M the problem simplifies significantly.
It is because the totally antisymmetric subspace of H⊗M is span only by one
vector |φ〉. Zhang and Ying finally optimize the measurement within the
MiniMax approach, which rates the measurement via its worst case perfor-
mance. Due to our framework we would optimize the average probability
of identification. For equal prior probabilities ηi = 1/M this gives the same
UI measurement as MiniMax approach. This is because the convexity of the
set of UI measurement permits restriction of the optimization to the same
one parameter class and the maximization of the free parameter is in both
cases restricted by the positivity of the measurement elements. The resulting
optimal measurement has simple structure and reads:

E1 =
1

M
IA ⊗ (|φ〉〈φ|)BCD..., E2 =

1

M
IB ⊗ (|φ〉〈φ|)ACD..., . . . ,

E0 = I −
M∑
i=1

Ei (4.71)

The measurement element Ei clicks only if the unknown state equals i-th
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reference state, because otherwise unknown and some other reference state
are equal, which implies zero overlap with totally antisymmetric |φ〉 in Ei.

Zhang and Ying propose the measurement with the same structure as
(4.71) also for the case d > M , however its optimality is unknown. Recently,
the optimal measurement for the special case d = M was rederived by J.
Bergou and U. Herzog in [43]. They identified block diagonal structure in
the corresponding mixed states and employed the result of A.Chefles [8] for
unambiguous discrimination of M known symmetric pure states in each of
these blocks. Unfortunately, also their result does not clarify the situation
for d > M . If the dimension of the systems is smaller than the number of
reference states (d < M) the totally antisymmetric subspace of H⊗M does
not exist. Thus, according to the aforementioned criterion the support of Ei,
i = 1, . . . , M must be empty, which implies that no useful UI measurement
exist in this case. This explains why the one copy unambiguous identification
of qubits was investigated only for two reference states.

4.3.3 UI as discrimination of known mixed states

The aim of this section is to explicitly show that the UI can be rephrased as
unambiguous discrimination among M multipartite mixed states. To see this
we proceed according to general recipe introduced in section 3.2. Hence, we
first rewrite the mean probability of identification in a suitable form, which
will suggest the definition of the mixed states ρi, which play the role of the
average constituents Ai. Secondly, we reformulate the no-error conditions
(4.62) in terms of states ρi, prove their equivalence with (4.62) and finally
discuss the optimality of a measurement for both tasks. The mean probability
of identification (4.65) can be rewritten using equation (4.64) as:

P(S) =

∫

S

. . .

∫

S︸ ︷︷ ︸
M

M∑
i=1

ηiTr[EiΨi]dψ1 . . . dψM =

=
M∑
i=1

ηiTr[Ei

∫

S

. . .

∫

S︸ ︷︷ ︸
M

Ψidψ1 . . . dψM ] =

=
M∑
i=1

ηiTr[EiAi] =
M∑
i=1

ηiTr[Eiρi] = PD, (4.72)
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where we have defined the average constituent Ai:

Ai ≡ ρi =

∫

S

. . .

∫

S︸ ︷︷ ︸
M

|Ψi〉〈Ψi|dψ1 . . . dψM , T r(Ai) = Tr(ρi) = 1.

In equation (4.72) we finally wrote the average probability of UI as the prob-
ability of discrimination among M mixed states ρi appearing with prior prob-
ability ηi.

The integration of the no-error conditions (4.62) over all expected refer-
ence states |ψi〉 gives us the following no-error conditions for mixed states
ρi:

0 =

∫

S

. . .

∫

S︸ ︷︷ ︸
M

Tr[EiΨj]dψ1 . . . dψM = Tr[Eiρj] ∀i 6= j. (4.73)

We can directly apply Lemma 2 from Chapter 2 to conclude that these con-
ditions (4.73) are equivalent to no-error conditions (4.62). Thus, any mea-
surement unambiguously discriminating among mixed states ρi is a valid UI
measurement and vice versa. Because of the equation (4.72) such a mea-
surement is optimal for both tasks at the same time. Hence, solution of
unambiguous discrimination of general mixed states automatically gives so-
lution to the UI problem. However, unambiguous discrimination of mixed
states is a very complicated problem, which has drawn a lot of attention
during last decade, and is still not completely solved.

Typical structure of ρi

In unambiguous identification we typically consider situations when the cor-
responding mixed states ρi have a very simple structure. Namely, if S the
set of possible reference states is defined by the whole Hilbert space H or by
its nontrivial subspace then the corresponding average mixed states ρi are
rescaled tensor products of projectors onto the symmetric subspaces. To see
this, we use a result derived by A. Hayashi et. al. in [35]:

∫

S

|ϕ〉〈ϕ|⊗kdϕ =
1(

k+dS−1
dS−1

)P sym(S), (4.74)
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where dS is the dimension of the subspace HS ⊂ H determining the set
S and P sym(S) is the projector onto symmetric subspace of HS

⊗k ⊂ H⊗k.
Therefore:

ρ1 =

∫

S

. . .

∫

S︸ ︷︷ ︸
M

|ψ1〉〈ψ1|⊗nA
A ⊗ |ψ1〉〈ψ1|⊗nB

B ⊗ |ψ2〉〈ψ2|⊗nC
C ⊗ · · · dψ1 . . . dψM =

=
1(

nA+nB+dS−1
dS−1

)(
nC+dS−1

dS−1

) · · ·P
sym
AB (S)⊗ P sym

C (S)⊗ . . . , (4.75)

ρ2 =
1(

nA+nC+dS−1
dS−1

)(
nB+dS−1

dS−1

) · · ·P
sym
AC (S)⊗ P sym

B (S)⊗ . . . ,

and analogously for the rest of ρi’s (i = 1, . . . , M). In Eq. (4.75) we have
used subscript of P sym(S) to indicate subsystems on which the projection to
symmetric subspace is performed. Tensor product of projectors is a projector,
so ρi’s are projectors scaled to have trace one. This simple structure of mixed
states ρi simplifies their unambiguous discrimination significantly as we will
see below.

4.3.4 General approach to UI with two types of refer-
ence states

Unambiguous identification with two types of reference states is intuitively
expected to be less complicated than the case with more types of reference
states. The restriction to two types of reference states allow us to use the
known results from unambiguous discrimination of two mixed states, which
are for the above mentioned states ρi sufficient to solve the UI for any num-
ber of copies of unknown and reference states and for any dimension of the
occupied subspace HS. We will now formulate the task called unambiguous
subspace discrimination and present its solution found by J. Bergou et. al.
[44]. This will teach us how to optimally unambiguously discriminate among
a specific type of two mixed states. Afterwards, we shall recognize that this
type of mixed states emerge also in UI and hence we solve it in the same way.

Unambiguous subspace discrimination

Imagine we have a Hilbert space H and a description of two of its subspaces
V1, V2. Someone will with prior probability η1 respectively η2 choose sub-
space V1 respectively V2 and prepare a quantum system in a state, which is
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chosen uniformly at random from that subspace. Our task is to determine
unambiguously from which subspace was the state chosen.

This task was formulated and solved by J. Bergou, E. Feldman, and M.
Hillery [44] and it was motivated by the basic version of the UI problem. We
first explain how is this problem connected to unambiguous discrimination
of two mixed states and then we rederive the result of Bergou et.al. via
Raynal’s reduction theorems for general position of the subspaces V1, V2.

Let us establish the notation. Without loss of generality we can assume
that dim V1 ≥ dim V2. The most general measurement one can perform is
a POVM. For our task it should have three measurement elements: E1, E2

correctly identifying the use of subspace V1, V2 and the failure measurement
operator E0. The inconclusive outcome is necessary, since unambiguous dis-
crimination of two pure states is a special case of subspace discrimination.
The probability of correctly determining the used subspace PD is defined as:

PD = η1

∫

SV1

〈ψ1|E1|ψ1〉dψ1 + η2

∫

SV2

〈ψ2|E2|ψ2〉dψ2, (4.76)

where 〈ψi|Ei|ψi〉 is the conditional probability of correctly concluding that
subspace Vi was used if the state |ψi〉 ∈ Vi was chosen. The set of states
in subspace Vi is denoted SVi

. The requirement of the unambiguity of the
measurement can be mathematically formulated as:

∀|ψ2〉 ∈ V2 Tr(E1|ψ2〉〈ψ2|) = 0 (4.77)

∀|ψ1〉 ∈ V1 Tr(E2|ψ1〉〈ψ1|) = 0

The success probability PD defined by Eq.(4.76) and the no error conditions
from Eq. (4.77) can be equivalently rewritten using linearity and Lemma 2
from Chapter 2 as:

PD = η1Tr(E1ρ1) + η2Tr(E2ρ2), (4.78)

0 = Tr(E1ρ2) = Tr(E2ρ1), (4.79)

where we have defined

ρi =

∫

SVi

|ψi〉〈ψi|dψi. (4.80)

Thus, we can argue in the same way as in Subsection 4.3.3 to conclude that
unambiguous subspace discrimination can be reformulated as unambiguous
discrimination of two mixed states.
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Next, we show that ρi = 1
dim Vi

PVi
, where PVi

is the projector onto the
subspace Vi. We choose some state |ϕ〉 from the subspace Vi. To obtain
any state in SVi

we transform state |ϕ〉 using group of operators, which
acts on subspace Vi as identical representation of the special unitary group
SU(dim Vi) and trivially on the orthocomplement of Vi. If we use unitary
invariant measure on the SU(dim Vi) we can rewrite the definition of ρi as
follows:

ρi =

∫

SVi

|ψi〉〈ψi|dψi =

∫

SU(dim Vi)

U |ϕ〉〈ϕ|U †dU =

=
1

dim Vi

dim Vi∑

k=1

∫

SU(dim Vi)

U |ϕk〉〈ϕk|U †dU = (4.81)

=
1

dim Vi

∫

SU(dim Vi)

U(

dim Vi∑

k=1

|ϕk〉〈ϕk|)U †dU

The choice of states |ϕk〉 ∈ Vi is completely arbitrary, so we use this free-
dom and chose them to be the orthonormal basis of subspace Vi. Then∑dim Vi

k=1 |ϕk〉〈ϕk| equals unity on the subspace Vi i.e.
∑dim Vi

k=1 |ϕk〉〈ϕk| = PVi

and since U acts unitarily on Vi we have:

U(

dim Vi∑

k=1

|ϕk〉〈ϕk|)U † = U.PVi
.U † = PVi

. (4.82)

If the Haar measure dU is standardly normalized then equation (4.81) yields
ρi = 1

dim Vi
PVi

.
We proceed further by solving the USD of ρ1, ρ2. It suffice to work in the

Hilbert space H′ = V1⊕V2 ⊂ H, because the supports of ρ1, ρ2 are contained
there. The key step in the solution is the use of appropriate basis. We will
construct orthonormal basis {|ei〉} of H′ from Jordan basis {|ai〉}, {|bj〉} of
subspaces V1, V2.

It is always possible to construct the Jordan basis of a pair of subspaces
with the following properties, which are discussed together with the basis
construction in recipe 1 from Chapter 2:

〈ai|ak〉 = δik ∀i, k = 1, . . . , dim V1,

〈bj|bl〉 = δjl ∀j, l = 1, . . . , dim V2,

〈ai|bj〉 = δij cos θi ≥ 0 .
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Figure 4.6: Structure of ρ1, ρ2 matrices in the basis {|ei〉}.

We shall use the following notation:

n1 dimension of the subspace V1

n2 dimension of the subspace V2

nc dim (V1

⋂
V2) = number of i’s such that cos θi = 1

n0 number of i’s such that cos θi = 0
Tk subspace spanned by |anc+k〉, |bnc+k〉, k = 1, . . . , n2 − nc − n0

|a⊥nc+k〉 state from subspace Tk orthogonal to |anc+k〉
|b⊥nc+k〉 state from subspace Tk orthogonal to |bnc+k〉

V ⊥
1 Subspace of V2 orthogonal to subspace V1

V ⊥
2 Subspace of V1 orthogonal to subspace V2

We begin the fabrication of the basis {|ei〉} by prescribing first elements
|ei〉 = |ai〉 = |bi〉, i = 1, . . . , nc to span the common subspace V1

⋂
V2. We

append them by pairs of vectors |ai〉, |a⊥i 〉, i = nc + 1, . . . , n2 − n0. We
complete the basis by appending the unused Jordan basis vectors |ai〉, i =
n2−n0 +1, . . . , n1 from V1 and |bj〉, j = n2−n0 +1, . . . , n2 from V2. The last
mentioned vectors span the subspaces V ⊥

2 , V ⊥
1 respectively. Each element

|ai〉 is contained directly in the basis {|ei〉} and each element |bj〉 is either
contained directly or can be obtained as a linear combination of vectors |aj〉
and |a⊥j 〉 from the subspace Tj−nc . Thus, {|ei〉} is the basis of H′ = V1 ⊕ V2,
which is by construction orthonormal8.

8The orthonormality follows from the properties of Jordan basis
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The matrixes of mixed states ρ1 = 1
n1

∑n1

i=1 |ai〉〈ai|, ρ2 = 1
n2

∑n2

j=1 |bj〉〈bj|
have in the basis {|ei〉} simple structure, which is depicted on the picture
4.6. The common part of the support of ρ1, ρ2 is V1

⋂
V2 and is span by |ei〉,

i = 1, . . . , nc. Therefore, we can use the first Raynal’s reduction theorem
to split it off from ρ’s. We can then split off subspaces V ⊥

1 , V ⊥
2 via the

second reduction theorem. Finally, the problem can be reduced via the third
reduction theorem to n2−nc−n0 unambiguous discriminations of pairs of pure
states |ai〉, |bi〉. Application of the reduction theorems is not complicated, it
only involves tedious calculations. Thus, we present directly its results. The
final form of the POVM is the following:

E1 = P⊥
2 +

n2−nc−n0∑

k=1

ck
1|b⊥nc+k〉〈b⊥nc+k|

E2 = P⊥
1 +

n2−nc−n0∑

k=1

ck
2|a⊥nc+k〉〈a⊥nc+k| (4.83)

E0 = I − E1 − E2,

where P⊥
i is projector onto V ⊥

i (i = 1, 2) and ck
i are given by the solution of

the USD in subspace Tk. The overall probability of discrimination of mixed
states ρ1, ρ2 and also the probability of discrimination of subspaces V1, V2 is
given by:

PD = 1−
(

η1

n1

+
η2

n2

) (
nc +

n2−nc−n0∑

k=1

(1− P k
D)

)
, (4.84)

where P k
D is the probability of discrimination of pure states |anc+k〉, |bnc+k〉

(k = 1, . . . , n2 − nc − n0) appearing with prior probabity ηk
1 , ηk

2 respectively.
It is worth to note that all these prior probabilities are equal and read:

ηk
1 =

η1

n1

η1

n1
+ η2

n2

≡ η′1, ηk
2 =

η2

n2

η1

n1
+ η2

n2

≡ η′2 (4.85)

On the other hand, due to varying overlap λ = 〈anc+k|bnc+k〉 = cos θnc+k

of the discriminated states from the subspace Tk, the borders between the
regimes of the USD measurement can be different for each k. The intermedi-
ate regime with the measurement being a true POVM is legitimate for prior

probability ηk
1 from interval Bk = [

cos2 θnc+k

1+cos2 θnc+k
, 1

1+cos2 θnc+k
]. The intervals are
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successively included one into another: Bk ⊂ Bm for k ≤ m. Therefore,
the intersection of all the intervals is always not empty and is equal to B1.
Suppose η′1 ∈ B1, then the intermediate regime is legitimate for each k, so:

η1 ∈ [
n1 cos2 θnc+1

n1 cos2 θnc+1 + n2

,
n1

n1 + n2 cos2 θnc+1

] ≡ I1

ck
1 =

1−
√

η2

η1

n1

n2
cos θnc+k

1− cos2 θnc+k

, ck
2 =

1−
√

η1

η2

n2

n1
cos θnc+k

1− cos2 θnc+k

(4.86)

P k
D = 1− 2 cos θnc+k

η1

n1
+ η2

n2

√
η1η2

n1n2

which enables the overall probability of discrimination to be written explicitly
as:

PD = 1−
(

η1

n1

+
η2

n2

)
nc − 2

√
η1η2

n1n2

n2−nc−n0∑

k=1

cos θnc+k (4.87)

However, if we move η1 away from I1, the number of intervals in which η′1
is contained would decrease successively. Thus, in more and more k’s the
regime with projective measurement (ck

i equal 0 or 1) is optimal. Let us
denote by R the number of different values of cos θi such that 0 < cos θi < 1.
The interval [0,1] is split into 2R + 1 subintervals each of them prescribing
different form of the optimal measurement and different formula for the over-
all probability of discrimination. Therefore, as R increases it becomes very
complicated to specify the optimal measurement and the probability of sub-
space discrimination in the whole range η1 ∈ [0, 1]. On the other hand, if all
Jordan angles from (0, 1) are equal, then R = 1 and unambiguous subspace
discrimination has only three regimes as well as USD of two known pure
states.

Application of unambiguous subspace discrimination on UI

We saw in the previous subsection that unambiguous subspace discrimination
can be reformulated and solved as discrimination of a pair of mixed states,
which are multiples of projectors on those subspaces. Conversely, we can
think of unambiguous discrimination of a pair of mixed states, which are
multiples of projectors as about discrimination of subspaces given by the
projectors. In Subsection 4.3.3 we showed that UI can be reformulated as
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discrimination of mixed states, which are multiples of projectors if S, the
set of possible reference states, is derived from a subspace HS of H. Thus,
for two types of reference states UI can be viewed and explicitly solved via
unambiguous subspace discrimination.

If any choice of the reference states fromH is expected then the subspaces
to be discriminated are completely determined by the exchange symmetry
that comes from equality of the unknown state and the given reference state.
This means that UI measurement is distinguishing two types of symmetry
the input states |Ψ1〉, |Ψ2〉 have.

In the rest of this subsection we would like to explain the known results
on UI of two types of reference states in the spirit and terms of unambiguous
subspace discrimination.

Qubits

As we already mentioned in the beginning of the chapter qubit scenar-
ios with more than one copy of unknown or reference states were solved via
unambiguous subspace discrimination. The key property that strongly influ-
ence the structure of the optimal measurement is R, the number of different
values of cos θi ∈ (0, 1) in the Jordan basis we need to construct for the corre-
sponding pair of subspaces. UI for m copies of unknown state and one copy
per each of the two reference states (M = 2, nA = m, nB = nC = 1) was the
first scenario in which the unambiguous subspace discrimination was used.
Surprisingly, all the Jordan angles are in this case either zero (cos θi = 1)
or cos θi = 1/(m + 1), thus R = 1 and the optimal measurement has only
three regimes depending on the prior probability η1. Another consequence of
such Jordan angles is that the measurement elements E1, E2 are multiples
of projectors9. One could expect the same situation also for the scenario
with one copy of unknown state and n copies for each of the two reference
states (M = 2, nA = 1, nB = nC = n). However, quite opposite is true
and the situation is complicated also if we increase the number of copies of
unknown states (M = 2, nA = m, nB = nC = n). The Jordan angles are
quite distinct resulting in R = n. Thus, it is complicated to work out prob-
ability of identification explicitly for any prior probability η1. For η1 = 1/2
the formula can be easily written, because the true POVM regime is optimal
for all involved unambiguous pure state discriminations. The resulting prob-

9The corresponding subspaces are given by vectors {|b⊥nc+k〉}n2−nc

k=1 , {|a⊥nc+k〉}n2−nc

k=1

respectively.
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ability of identification is a finite sum of fractions depending only on n and
m. Unfortunately, it can not be summed up easily and the expression covers
few lines.

Qudits

The results for qubits were obtained by unambiguous subspace discrimi-
nation, therefore the previous paragraph only point out some specific features
of the known results. However, the results on qudit UI with two reference
states were obtained by Hayashi et.al. [41] in a different way. The view on
the problem through unambiguous subspace discrimination will enable as to
extend the results also to unequal prior probabilities η1, η2. Let us first focus
on the scenario with one copy of unknown state and one copy of each of the
two reference states (M = 2, nA = 1, nB = nC = 1, d > 2). The solution
of the problem must be the same irrespective of the method we have used.
Thus, we can use Hayashi’s solution to infer the Jordan angles that we would
obtain by constructing the Jordan basis corresponding to the problem. There
is no ambiguity in such inference as we will see. The corresponding mixed
states ρ1,ρ2 read:

ρ1 =
2

d(d + 1)
P sym

AB ⊗ IC , ρ2 =
2

d(d + 1)
P sym

AC ⊗ IB, (4.88)

Therefore, dimensions n1, n2 of the discriminated subspaces are equal. On
the subspace spanned by the supports of the mixed states ρ1,ρ2 Hay-ashi’s
optimal measurement elements E1, E2 are 2/3 multiples of projectors10. From
the general form of POVM elements of unambiguous subspace discrimination
given in equations (4.83) we can certainly conclude that:

• P⊥
1 = P⊥

2 = 0, because E1, E2 do not have part on which they precisely
project, thus Jordan angles π/2 (cos θi = 0) will not occur i.e. n0 = 0.

• all the coefficients ck
i = 2/3, which together with n1 = n2, η1 = η2 and

equations (4.86) implies cos θnc+k = 1/2, k = 1, . . . , (d + 1)d(d − 1)/3,
where the range of k can be derived from the explicit form of Hayashi’s
measurement, similarly as the dimension of common subspace nc =
d(d + 1)(d + 2)/6

10More details about the structure of the optimal Hayashi’s measurement for this case
will be presented in the next section.
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This suffice to recover the Hyashi’s average probability of identification (valid
for equal prior probabilities) from the equation (4.87):

Popt(Spure) =
1

3

d− 1

d
(4.89)

However, the knowledge of the Jordan basis and Jordan angles we obtained
suffice to give the optimal measurement for arbitrary prior probabilities.
Equality of all Jordan angles (different from zero) implies that only the mul-
tiples in front of the projectors in optimal E1, E2 will vary as we change the
prior probabilities η1, η2. In other words R = 1 and the optimal measurement
has only three different regimes. Thus, the unambiguous subspace discrimi-
nation together with the known solution for the special case η1 = η2 = 1/2
enabled as to find the solution in the whole range of prior probabilities. The
same reasoning can be used also for the scenario with n copies of the refer-
ence states (M = 2, nA = 1, nB = nC = n, d > 2). However, the Jordan
angles are distinct in this case and although we formally obtain the optimal
measurement for any η1, it is hard to write the measurement explicitly.

4.3.5 Influence of prior knowledge on UI

In this part of the chapter we illustrate how a prior knowledge of S, the
subset of expected reference states, influence the optimal UI measurement
and its performance with respect to universal UI measurement (S = Spure).
We illustrate this on two examples. The first one are equatorial qubits. They
are a variation of the basic UI problem (M = 2, nA = nB = nC = 1, d = 2)
with the additional prior information that the reference states are chosen
only from the equator of the qubit Bloch sphere. The second example is UI
of coherent states i.e. M = 2, nA = nB = nC = 1, d = ∞ with the additional
prior information that the reference states are coherent states.

Equatorial qubits

We denote the state of a qubit |eϕ〉 = 1/
√

2(|0〉 + eıϕ|1〉) with ϕ ∈ [0, 2π] as
an equatorial state. Let us denote the subset of all equatorial states Seq. We
shall find optimal UI measurement in the case we have one copy both from
the unknown state and from the two reference states (M = 2, nA = nB =
nC = 1). Thus, the aim is to optimize P(Seq) the probability of identification
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averaged over the set Seq. We shall first calculate the corresponding mixed
states ρ1, ρ2:

ρi =

∫

Seq

∫

Seq

Ψidψ1dψ2 =

=
1

(2π)2

∫ 2π

0

∫ 2π

0

|eϕi
〉〈eϕi

| ⊗ |eϕ1〉〈eϕ1| ⊗ |eϕ2〉〈eϕ2| dϕ1dϕ2.

The integration yields:

ρ1 =
1

8
IC ⊗ (|00〉〈00|+ |11〉〈11|+ 2|ψ+〉〈ψ+|)AB (4.90)

ρ2 =
1

8
IB ⊗ (|00〉〈00|+ |11〉〈11|+ 2|ψ+〉〈ψ+|)AC .

Consequently, we will solve USD of ρ1, ρ2 in the same way as J. Bergou et.
al. in [39]. Hence, we calculate zero eigenvectors of ρ1, ρ2, because they
determine the subspaces in which POVM elements E1, E2 can operate:

ρ2|ai〉 = 0, ρ1|bi〉 = 0

|a1〉 = |0〉B ⊗ |ψ−AC〉 |b1〉 = |0〉C ⊗ |ψ−AB〉 (4.91)

|a2〉 = |1〉B ⊗ |ψ−AC〉 |b2〉 = |1〉C ⊗ |ψ−AB〉

E1 =
2∑

i,j=1

αij|ai〉〈aj| E2 =
2∑

i,j=1

βij|bi〉〈bj| (4.92)

Our goal is to maximize P(Seq), while keeping the POVM elements positive.

We use equations (4.90) and (4.92) to express P(Seq) via coefficients αij, βij:

P(Seq) = η1Tr(E1ρ1) + η2Tr(E2ρ2)

=
η1

8
(α11 + α22) +

η2

8
(β11 + β22) (4.93)

Accidentally, the states |ai〉, |bj〉 are the same as in the paper of J. Bergou et.

al. [39] and also the expression for P(Seq) coincides with P(Spure) optimized
there (see equations 3.19-3.22). Therefore, the optimization task and the
resulting measurement is in our case exactly the same as for universal UI
of qubits. Hence, the optimal UI measurement for equatorial qubits is also
given by equation (4.67).
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Unambiguous Identification of coherent states

Under unambiguous identification of coherent states we will mainly think of
the UI task from our framework with M = 2, nA = nB = nC = 1, d = ∞
with the additional prior information that the reference states are coher-
ent states. Instead of dealing directly with infinite dimensional quantum
systems and their coherent states we first show how intuitive universal UI
measurement for arbitrary dimension can be constructed and compare it to
the optimal universal UI measurement found by Hayashi et.al. [41]. This
will enable us to find (in large d limit) the corresponding universal UI mea-
surement for quantum systems described in infinite dimensional H∞ and to
calculate the probability of identification for particular choice of reference
states P(|ψ1〉, |ψ2〉).

The Swap Based approach for qudits

The optimal POVM elements E1, E2 for universal UI of qubits (M = 2,
nA = nB = nC = 1, d = 2) are proportional to the projectors onto the
antisymmetric subspace of the two qubit subsystem AC, respectively AB.
The simple generalization of the aforementioned universal UI measurement
to the case of qudits is the following POVM, which we abbreviate by sb
(stands for the “swap based”):

Esb
1 = c1IB ⊗ Pasym

AC = c1IB ⊗ 1

2
(1− SwapAC),

Esb
2 = c2IC ⊗ Pasym

AB = c2IC ⊗ 1

2
(1− SwapAB),

Esb
0 = I − Esb

1 − Esb
2 ,

(4.94)

where Pasym
XY denotes the projector onto the antisymmetric subspace of sub-

systems X and Y , and c1, c2 are so far unspecified real numbers. Elements
Esb

0 , Esb
1 , Esb

2 have to form a valid POVM, therefore certain conditions for
c1, c2 must hold. Indeed, positivity of Esb

1 and Esb
2 implies c1 ≥ 0 and c2 ≥ 0,

whereas the inequality imposed by the positivity of Esb
0 is not so apparent and

we have to calculate the eigenvalues of Esb
0 explicitly. Let {| i 〉}d

i=1 denote a
basis of the qudit Hilbert space H. Then |ijk〉 ≡ |i〉A⊗|j〉B⊗|k〉C is the basis
of the three-qudit Hilbert space H⊗3. The operator Esb

0 can be expressed in
terms of unit and Swap operators so 〈ijk|Esb

0 |lmn〉 ≡ 0 whenever {ijk} is
not a permutation of {lmn}. In other words if we properly reorder this basis
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Esb
0 is block diagonal matrix. The blocks are of three types depending on the

number of equivalent indeces:

• the trivial 1× 1 block 〈iii|Esb
0 |iii〉 = 1

• the 3× 3 block with matrix 〈σ1(iij)|Esb
0 |σ2(iij)〉

• the 6× 6 block with matrix 〈σ1(ijk)|Esb
0 |σ2(ijk)〉.

The dimensionalities of the blocks are given by the number of inequivalent
permutations σ of the three indexes.

For qubits only the blocks of first two types occur in the matrix Esb
0

whereas for qudits (d > 2) blocks of all three types arise. Hence we reduced
the problem of finding the eigenvalues of a rank d3 operator Esb

0 to calculation
of the eigenvalues of the small matrices mentioned above. The calculation
of those eigenvalues is only technical and therefore treated in detail in the
appendix B.1. The condition resulting from requiring them to be nonnegative
is a particulary simple inequality:

c1 + c2 ≤ 1. (4.95)

A straightforward consequence of the block diagonality of Esb
0 is that the

inequality (4.95) assures positivity of Esb
0 regardless of the dimension d (pro-

vided that d > 2). We want to choose c1, c2 so that POVM requirements
are satisfied and the average probability of UI (4.65) is maximal. However,
let us first look on the probability of identification for particular choice of
reference states (4.64)

Psb(|ψ1〉, |ψ2〉) = η1〈Ψ1|Esb
1 |Ψ1〉ABC + η2〈Ψ2|Esb

2 |Ψ2〉ABC =

=
η1c1 + η2c2

2
(1− |〈ψ1|ψ2〉|2). (4.96)

We see that optimal choice of c1, c2 does not depend on |ψ1〉, |ψ2〉 but only
on prior probabilities η1, η2. Hence, the values of c1, c2 simultaneously maxi-
mizing Psb(|ψ1〉, |ψ2〉) and the average probability of UI (4.65) read: c1 = 0,
c2 = 1 for η1 < η2, c1 = 1, c2 = 0 for η1 > η2 and c1 + c2 = 1 for η1 = η2.
Therefore, for equal prior probabilities the UI probability is independent on
the particular choice of c1 and c2 and is given by:

Psb(|ψ1〉, |ψ2〉) =
1

4
(1− |〈ψ1|ψ2〉|2). (4.97)
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However, due to symmetry reasons we further consider c1 = c2 = 1/2 in case
η1 = η2, which gives:

Esb
1 =

1

2
IB ⊗ Pasym

AC , Esb
2 =

1

2
IC ⊗ Pasym

AB (4.98)

Averaging over all pure states can be easily done by using the integral∫ ∫
Spure

|〈ψ1|ψ2〉|2dψ1dψ2 = 1/d from [45]. We obtain the average probability

of UI for the swap-based measurement

Psb(Spure) =
1

4

(
d− 1

d

)
. (4.99)

Although the probability (4.97) itself is independent of the dimension the
average value converges to 1/4 in the limit of d → ∞. This corresponds
to an intuitive expectation that two randomly chosen unit vectors in H are
more likely to be orthogonal for higher values of d.

Optimal universal UI for qudits - Hayashi’s result

Although POVM elements Esb
1 , Esb

2 proportional to projectors onto an-
tisymmetric part of the subsystem AC respectively AB seem intuitively as
the best universal UI measurement, actually results of Hayashi et.al. [41]
imply they are not. We now present explicit form of Hayashi’s result for
our considered problem and explain how it actually differs from the intuitive
expectation. First of all, his universal UI measurement maximizes for equal
prior probabilities the mean probability of identification P(Spure). This al-
lows symmetry to be fruitfully exploited via representations of the unitary
group U ∈ U(d) 7→ U⊗3 and via the permutation group S(3) permuting
the subsystems A,B,C of H⊗3. As we already mentioned earlier the optimal
measurement has the following form:

Eopt
1 = e.IB ⊗ Pasym

AC , Eopt
2 = e.IC ⊗ Pasym

AB , e =
∑

λ

eλΓλ, (4.100)

where λ specifies both U(d) and S(3) type of the irreducible representation,
Γλ is the projector onto that invariant subspace ofH⊗3, and eλ is non-negative
real number. In this case (M = 2, nA = 1, nB = nC = n) only two irreducible
U(d) representations specified by λ = (2, 1, 0, . . . , 0), λ = (1, 1, 1, . . . , 0) are
relevant. The corresponding eλ’s are 2/3 and 1/2. Therefore we have:

e =
2

3
Γ(2,1,0,...,0) +

1

2
Γ(1,1,1,...,0). (4.101)
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Projectors Γ(2,1,0,...,0) and Γ(1,1,1,...,0) project onto the subspaces (VS ⊕ VAS)⊥

and VAS, where VS (respectively VAS) is the totaly symmetric (respectively
antisymmetric) subspace of H⊗3. Operators IC ⊗ Pasym

AB , IB ⊗ Pasym
AC do not

mix subspaces (VS ⊕ VAS)⊥ and VAS on which operator e is only a multi-
ple of identity. Therefore Eopt

1 (analogously Eopt
2 ) is essentially 2

3
IB ⊗ Pasym

AC

except for VAS, where it is 1
2
IB ⊗ Pasym

AC . Furthermore, part of the POVM

elements Eopt
1 , Eopt

2 acting on the totaly antisymmetric subspace VAS does not
contribute to Popt(|ψ1〉, |ψ2〉) and Popt(Spure), because input states |Ψi〉ABC

(equation (4.61)) are symmetric in a pair of subsystems. Thus, for calculation
of probabilities of identification we can as well use E1 = 2

3
IB⊗Pasym

AC = 4
3
Esb

1 ,
E2 = 2

3
IC ⊗ Pasym

AB = 4
3
Esb

2 to obtain:

Popt(|ψ1〉, |ψ2〉) =
1

3
(1− |〈ψ1|ψ2〉|2) (4.102)

Popt(Spure) =
1

3

d− 1

d
(4.103)

Unlike previous sections, where we have considered unambiguous identi-
fication of quantum states from finite dimensional Hilbert space H, here we
will work with infinite dimensional Hilbert space of linear harmonic oscilla-
tor H∞, which models a single mode of electromagnetic field (EM). The two
techniques for UI of qudits presented above work for any dimension d. The
resulting POVM elements are expressed via constant multiples of projectors,
which in large d limit define also projectors on H⊗3

∞ . Therefore, we have
formally same looking universal UI measurement also for states from H∞.
This measurement should be optimal for universal UI for the case of equal
prior probability η1 = η2.

Our goal in this subsection is to show that UI of coherent states can
be done with much better probability of identification than universal UI
of all pure states from H∞. The basic intuition for this is that coherent
states form a very small subset Scoh of all pure states from H∞ and there
could be a better way to identify them. The more reasonable motivation
is based on the following observation: As we showed in Section 4.3.2 in UI
for qubits appearing with arbitrary prior probabilities the optimal POVM is
constructed via quantum state comparison measurement. Hence, if there is a
better quantum state comparison of coherent states, which can be employed
in UI setup for coherent states then this setup could outperform the universal
UI measurement identifying all states from H∞. E. Andersson, M. Curty and
I. Jex [37] proposed such a quantum state comparison setup, which is also
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simply realizable by beamsplitter and a photodetector. In what follows we
shortly explain how their setup works and afterwards we show how it can be
used for a proposition of UI setup for coherent states.

Quantum comparison of coherent states

In comparison of coherent states we want to unambiguously distinguish
between |α〉 = |β〉 and |α〉 6= |β〉. This is equivalent to distinguishing β−α =
0 and β − α 6= 0, which can be done by 50/50 beamsplitter (T = R = 1/2)
in the following way. The operation of the beamsplitter on coherent states
is particularly simple, because it does not entangle the output modes:

|α〉 ⊗ |β〉 7→ |
√

Tα +
√

Rβ〉 ⊗ | −
√

Rα +
√

Tβ〉. (4.104)

The state of the second mode after passing the beamsplitter will be either
vacuum |0〉 or | 1√

2
(β−α)〉 when α 6= β. Thus, if we detect at least one photon

in the second mode, which happens with probability 1− |〈0| 1√
2
(β − α)〉|2 =

1− e−
1
2
|α−β|2 , we are sure that the states were different. On the other hand

the detection of no photons is inconclusive, because all coherent states have
nonzero overlap with vacuum.

UI with three beamsplitters

Motivated by the UI measurement in the case of qubits (equation (4.67)),
we want to design a measurement that in a sense for each single run simulta-
neously performs comparisons of coherent states of subsystems AC and AB.
For two separate state comparisons we can use two beamsplitters, so it seems
natural to employ a third one to perform them simultaneously. Therefore, we
consider a setup consisting of three beamsplitters B1, B2, and B3 depicted on
figure 4.7. We keep the notation of subsystems from our framework (mode
A contain unknown state, B and C reference states) except for the added
fourth ancillary mode D initially prepared in vacuum. Thus, the whole prod-
uct state we are in general given can be written as |α?〉A⊗|α1〉B⊗|α2〉C⊗|0〉D,
where |α?〉 is guaranteed to be either |α1〉 or |α2〉.

Our three beamsplitters act on it in the following way:

|α?〉A|α1〉B|α2〉C |0〉D 7→ U3(DC).U2(BA).U1(DA)|α?〉A|α1〉B|α2〉C |0〉D,

where Ui(XY ) is unitary transformation performed by the i-th beamsplitter
on the modes X and Y. Let us fix the transmitivity T1 of B1 for a moment
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Figure 4.7: The beamsplitter setup designed for an unambiguous identifica-
tion of coherent states.

and calculate the output states of B1 using (4.104):

|0〉D ⊗ |α?〉A 7→ |
√

R1α?〉D ⊗ |
√

T1α?〉A. (4.105)

The outputs of B1 are in product state, so it suffice to analyze beamsplitters
B2 and B3 separately. Beamsplitter B2 transforms state of modes A, B in
the following way:

|α1〉B ⊗ |
√

T1α?〉A 7→ |
√

T2α1 +
√

R2T1α?〉B ⊗ | −
√

R2α1 +
√

T2T1α?〉A.

(4.106)

In case α? = α1 we want beamsplitter B2 to behave as in comparison of
identical states |α1〉, |α1〉. This means we want mode A to be transformed
into vacuum if α? = α1, which implies

√
T2

√
T1 −

√
R2 = 0. This condition

can be rewritten as:

T2 =
1

1 + T1

. (4.107)
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We proceed analogously for beamsplitter B3:

|
√

R1α?〉D ⊗ |α2〉C 7→
7→ |

√
T3R1α? +

√
R3α2〉D ⊗ | −

√
R3R1α? +

√
T3α2〉C . (4.108)

In case α? = α2 we want mode C to be transformed into vacuum. This
implies

√
T3 −

√
R3R1 = 0, which can be written as:

T3 =
1− T1

2− T1

. (4.109)

Equations (4.107), (4.109) can be met simultaneously, therefore we set the
transmitivities T2, T3 according to them. The final state of our four modes
after passing all three beamsplitters can be simply obtained from equations
(4.106), (4.108) and reads:

|
√

R2(α? − α1)〉A ⊗ |
√

T2α1 +
√

R2T1α?〉B ⊗
⊗ |

√
T3(α2 − α?)〉C ⊗ |

√
T3R1α? +

√
R3α2〉D

The field modes are factorized, therefore as our State comparison motivation
suggests we can focus only on state of modes A and C. Depending on α?,
modes A and C end up in state:

α? = α1 : |0〉A ⊗ |
√

T3(α2 − α1)〉C
α? = α2 : |

√
R2(α2 − α1)〉A ⊗ |0〉C (4.110)

We measure modes A and C by photodetectors P2 and P1 respectively. In
each single run of experiment we can distinguish four situations: none of
the detectors clicks, only P1 clicks, only P2 clicks, both detectors click. In
our situation both detectors cannot click at the same time, because at least
one of the modes is in vacuum. If only detector P1 clicks from equations
(4.110) we unambiguously conclude that α? = α1. Similarly if only detector
P2 clicks we unambiguously conclude that α? = α2. If none of the detectors
click we cannot determine which mode was not in vacuum and therefore it
is an inconclusive result.

In case α? = α1 the probability of correct identification follows from
equations (4.110) and is given by the probability of detecting at least one
photon in mode C:

1− |〈0|
√

T3(α2 − α1)〉|2 = 1− e
− 1−T1

2−T1
|α1−α2|2 .
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In case α? = α2 the probability of correct identification is given by the
probability of detecting at least one photon in mode A:

1− |〈0|
√

R2(α2 − α1)〉|2 = 1− e
− T1

1+T1
|α1−α2|2 .

Thus, the probability of identification for reference states |α1〉, |α2〉 reads:

Pbs(|α1〉, |α2〉) = η1(1− e
− 1−T1

2−T1
|α1−α2|2) + η2(1− e

− T1
1+T1

|α1−α2|2) (4.111)

Next we want to optimize the performance of the setup by properly choosing
transmitivity T1. The definition of the uniform distribution on the set of
coherent states is problematic, therefore we first focus on the probability of
identification for a particular choice of reference states |α1〉B, |α2〉C expressed
by equation (4.111). In fact, this we later help us to draw more general
conclusions. By plotting the Pbs(|α1〉, |α2〉) for various ranges of |α1−α2|,η1 ∈
[0, 1] and T1 ∈ [0, 1] one quickly finds that for the fixed values of η1 and
|α1 − α2| the probability Pbs(|α1〉, |α2〉) is maximal for the values of T1 that
depend on η1 and |α1 − α2|. Thus, in general, for arbitrary prior probability
optimal transmitivity T1 depends on the reference states to be identified.
However, we will show that in the special case of equal prior probabilities
there is only one value of transmitivity T1, which is optimal for all reference
states. This value turns out to be T1 = 1/2 as we for equal prior probabilities

expect from symmetry reasons. In order to show this we calculate ∂Pbs(|α1〉,|α2〉)
∂T1

from Eq. (4.111) for η1 = η2 = 1/2 and the condition for critical points
(vanishing the first derivative) yields:

1 =
(1 + T1)

2

(2− T1)2
e
−|α1−α2|2(

1−T1
2−T1

− T1
1+T1

)
. (4.112)

For 0 5 T1 < 1/2 both terms on the right hand side (RHS) of (4.112) are
greater than 1, for 1/2 < T1 5 1 both terms are less than 1 and for T1 = 1/2
both terms on the RHS are 1. Thus, T1 = 1/2 is the only critical point for
all reference states and because of the second derivative being negative it is
the global maximum of Pbs(|α1〉, |α2〉) for T1 ∈ [0, 1].

Further, we consider the UI of coherent states appearing with equal prior
probabilities. In this case the optimal choice of transmitivities for our three
beamsplitter setup is T1 = 1/2, T2 = 2/3 T3 = 1/3, which enables the
probability of identification (4.111) to be written as:

Pbs(|α1〉, |α2〉) = 1− e−
1
3
|α1−α2|2 (4.113)
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Comparison of UI strategies acting on coherent states

In the previous paragraphs we have discussed three different UI measure-
ments that can be used to identify coherent states:

i) the swap-based measurement,
ii) the optimal measurement,
iii) the beamsplitter setup.

The first two schemes unambiguously identify arbitrary states of qudits in
arbitrary dimensions. The beamsplitter setup is designed to identify only
coherent states. Although the comparison is usually understood in terms of
average probabilities, we will adopt a different comparison method evaluating
the performance directly in terms of probabilities P (|α1〉, |α2〉) for all pairs of
states. It turns out that for all the measurements these probabilities depend
only on a scalar product of states under consideration.

As we mentioned in the beginning of this subsection qudit POVM ele-
ments Esb

i and Eopt
i in large d limit define also POVM elements in H⊗3

∞ . For
simplicity we use the same notation for these operators. These two UI strate-
gies are universal, so they work for any pure states from H∞. If applied on
coherent states the corresponding probabilities are given by Eqs. (4.97) and
(4.102)

Psb(|α1〉, |α2〉) =
1

4
(1− |〈α1|α2〉|2) =

1

4
(1− e−|α1−α2|2) (4.114)

Popt(|α1〉, |α2〉) =
1

3
(1− |〈α1|α2〉|2) =

1

3
(1− e−|α1−α2|2). (4.115)

In what follows we will compare Psb(|α1〉, |α2〉), Popt(|α1〉, |α2〉), and
Pbs(|α1〉, |α2〉), which is a probability of identification for a beamsplitter setup
designed especially for coherent states (see equation (4.113)). The following
inequality holds for arbitrary coherent states |α1〉, |α2〉:

Psb ≤ Popt ≤ Pbs (4.116)

Hence the same relation between the measurements holds also on average.
The inequality can be derived as follows. We denote e−|α1−α2|2 as x (x ∈
[0, 1]). All the probabilities are zero for α1 = α2 (x = 1) as they should,
because then the reference states are the same. The validity of the inequality
can be proved by showing the reversed inequality for the first derivative of
the probabilities with respect to x (4.116), i.e.

∂xPsb ≥ ∂xPopt ≥ ∂xPbs ⇔ −1

4
≥ −1

3
≥ − 1

3x
2
3

.
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Figure 4.8: The probability of identification P (|α1〉, |α2〉) as a function of
the scalar product (given by |α1 − α2|) for three UI strategies applied on
coherent states |α1〉, |α2〉. Starting from the bottom the two lowest lines
correspond to universal UI measurements (the swap-based is in magenta and
the optimal strategy is in black, respectively). The blue line is associated with
the beam splitter setup that was designed especially for coherent states. The
top (red) curve corresponds to the optimal discrimination probability among
two known states.

The last row obviously holds in the interval x ∈ [0, 1], so inequality (4.116)
is proved. More quantitative insight is given in the figure (4.8) showing the
dependence of the probability of identification for the considered UI strategies
on the |α1 − α2|. As a result we can conclude that the beamsplitter setup
designed for an unambiguous identification of coherent states performs better
than the optimal universal UI measurement. Another remarkable feature is
that the beamsplitter setup attains Pbs(|α1〉, |α2〉) = 1 for large values of
|α1 − α2|, i.e. in the limit when two coherent states are orthogonal.

In this section we have addressed the problem of an unambiguous identifi-
cation of unknown coherent states. We have explicitly designed UI measure-
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ment taking into account the a priori knowledge about a particular family
of states and compared the proposed measurement with the universal unam-
biguous identification, i.e. the UI measurements (either the swap-based or
the optimal one) that can be applied for all pure states. Our main goal was
to design a simple experimental setup consisting of three beamsplitters (see
Fig. 4.7) that performs best.

The proposed beamsplitters setup for unambiguous state identification
can be compared with the measurement proposed in Ref. [46] discriminating
optimally among two known coherent states. Both of them consists of three
beamsplitters, but arranged differently. An interesting observation is that
the differences between the probabilities are not very large (see Fig. 4.8) and
even more surprising is the fact that two unknown nearly orthogonal coherent
states can be identified almost perfectly. For the universal optimal UI mea-
surement (see Fig. 4.8) there is a significant gap between the probabilities
for state discrimination and state identification.

4.3.6 Optimal UI of coherent states with linear optics

In this part of the chapter we study possible generalization of an optical setup
proposed in the previous section. More specifically, we show how the UI of
coherent states can be performed in a general case when multiple copies of
unknown and reference states are available. This investigation is motivated
by the observation that with the increase of the number of identically pre-
pared particles we can better identify the preparator. We shall also prove
optimality of the discussed UI setups for multiple copies of unknown and
reference states.

We start our investigation by stating the problem within our framework
for unambiguous identification. We consider modes of a quantum electro-
magnetic field (linear harmonic oscillators) each described by a semi-infinite-
dimensional Hilbert space H∞ and prepared in a coherent state of a specific
amplitude. We denote the complex amplitude of the unknown coherent state
by α? and similarly we denote the reference states as |α1〉, |α2〉, . . . , |αM〉.
Thus, in general, we should unambiguously distinguish the following M pos-
sible types of states:

|Ψi〉ABC... ≡ |αi〉⊗nA
A ⊗ |α1〉⊗nB

B ⊗ |α2〉⊗nC
C ⊗ . . . , (4.117)

where α? = αi and i = 1, 2, . . . ,M . We assume that the states of the type |Ψi〉
appear with an equal prior probability ηi = 1/M . The performance of the
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considered UI measurement will be most often quantified by the probability
of identification for a particular choice of reference states P (|α1〉, . . . , |αM〉),
because the optimal parameters of the measurement setup will not depend on
specific reference states. Hence, most of the features that the averaged prob-
ability P(Scoh) would have should be apparent already in P (|α1〉, . . . , |αM〉).
Nevertheless, in accordance with our framework the aim is the maximization
of the average value

P(Scoh) =

∫

CM

P (|α1〉, . . . , |αM〉)χ(α1, . . . , αM) dα1 . . . dαM ,

(4.118)

where χ(α1, . . . , αM) is the probability distribution describing our knowl-
edge about the choice of reference states. In Eq. (4.118) we integrate over
multiple infinite (complex) planes of complex amplitudes. Unfortunately, a
uniform distribution on an infinite plane can not be properly defined. Thus,
χ(α1, . . . , αM) can not be uniform, but instead should be “regularized”, i.e.
it should satisfy some reasonable physical requirements. For example, the
probability of having reference states with very big amplitudes, i.e. of very
high energy, should be vanishing. This illustrates that UI of coherent states
can not be so easily reformulated as unambiguous discrimination of M mixed
states. Even if there was a natural and mathematically allowed choice for
χ(α1, . . . , αM) we could not apply the tools for unambiguous discrimination
of mixed states directly, because most of them were proved only for finite
dimensional Hilbert spaces. Our approach to the problem is a bit more op-
erational. We shall construct optical setups, which by construction perform
UI for any coherent reference states and prove their optimality under the
restriction that only linear optical elements and photodetectors are used in
the measurement.

Naturally, coherent states encode complex numbers. From this point
of view the state | 1√

2
α?〉 carries formally the whole information about the

complex amplitude α?. This is due to the fact that we know the factor
λ = 1/

√
2 by which α? is rescaled. If the complex amplitude α? is encoded in

the state |λα?〉 then for 0 ≤ λ < 1 we will speak about a “diluted” unknown
state while the case λ > 1 will be referred to as a “concentrated” unknown
state |α?〉. These terms come from the fact that the “diluted” state can be
obtained by superimposing a coherent state and a vacuum via a beam splitter.
As a result of the beam splitter transformation two modes at the output of the
beam splitter are in the diluted states. On the contrary, the “concentrated”
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Figure 4.9: The beamsplitter setup designed for constructive interference of
the same input coherent states. Out of k copies of a coherent state |αi〉 we
obtain at the output of a sequence of k − 1 beamspitters one mode in the
coherent state |

√
kαi〉 and k − 1 modes in a vacuum state |0〉⊗k−1.

state can be prepared by launching two copies of the same coherent state
into the beam splitter. As a result we obtain one of the output modes in
the “concentrated” state while the second mode in the vacuum state. Using
a sequence of beamsplitters and corresponding resources one can prepare
“diluted’ or “concentrated” states with arbitrary value of the scaling factor
λ. Actually, preparation of “concentrated” states is the main idea we will
employ in our investigation of the UI measurement with multiple copies of
unknown and reference states. At the beginning of the UI measurement
we will, for each kind of state, concentrate the information encoded in its
k copies into a single quantum system. This can be done by a sequence of
k−1 beam splitters (see Fig. 4.9) with transmitivities chosen so that the input
state |αi〉⊗k constructively interferes to produce the state |

√
kαi〉 ⊗ |0〉⊗k−1.

More details about this transformation can be found in Section 4.2.4. The
result of these preliminary transformations is a mapping of possible types of
states |Ψi〉 into states |√nAαi〉A1⊗|

√
nBα1〉B1⊗|

√
nCα2〉C1⊗ . . .⊗|0〉t, where

t = nA − 1 + nB − 1 + . . .. As a next step we will use the setup proposed
in previous section for a single copy of the unknown state and single copies
of M reference states. Of course, as we will see below the transmitivities of
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Figure 4.10: The beamsplitter setup designed for an unambiguous identifi-
cation of multiple copies of two types of coherent states.

all beam splitters in the setup must be modified according to the number of
copies of the unknown and the reference states we are given.

Two types of reference states

The unambiguous identification of two types of coherent reference states
is the first natural step in generalizing the scenario with single copies of
unknown and reference states investigated in previous section. In this section
we consider M = 2 while nA, nB, nC are arbitrary. The above mentioned
idea of “concentration” of quantum information implies that we first feed all
provided copies of the unknown state into nA − 1 beam splitters to obtain
state |√nAα?〉 in the mode A1 (for brevity later called only A). The other
modes A2 . . . AnA

end up in a vacuum state, therefore we will not consider
them further. Similarly, nB−1 (respectively, nC−1) beam splitters are used
to prepare the state |√nBα1〉 (respectively, |√nCα2〉) in the modes B1 (C1).
Next, we feed these concentrated states into essentially the same scheme as
proposed in the previous section (see Fig. 4.10). Thus, altogether we are going
to use nA + nB + nC beam-splitters. The analysis of the setup presented in
Fig. 4.10 is analogous to the one presented in the previous section, therefore
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we comment on it only briefly.
The beam splitter setup in Fig. 4.10 acts on input modes that are prepared

in the state

|Φin〉 = |√nAα?〉A ⊗ |√nBα1〉B ⊗ |√nCα2〉C ⊗ |0〉D ,

where α? is guaranteed to be either α1 or α2. The action of the three beam-
splitters in the setup is described by a unitary transformation

|Φin〉 7→ |Φout〉 = (U
(2)
AB ⊗ U

(3)
CD)(U

(1)
AD ⊗ IBC)|Φin〉 ,

where U
(j)
XY is associated with the j-th beamsplitter Bj acting on the modes

X and Y . Since beamsplitters do not entangle coherent states it follows that
the output state |Φout〉 remains factorized. In the first step the beamsplitter
B1 with transmittivity T1 prepares two “diluted” copies of the state |√nAα?〉,
i.e.

|0〉D ⊗ |√nAα?〉A 7→ |
√

R1nAα?〉D ⊗ |
√

T1nAα?〉A . (4.119)

In the second step the beamsplitters B2, B3 perform the transformation such
that the output state reads

|Φout〉 = |out〉A ⊗ |out〉B ⊗ |out〉C ⊗ |out〉D , (4.120)

with

|out〉A = | −
√

R2nBα1 +
√

T2T1nAα?〉A ,

|out〉B = |
√

T2nBα1 +
√

R2T1nAα?〉B ,

|out〉C = | −
√

R3R1nAα? +
√

T3nCα2〉C ,

|out〉D = |
√

T3R1nAα? +
√

R3nCα2〉D .

A crucial observation is that the parameters Tj, Rj = 1− Tj can be adjusted
so that either the mode A, or the mode C, ends up in a vacuum state pro-
viding that α? = α1, or α? = α2, respectively. In particular, setting the
transmittivities to

T2 =
1

1 + nA

nB
T1

; T3 =
1− T1

nC

nA
+ 1− T1

, (4.121)
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we find

|out〉A = |
√

R2nB(α? − α1)〉A ;

|out〉B = |
√

T2nBα1 +
√

R2T1nAα?〉B ;

|out〉C = |
√

T3nC(α2 − α?)〉C ;

|out〉D = |
√

T3R1nAα? +
√

R3nCα2〉D . (4.122)

Finally, we perform a photodetection in the output modes A and C by the
photodetectors D2 and D1, respectively. By detecting a photon in one of the
two modes we can unambiguously identify the unknown state. In particular,
for these two modes we have

α? = α1 ↔ |0〉A ⊗ |
√

T3nC(α2 − α1)〉C ;

α? = α2 ↔ |
√

R2nB(α2 − α1)〉A ⊗ |0〉C . (4.123)

We note that due to the fact that at least one of the modes is in a vacuum
state both detectors cannot “click”, i.e. cannot detect photons simultane-
ously. Therefore, in each single run of the experiment only three situations
can happen:

i) none of the detectors click,
ii) only the detector D1 clicks,
iii) only the detector D2 clicks.

If only the detector D1 clicks then following Eqs. (4.123) we unambiguously
conclude that α? = α1. Similarly, if only the detector D2 clicks we unam-
biguously conclude that α? = α2. If none of the detectors click we cannot
determine which mode was not in the vacuum state and therefore this situ-
ation represents an inconclusive result.

If α? = α1, then the probability of a correct identification is given as the
probability of detecting at least one photon in the mode C

P1 = 1− |〈0|
√

T3nC(α2 − α1)〉|2 = 1− e
− nCnA(1−T1)

nC+nA(1−T1)
|α1−α2|2 . (4.124)

Analogously, in the case α? = α2 the probability of a correct identification
reads

P2 = 1− |〈0|
√

R2nB(α2 − α1)〉|2 = 1− e
− nBnAT1

nB+nAT1
|α1−α2|2 . (4.125)

Thus the total probability of the identification of reference states |α1〉 and
|α2〉 is equal to

P(|α1〉, |α2〉) = η1P1 + η2P2 =
1

2
(P1 + P2) . (4.126)
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Next we will optimize the performance of the setup by choosing an ap-
propriate value of the transmittivity T1. The definition of the uniform dis-
tribution on a set of coherent states is problematic, therefore we first focus
our attention on the probability of identification for a particular choice of
reference states |α1〉 and |α2〉 expressed by Eq. (4.126).

The investigation of the first derivative ∂P(|α1〉,|α2〉)
∂T1

reveals that the optimal
choice of T1 does not depend on the reference states |α1〉, |α2〉 only if nB = nC .
As one expects, because of symmetry arguments, T1 is optimally set to 1/2 if
nB = nC . In such a case, P(|α1〉, |α2〉) can be simplified to take the following
form:

P(|α1〉, |α2〉) = 1− e
− nAnB

nA+2nB
|α1−α2|2 . (4.127)

Let us note that if nB 6= nC then there exists a prior probability η1 = 1− η2

for which the optimal choice of T1 does not depend on the reference states.
However, as already mentioned, we focus on the ηi = 1/M case and we will
assume that we are given the same number of copies of each reference state.

Trade-off between resources

The number of copies of an unknown state or of a reference state we have can
be seen as a measure of some resource. From this point of view an interesting
question immediately arises: Which type of resource is more useful for an
unambiguous identification of coherent states? Are unknown states more
useful than reference states or vice versa? To answer these questions we
consider the following situation. Imagine we will get altogether N quantum
systems (modes of electromagnetic field) but we have a liberty to specify
whether the specific mode is prepared in the unknown state or in one of the
two reference states. Thus, if we ask for nA copies of the unknown state we
will obtain nB = nC = (N − nA)/2 copies per a reference state. Let us for
simplicity assume that N and nA have the same parity. The probability of
identification for a reference states |α1〉, |α2〉 then reads

P(|α1〉, |α2〉) = 1− e−
nA(N−nA)

2N
|α1−α2|2 (4.128)

and it is maximized for nA = bN/2c, because the terms in the exponent are
nonnegative. Hence, from the point of view of the resources, it is optimal
to ask for a preparation of bN/2c unknown states and the equal number of
copies per a reference state (specifically, bN/4c).
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Infinite number of copies of reference states

Unambiguous identification is a discrimination task in which we have very
limited prior knowledge about the possible preparations of the quantum sys-
tem. The amount of information about the possible preparations is essen-
tially given by the number of copies of the reference states we obtain. In the
limit of infinite number of copies the preparation of reference states becomes
known (at least potentially via a tomographic measurement) and thus the
UI is becoming equivalent to discrimination among known states. The un-
ambiguous discrimination among pair of known pure states (for equal prior
probabilities) was solved by Ivanovic, Dieks and Peres [4, 5, 6] in 1987. Their
optimal measurement succeeds with a probability 1 − |〈ϕ1|ϕ2〉|, where |ϕ1〉,
|ϕ2〉 are the known states in which the system can be prepared. In what fol-
lows we will show that in the aforementioned limit (M = 2, nB = nC →∞)
our beam-splitter setup achieves the same optimal performance. In order to
prove this we have to evaluate the limit of Eq. (4.127):

P (|α1〉, |α2〉, nB = nC →∞)

= lim
nB→∞

1− e
− nAnB

nA+2nB
|α1−α2|2

= 1− e−
nA
2
|α1−α2|2

= 1− |〈α1|α2〉|nA . (4.129)

In the last equality we have used the expression for the modulus of the overlap
of the two coherent states |〈α1|α2〉|2 = e−|α1−α2|2 . In the limit nB = nC →∞
the two known states that could be unambiguously discriminated by the
Ivanovic-Dieks-Peres measurement are |ϕ1〉 = |α1〉⊗nA , |ϕ2〉 = |α2〉⊗nA . Thus,
we see that Eq. (4.129) is equal to 1 − |〈ϕ1|ϕ2〉| and so our beam-splitter
setup performs optimally in this limit. Let us note that for nA = 1 our
setup is in this limit equivalent to the setup proposed by K. Banaszek [46]
for unambiguous discrimination between a pair of known coherent states.
For nB = nC → ∞ our T2 → 1, T3 → 0, i.e. the “concentrated” reference
states are nearly reflected, which induces a displacement of the “diluted”
unknown state | 1√

2
α?〉. In the same way K. Banaszek uses very unbalanced

beam-splitters to cause the displacement of the outputs of the beam-splitter.
For the limiting case M = 2, nA = nB = nC → ∞ it is natural to

expect a classical behavior, i.e. a unit probability of identification. For
unequal reference states this result is easily obtained by taking the limit of
Eq. (4.127).
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Weak implementation of UI measurement

Let us consider a basic version of the UI of coherent states (M = 2, nA =
nB = nC = 1). We will describe a measurement, which in the case of suc-
cess, leaves all the input states nearly unperturbed and achieves the prob-
ability of identification given by Eq. (4.127). The measurement procedure
goes as follows: We first equally split each of our resource states into N
parts. Thus, we have N copies of states | 1√

N
α?〉, | 1√

N
α1〉, | 1√

N
α2〉. We use

the three beam-splitter setup (M = 2, nA = nB = nC = 1) for each of
these N triples. The UI measurement performed on the first triple will

succeed with the probability 1 − e
− 1

3
| 1√

N
α1− 1√

N
α2|2 = 1 − e−

1
3N
|α1−α2|2 . If

we find α? = α1 we can combine the unmeasured 3N − 3 modes into the

states |
√

2N−2
N

α1〉, |
√

N−1
N

α2〉. For α? = α2 we operate analogously obtain-

ing |
√

N−1
N

α1〉, |
√

2N−2
N

α2〉. If the UI measurement of the first triples fails

we continue by measuring the other triples until we find a conclusive out-
come or use all the triples. In the case of the k-th triple leading to the
conclusive result we concentrate the remaining resources to obtain the states

|
√

2(N−k)
N

α1〉, |
√

N−k
N

α2〉 or |
√

N−k
N

α1〉, |
√

2(N−k)
N

α2〉 depending on α? being

α1 or α2. We do not get a conclusive result only if the measurements of all N
triples yield inconclusive results. Hence, the overall probability of successful
identification of the unknown state 1 − (e−

1
3N
|α1−α2|2)N = 1 − e−

1
3
|α1−α2|2 is

the same as in Eq. (4.127). However, in contrast to the three beam splitter
setup proposed in previous section, if a conclusive result is obtained before
measuring the N -th triple we still have “diluted” input states at our disposal.

Optimality proof

In this section we shall prove optimality of the proposed UI setups if only
linear optical elements, photodetectors and sources of multimode coherent
states are allowed to be used. Due to the fact that the linear optical trans-
formations preserve the tensor product structure of coherent states it follows
that in any measurement (using arbitrarily many photodetectors) the mea-
sured state is a factorized coherent state of N modes of the form |β1 ⊗ · · · ⊗
βN〉 = |β1〉 ⊗ · · · ⊗ |βN〉 ≡ |~β〉. In order to use an outcome of the mea-
surement for the unambiguous conclusion the probabilities for all the other
options must vanish. Let us note that for the considered family of states each
photodetector measuring the individual mode has a non-vanishing probabil-



4.3. UNAMBIGUOUS IDENTIFICATION 87

ity to observe n > 0 photons unless this mode is in the vacuum state, i.e.
if |βj〉 6= |0〉, then pn(|βj〉) = |〈n|βj〉|2 > 0 for all n > 0. Only for the
vacuum state pn(|0〉) = 0. Moreover, the probability to observe no photon
is non-vanishing for all coherent states, i.e. this event cannot be used for
unambiguous conclusion. Consequently, the unambiguous conclusions are
necessarily associated with observation of the nonzero number of photons
identifying the fact that the corresponding mode is not in the vacuum state.

In unambiguous identification of two types of reference states and equal
number of copies per reference state (M = 2, nB = nC) our goal is to
discriminate two families of states: either |α1

⊗nA ⊗ α1
⊗nB ⊗ α2

⊗nB〉, or
|α2

⊗nA ⊗ α1
⊗nB ⊗ α2

⊗nB〉, where |α1〉, |α2〉 are arbitrary coherent states, but
α1 6= α2. In general, our (Gedanken) experiment starts with a preparation of
a coherent state |α?

⊗nA⊗α1
⊗nB⊗α2

⊗nB⊗β1⊗· · · 〉, where |βj〉 are fixed states
of some ancillary modes. By linear optical elements this state is mapped into
a state |∆1 ⊗∆2 ⊗∆3 ⊗ · · · 〉, where ∆j are complex numbers depending on
α?, α1, α2. Each of these modes is measured by a photodetector. In order to
make an unambiguous conclusion α? = α1 based also on a click of the jth
photodetector we need to guarantee for all values of α1, α2 that ∆j = 0 for
α? = α2 and |∆j| > 0 for α? = α1. Similarly, for the unambiguous conclusion
α? = α2. As it was shown by He and Bergou in Ref. [47] the linear opti-
cal transformations of coherent states can be described by unitary matrices
acting on vectors of amplitudes of individual modes, i.e.

G.(α?, . . . , α?︸ ︷︷ ︸
nA

, α1, . . . , α1︸ ︷︷ ︸
nB

, α2, . . . , α2︸ ︷︷ ︸
nB

, β1, . . .)
T = (∆1, . . .)

T ,

where G is a unitary matrix. Without the loss of generality we can write G =
W.Q, where W,Q are unitary and Q performs the concentration operation.
More precisely we set

Q =




Q1 O O O
O Q2 O O
O O Q2 O
O O O I


 , (4.130)

where Q1, Q2 are unitary matrices nA× nA (respectively nB × nB) such that

Q1 : (d, . . . , d)T 7→ (
√

nAd, 0, . . . , 0)T ;

Q2 : (d, . . . , d)T 7→ (
√

nBd, 0, . . . , 0)T .
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The transformation described by the matrix Q turns the vector of input
coherent states amplitudes into

−→q ≡ (
√

nAα?, 0, . . .︸ ︷︷ ︸
nA

,
√

nBα1, 0, . . .︸ ︷︷ ︸
nB

,
√

nBα2, 0, . . .︸ ︷︷ ︸
nB

, β1, . . .)
T .

Hence, we can write the result of the overall transformation G via the matrix
W acting on the above vector −→q

W.−→q = (∆1, ∆2, . . .)
T (4.131)

with

∆j = Wj,1

√
nAα? + Wj,nA+1

√
nBα1 + Wj,nA+nB+1

√
nBα2 + γj (4.132)

and γj =
∑

k Wj,k+nA+2nB
βk. The condition ∆j = 0 holding for all values

α1, α2 if α? = α2 implies

0 = Wj,nA+1 = γj

λj = Wj,1

√
nA = −Wj,nA+2nB+1

√
nB

|∆(1)
j 〉 = |λj(α? − α2)〉,

where the upper index indicates the association of observation of photons in
this mode with the conclusion α? = α1. Similarly, if the jth mode will be
associated with the conclusion α? = α2, then the corresponding state has to
be |∆(2)

j 〉 = |λj(α? − α1)〉.
The detectors can be divided into three classes according to the type of

states that are measured: i) |∆(1)
j 〉 (detecting α? = α1), ii) |∆(2)

j 〉 (detecting
α? = α2), and, iii) different type of a state corresponding to an inconclusive
result. The detectors from the third class can not be employed in making
unambiguous decision and hence will not be considered further. An arbitrary
click on the detector i) tells us that α? = α1 therefore we associate these clicks
with the unambiguous result α? = α1. Analogously, clicks from the type ii)
detector are associated with the unambiguous result α? = α2. In what follows
we shall show that the events on detectors leading to the same conclusion can
be replaced by a single detector while the success probability is preserved.
In other words, an experiment in which n1 detectors are used to conclude
that α? = α1 and n2 detectors to detect that α? = α2 can be replaced by
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an experiment with only two photodetectors. In particular, by renaming the
output ports the output vector can be rearranged into the form




∆
(1)
1
...

∆
(2)
n1+1
...

∆n1+n2+1
...




=




(α? − α2)λ1
...

(α? − α1)λn1+1
...

∆n1+n2+1
...




≡ ~α′? . (4.133)

In such case we denote Ω ≡ e−|α1−α2|2 and the success probability reads

Psuccess =
1

2
(1−

n1∏
j=1

e−|λj(α1−α2)|2) +
1

2
(1−

n1+n2∏
j=n1+1

e−|λj(α1−α2)|2)

= 1− 1

2
(Ω

∑n1
j=1 |λj |2 + Ω

∑n1+n2
j=n1+1 |λj |2) , (4.134)

because the UI measurement fails only if none of the conclusive detectors
fire. However, there exist a unitary matrix of the block diagonal form

U =




U1 O O
O U2 O
O O I


 , (4.135)

where U1, U2 are suitable unitary matrices ni × ni such that

U1 : (λ1, . . . , λn1)
T 7→ (κ1, 0, . . . , 0)T ;

U2 : (λn1+1, . . . , λn1+n2)
T 7→ (κ2, 0, . . . , 0)T

with κ1 =
√∑n1

k=1 |λk|2 and κ2 =
√∑n2

k=1 |λn1+k|2. This means that the
overall product of coherent states transforms into

U : ~α′? 7→




κ1(α? − α2)
0
...

κ2(α? − α1)
0
...

∆n1+n2+1
...




. (4.136)



90 CHAPTER 4. UNAMBIGUOUS TASKS FOR STATES

Two detectors measuring the first and the (n1 + 1)th output port are of the
first respectively the second type and we see that the probability of success

Psuccess =
1

2
(1− e−|κ1(α1−α2)|2) +

1

2
(1− e−|κ2(α2−α1)|2)

= 1− 1

2
(Ω

∑n1
j=1 |λj |2 + Ω

∑n1+n2
j=n1+1 |λj |2) (4.137)

equals the multidetector case [see Eq.(4.134)]. This means we have shown
that it suffice to consider one conclusive photodetector of the type one and
one detector of the type two. We can now go back to Eq. (4.131) and
require that the states measured by the photodetectors D1, D2 have the form
|∆1〉 = |λ1(α?−α2)〉, |∆2〉 = |λ2(α?−α1)〉. This implies that first, (nA +1)th,
and (nA + nB + 1)th column of the matrix W is constraint in the following
way:

W =




√
1

nA
λ1 . . . 0 . . . −

√
1

nB
λ1 . . .√

1
nA

λ2 . . . −
√

1
nB

λ2 . . . 0 . . .

...
...

. . .


 .

The unitarity of the matrix W requires normalization of its rows i.e.

1 = (
1

nA

+
1

nB

)|λ1|2 + a2 = (
1

nA

+
1

nB

)|λ2|2 + b2 ,

where a, b are norms of remaining parts of the first and the second row vectors,
respectively. Their orthogonality and the Cauchy-Schwartz inequality give
us the inequality |λ1λ2|/nA ≤ ab. With the help of the previous equation we
find

1

(nA)2
|λ1|2|λ2|2 ≤ (1− h|λ1|2)(1− h|λ2|2), (4.138)

where h ≡ ( 1
nA

+ 1
nB

). The probability of success in the UI for the scheme
using linear optical elements described by the matrix W is

P(|α1〉, |α2〉) =
1

2

2∑
i=1

(1− e−|λi|2|α1−α2|2). (4.139)

The higher the |λi|’s the higher P(|α1〉, |α2〉) is. However, the values of λ1, λ2

must satisfy the inequality (4.138) and therefore the maximum is achieved



4.3. UNAMBIGUOUS IDENTIFICATION 91

[see Eq.(4.139)] only if the inequality (4.138) is saturated. Thus, we have to
optimize P(|α1〉, |α2〉) with respect to |λ1|, while keeping

|λ2|2 =
nAnB − (nA + nB)|λ1|2
nA + nB − (2 + nA

nB
)|λ1|2 . (4.140)

The optimal value of |λ1| for any value of |α1−α2| is |λ1|2 = |λ2|2 = nAnB

nA+2nB
,

because at this point ∂
∂|λ1|P(|α1〉, |α2〉) = 0 and P(|α1〉, |α2〉) is concave with

respect to |λ1| in the allowed interval. The aforementioned choice of |λ1|
corresponds to a performance of the setup we have proposed in section 4.3.6,
and hence concludes the proof.

More types of reference states

In the previous section the optimal values of transmittivities in our beam-
splitter setup were state-independent only in the case of equal number of
copies per reference state. Thus, for more than two types of reference states
we will discuss only cases with the same number of copies of each reference
state. Unfortunately, we will see that even in this restricted scenario, the
optimal choice of transmittivities in the setup we propose will depend on the
reference states (which are supposed to be unknown).

The generalization of the beam-splitter unambiguous identification scheme
from the previous subsection is straightforward: We start by preparing the
“concentrated” states |√nAα?〉, |√nBα1〉, |√nCα2〉, . . .. We use M −1 beam-
splitters to sequentially split the “concentrated” unknown state |√nAα?〉
into M states. Each of these M states is then merged with one of the
“concentrated” reference states |√nBα1〉, . . . , |√nMαM〉 on beam-splitters
C1, . . . , CM . The transmittivity Tk (of the beam-splitter Ck) is chosen so
that the destructive interference yields the vacuum on the second output
port of Ck for α? = αk. These output ports are monitored by photodetec-
tors D1, . . . , DM . Detection of at least one photon by the photodetector Dk

unambiguously indicates α? 6= αk. If all photodetectors except the k-th fire,
then we conclude that α? = αk. For M = 2 we had freedom in choosing the
ratio T1 with which the “concentrated” unknown state |√nAα?〉 was split into
two parts used for the two comparisons. In order to maximize the probability
of identification we can tune M−1 transmittivities of the beam-splitters that
govern the splitting of the “concentrated” unknown state. The optimal choice
of these transmittivities even for equal prior probabilities ηj = 1/M depends
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on the choice of the reference states. Once we consider nB = nC = . . . then
let us consider equal splitting of the “concentrated” unknown state into M
parts, even though it is not necessarily the optimal choice. In such case the
beam-splitters C1, . . . , CM are performing the following transformation:

Ck : |
√

nA

M
α?〉 ⊗ |√nBαk〉 7→ |out1〉 ⊗ |out2〉;

|out1〉 = |
√

TknA

M
α? +

√
RknBαk〉; (4.141)

|out2〉 = | −
√

RknA

M
α? +

√
TknBαk〉.

The condition of |out2〉 being a vacuum for α? = αk forces us to set the
transmittivity to Tk = nA/(nA +MnB). The probability of observing at least

one photon in |out2〉 if α? = αj is 1 − e
− nAnB

nA+MnB
|αj−αk|2 . The corresponding

probability of identification therefore reads:

P (|α1〉, . . . , |αM〉) =
M∑

j=1

1

M

∏

k 6=j

(1− e
− nAnB

nA+MnB
|αj−αk|2) .

(4.142)

Let us note that for a single copy of an unknown state and a single copy of
reference states (nA = nB = nC = . . . = 1) the preliminary part of the setup
concentrating the input coherent states is not present and hence the setup is
much simpler and it is depicted on Fig. 4.11.

The unambiguous identification of M reference states described above can
be considered as a search in a quantum database composed of M elements,
i.e. M different though unknown coherent states |αj〉 that are encoded into
M modes of an electromagnetic field. We point out that we have only a single
copy of each of the states |αj〉 so one can not acquire a complete classical
knowledge about the state. This set of M states corresponds to a quantum
database. In addition we have the (M + 1)-st mode of the light field in the
state |α?〉. The search of the database corresponds to the task of matching
of two modes such that α? = αj. So we can say that the two modes are in
the same state without knowing what the state actually is.
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Figure 4.11: Unambiguous identification measurement setup identifying
among M coherent states.
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4.3.7 Recovery of coherent reference states after UI

In this section we examine the information that remains in the unmeasured
modes of our beam-splitter UI setups. In particular, we focus on a possibil-
ity of “recreating” the reference states after the unambiguous measurement.
This recovery process might seem to be prohibited by the rules of quantum
mechanics (due to irreversible disturbance of a quantum state by a measure-
ment). We show that in spite of the fact that the recovered reference states
are “degraded” (disturbed), nevertheless they can be used in the subsequent
round of the UI under the condition that new copy of an unknown state is
provided. This can be useful for creating a quantum database, which would
not be completely destroyed by the search performed on it. Instead, the data,
i.e. the reference states, would degrade gradually with their repeated use.

First, we shall show that the coherent reference states can not be “recre-
ated” without additional resources if the first unambiguous identification
yields an inconclusive outcome. Although, this may seem disappointing, we
show that the unmeasured states still can be used efficiently for the UI if the
same unknown state is expected. Next, we examine the situation of the first
UI producing a conclusive result known to us. In that case “diluted” refer-
ence states can be created, and they can be used for another independent
unambiguous identification.

Let us consider the simplest version of unambiguous identification of co-
herent states (M = 2, nA = nB = nC = 1). The beam-splitter setup for
this scenario is depicted in Fig. 4.10. The modes B and D are not entangled
with other modes, therefore their states do not depend on the measurement
performed by the two photodetectors. The states of the modes B, D are
given by Eqs. (4.121) and (4.122), where T1 is set to 1/2 (for details see
Section 4.3.6).

|out〉B = |
√

2

3
α1 +

√
1

6
α?〉B ;

|out〉D = |
√

1

6
α? +

√
2

3
α2〉D . (4.143)

Using beam-splitters, phase shifters and known coherent states we can pro-
duce out of the states satisfying Eq. (4.143) a coherent state of the form

∣∣∣∣∣a
(√

2

3
α1 +

√
1

6
α?

)
+ b

(√
1

6
α? +

√
2

3
α2

)
+ γ

〉
, (4.144)
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Figure 4.12: The beam-splitter setup designed for a subsequent unambiguous
identification of multiple copies of an unknown coherent state.

where a, b, γ ∈ C. Imagine we want to recover the first reference state.
Hence, we want the state from Eq. (4.144) to be |λα1〉. Even though we
know that either α? = α1, or α? = α2, a suitable choice of a, b for one of
these possibilities produces “junk” in the other case. Analogous reasoning
works for the second reference state. For the inconclusive result of the UI
measurement we do not know, which possibility took place, and thus the
reference states can not be recovered.

Repetition of UI for same unknown state

Although the unmeasured modes of the beam-splitter setup seem to be use-
less nevertheless they can be exploited in the UI of the same unknown state
|α?〉. Namely, we can feed them instead of the reference states into the
beam-splitter scheme shown in Fig. 4.10. The concatenation is illustrated in
Fig. 4.12. The transmittivity of the beamsplitter B2 (respectively, B3) can
be set so that its measured output is in a vacuum if α? = α1 (respectively, if
α? = α2). If we chose (for symmetry reasons) T1 = 1/2 then the transmit-
tivities T2, T3 should be set to T2 = 3/4, T3 = 1/4, respectively. This implies
that the photodetectors measure the states |(α? − α1)/

√
6〉, |(α2 − α?)/

√
6〉.

Thus, for both cases α? = α1, α? = α2 we can observe a photon in only one of
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the photodetectors and with the probability 1 − e−
1
6
|α1−α2|2 unambiguously

conclude which possibility took place. Hence, the probability 1− e−
1
6
|α1−α2|2

is a conditional UI probability after the first identification measurement re-
turned an inconclusive result. The overall probability of an unambiguous
identification for this two-round measurement is 1− e−

1
2
|α1−α2|2 . This is due

to the fact that the measurement fails only if both measurement rounds yield
an inconclusive outcome.

The two-round measurement is essentially the UI scheme for M = 2, nA =
2, nB = nC = 1, so we can compare its performance with the corresponding
beam-splitter scheme analyzed in Section 4.3.6 [see Eq. (4.127)]. Indeed, the
performance is the same, but the two round measurement has one possible
advantage. If the first round gives a conclusive result then we still have an
unmeasured copy of the unknown state (i.e. copy of |α1〉 or |α2〉) at our
disposal. This is a similar advantage as in the case of weak implementation
of the UI measurement discussed in Section 4.3.6.

Repetition of UI with different unknown state

As we illustrated in the beginning of Section 4.3.7 it is not possible to “recre-
ate” the reference states by linear optics after an inconclusive result of an
UI measurement is obtained. On the contrary, we will show that when a
conclusive result is registered then both reference states can be “recreated”.
The proposed process will not perfect, because the recreated reference states
will be a bit “diluted”. Nevertheless, these states can be used as reference
states for an UI with a different, independently prepared unknown state |β?〉
(either β? = α1 or β? = α2).

When the result α? = α1 is found in the first round of the UI, the un-

measured modes B,D are in states the |
√

3
2
α1〉B and |

√
1
6
α1 +

√
2
3
α2〉D,

respectively. Thus, we have the “concentrated” first reference state |
√

3
2
α1〉

in the mode B. Let us now examine whether the reference state |α2〉 can be
“recreated” out of the modes B and D. The obvious idea is to use the mode
B to shift the mode D via a beam-splitter so that the α1 part of the ampli-

tude in |
√

1
6
α1 +

√
2
3
α2〉D is canceled. This happens for the transmittivity of
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the beam-splitter equal to 9/10:

|
√

3

2
α1〉 ⊗ |

√
1

6
α1 +

√
2

3
α2〉 7→

7→ |
(√

27

20
+

√
1

15

)
α1 +

√
1

60
α2〉 ⊗ |

√
3

5
α2〉 . (4.145)

Hence, we know how to recover separately either the first or the second
reference state. If solely such a single state is used in the subsequent UI
measurement then the probability of success is bounded from above by 1/2,
because only one type of a reference state can be identified. Thus, we want
to find a setup, which extracts both types of reference states simultaneously
and allows for a subsequent round of the unambiguous identification of |β?〉.
Such a scheme is presented in Fig. 4.13a. The beam-splitter B1 splits the
“concentrated” first reference state into two parts. One part can be directly
used for the next round of the UI, the second part cancels the α1 contribution
in the amplitude of coherent state in mode D via the beam-splitter B2. If
we set the transmittivity of the beam-splitter B1 to be TR

1 , then the require-
ment of cancelation of the α1 contribution of the amplitude in the mode D
constrains the transmittivity of B2 to be TR

2 = (9 − 9TR
1 )/(10 − 9TR

1 ). The
corresponding “recreated” reference states then read

|
√

3

2
TR

1 α1〉, |
√

6− 6TR
1

10− 9TR
1

α2〉 . (4.146)

We want to use these two states instead of the reference states |α1〉, |α2〉 in
the next round of the UI. Both possible preparations |β?〉 = |α1〉, |β?〉 = |α2〉
will be equally likely, therefore we chose TR

1 = (7 − √13)/9 so that equally
diluted reference states

|
√

λ2α1〉 ; |
√

λ2α2〉 ; with λ2 ≡ 7−√13

6
, (4.147)

enter the next round of the UI. If a conclusive result α? = α2 is obtained
in the first round of the UI, then after exchanging the roles of the modes B
and D, analogous recovery setup (see Fig.4.13b) can be used to produce the
“diluted” reference states given by Eq. (4.147). Thus, for both conclusive
results from the first round of the UI, one type of the UI measurement using
the recovered reference states can be used in the second round. Actually, the
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Figure 4.13: The beam-splitter setups designed for the recovery of unmea-
sured modes from Fig. 4.10. In the case α? = α1 the setup a) is used, however
for α? = α2 the setup b) is used.
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Figure 4.14: The beam-splitter setup designed for a repetition of the UI
with different unknown state, which can be seen as a repeated search in a
quantum database. The gray beam-splitters in recovery steps are used if the
unknown state from previous round of the UI matches the second reference
state otherwise the black beamsplitters are used.
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beam-splitter setup from Fig. 4.10 can be used (see Fig. 4.14) if we take
into account that for our input states nA = 1, nB = nC = (7 − √

13)/6.
Upon making this substitution the performance of the setup is the same
as in Section 4.3.6, and all the formulas derived there remain valid. The
aforementioned setup succeeds in the UI with the probability given by Eq.
(4.127). However, the second round of the UI is possible only if the first
UI succeeds, which implies the following probability of the UI in the second
round

P (2)(|α1〉, |α2〉) = (1− e−
1
3
|α1−α2|2)(1− e

− 7−√13
2(10−√13)

|α1−α2|2) . (4.148)

It is interesting that the UI with nearly orthogonal reference states can be
done also in the second round with a probability of success approaching unity.

Let us now see, whether further rounds of the UI are still possible. The
first round of the UI can be seen as use of the beam-splitter setup from Fig.
4.10 with nA = nB = nC = 1 followed by the setup from Fig. 4.13 recovering
the reference states. In the second round we have used again the beam-
splitter setup from Fig. 4.10 this time with nA = 1, nB = nC = (7−√13)/6.
It turns out that we can perform infinitely many additional rounds of the
UI, where in each round the unknown state is independently chosen to be
either |α1〉 or |α2〉. It suffices to use the beam-splitter setup from Fig. 4.10
followed by the setup from Fig. 4.13 recovering the reference states in each
round of the UI. However, the transmittivities of the beam-splitters used in
those setups must be set as follows. Let us denote by

√
λk the factor by

which the reference states are suppressed at the beginning of the k-th round
(e.g. λ1 = 1). In k-th round of the UI we should set T1 = 1/2, T2 =
2λk/(1 + 2λk), T3 = 1/(1 + 2λk) in the scheme from Fig. 4.10 and

TR
1 = 1− 2λ2

k +
√

4λ4
k + (1 + 2λk)2

(1 + 2λk)2
;

TR
2 =

(1− T1)(1 + 2λk)
2

1 + (1− T1)(1 + 2λk)2
, (4.149)

in the scheme presented in Fig. 4.13. The suppression of the amplitude of
reference states is given by λk 7→ λk+1 = f(λk), where

f(x) =
(1 + 2x)2 − 2x2 −

√
4x4 + (1 + 2x)2

2(1 + 2x)
.

(4.150)
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Figure 4.15: The performance of the recovery setup. The probability of
identification P (|α1〉, |α2〉) as a function of the scalar product (given by |α1−
α2|) depicted for various numbers of measurement rounds. Starting from the
left the curves correspond to the probability of identification in the first,
20th, 40th, 60th, 80th round of the UI.

The probability of successfully performing the UI in the k-th round is

P (k)(|α1〉, |α2〉) = P (k−1)(|α1〉, |α2〉)(1− e
− λk

1+2λk
|α1−α2|2),

because the k-th round of the UI is possible only if all previous UIs suc-
ceeded11. The dependence of the probability of identification on the difference
of the amplitudes of the reference states and on the number of measurement
rounds is shown in Fig. 4.15.

Let us now discuss an alternative approach to the recovery of reference
states. Imagine that our task is to identify N independent unknown states
with reference states. Instead of recovering reference states after identifying
each of the unknown states we can first split the reference states into N parts
and then perform the identifications independently. We are going to illustrate
that even though we know value N ahead of time, the splitting strategy does
not outperform the strategy based on recovery of reference states.

The splitting strategy begins by distributing the information in the two
reference states into N copies of the states | 1√

N
α1〉, | 1√

N
α2〉. These two states

11We set P (0)(|α1〉, |α2〉) = 1.
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are then combined together with one of the unknown states and are unam-
biguously identified by the scheme for M = 2, nA = 1, nB = nC = 1/N . The
probability of a successful identification of the unknown state depends only
on the reference states, hence for each of the N UI measurements we have

P(|α1〉, |α2〉) = 1 − e−
1

N+2
|α1−α2|2 . The probability that all of them succeed

is therefore P
(N)
S (|α1〉, |α2〉) = (1 − e−

1
N+2

|α1−α2|2)N . On the other hand in
the scheme with the recovery of the reference states the N -th round can
succeed only if all the previous identification rounds were successful. This
means that the probability of success of the N -th round P (N)(|α1〉, |α2〉) is
the same as the probability that all the N rounds of the identification task
were successful. The difference between the performance of the recovery and
the splitting strategies for different N is depicted in Fig. 4.16.

The investigated problem of finding a procedure for N successful rounds
of the unambiguous identification can be modified in several ways exhibiting
the advantages of recovery or splitting strategies. For example, one may be
interested to find a procedure, such that at least in m ≤ N out of N rounds
we find an unambiguous conclusion. In such formulation of the problem
it is clear that there always exist m, for which the splitting strategy gives
better results than the described recovery strategy adopted for exactly m
successes. However, as we have shown if m = N , then the recovery procedure
outperforms the splitting strategy.

4.3.8 Influence of noise on reliability of UI setups

In this section we shall investigate how noise (uncertainty) in the state prepa-
ration affects the reliability of the measurement results. The UI setups we
have presented above are designed specifically for coherent states and ideally
they are 100% reliable, i.e. whenever we obtain a conclusive result Ei then
we are completely sure that the possibility xi (i.e., α? = αi) took place. How-
ever, it might be that the unknown and reference states are sent to us via a
noisy channel or simply that their preparation is noisy. We assume that this
disturbance has the form of a technical noise [48], and therefore the unknown
and the reference states are not pure coherent states |αi〉, but rather their
mixtures ωi:

ωi =
1

2πσ2

∫

C
dβe−

|β|2
2σ2 |αi + β〉〈αi + β| ; (4.151)

ρi(α) = (ωi)
⊗nA ⊗ (ω1)

⊗nB ⊗ (ω2)
⊗nC ⊗ . . . , (4.152)
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Figure 4.16: The difference between the performance of the recovery and
the splitting strategies for different number of identification rounds N as a
function of the scalar product (given by |α1 − α2|).

with σ defining the strength of the noise and α indicating the dependence on
the complex amplitudes αi. In such case conclusive results of our UI setups
will no longer be unambiguous. More precisely, there will be a certain prob-
ability P (xi|Ei) with which the obtained outcome Ei of the measurement is
the consequence of the possibility xi. This probability is called the reliability
of the outcome Ei. The corresponding mathematical definition reads:

R(Ei) = P (xi|Ei) =
ηiP (Ei|xi)∑M

j=1 ηjP (Ei|xj)
, (4.153)

where ηi is the a priori probability of the possibility xi and P (Ei|xj) is the
probability that the measurement of the system prepared in the possibility xj

will give a result Ei. Let us note that under the possibility xi we understand
all situations in which the unknown state is the same as the i-th reference
state. Thus xi stands for the whole set of situations, which differ by complex
amplitudes αk of the “centers” of the reference states ωk. How those “center
points” of all reference states are chosen in xi is described by the probability
distribution χ(α1, . . . , αM). The support of χ is Cm corresponding to an
infinite plane. Therefore a uniform probability distribution can not be defined



104 CHAPTER 4. UNAMBIGUOUS TASKS FOR STATES

on it. Nevertheless, we can express the reliability as:

R(Ei) =
ηi

∫
CM dαχ(α)Tr(Eiρi(α))∑M

j=1 ηj

∫
CM dαχ(α)Tr(Eiρj(α))

, (4.154)

where dα ≡ dα1 . . . dαM . In the limit σ → 0 states ωi become |αi〉〈αi|. Be-
cause of the no-error conditions (4.62), which are for coherent states satisfied
by our UI setups, only the i-th term of the sum in Eq. (4.153) survives. Thus,
without noise the reliability is equal to unity. For σ > 0 also other terms
in Eq. (4.153) will contribute and hence the reliability will be less than
one. Moreover, the precise value of R(Ei) will depend on the probability
distributions χ(α).

In the remaining part of this section we will investigate a scenario, which
might be called as the phase keying. We assume that the two reference
states (M = 2) have always opposite phases, i.e. if ω1 is centered around the
amplitude α then ω2 is centered around the amplitude −α. Values of α have
a Gaussian distribution centered around 0 (the vacuum) with a dispersion ξ,
so

χ(α1, α2) = δ(α1 + α2)
1

2πξ2
e−|α1|2/(2ξ2), i = 1, 2. (4.155)

In order to calculate the reliability we must first evaluate Tr[Eiρj(α)].
This means we have to derive the probabilities with which detectors D1, D2

click if “fuzzy” states ω?, ω1, ω2 are fed into the UI setup instead of pure
coherent states |α?〉, |α1〉, |α2〉. Our UI setup uses an additional mode D that
should be initially prepared in the vacuum. We assume that also this mode
is noisy and initially in a state ωi centered around 0 (the vacuum).

To present our calculations concisely, we first derive how the setup acts
on displaced coherent input states (e.g. |αi +β〉) and then we integrate those
partial results. Thus, for a single copy of the unknown and the reference
states we derive how the UI setup acts on states |α? + ν〉, |α1 + β〉, |α2 +
γ〉, |%〉 fed into the modes A,B, C, D (see Fig. 4.10) and finally we perform
integration over ν, β, γ, %.

For multiple copies of the unknown and the reference states we assume
that the noise is acting independently on each of the copies, i.e. we analyze
nB copies of the first reference state entering as states |α1 + β1〉, . . . , |α1 +
βnB

〉. The first part of the UI setup, which “concentrates” copies of the same
species, generates the state |√nBα1 + 1√

nB
(β1 + . . . + βnB

)〉 and similarly,
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the state |√nCα2 + 1√
nC

(γ1 + . . . + γnC
)〉 for the second reference state, and

|√nAα? + 1√
nA

(ν1 + . . . + νnA
)〉 for the unknown state. The beam splitter

transformation for coherent input states does not entangle outputs, thus we
can, in the same way as in Section 4.3.6, derive expressions for the states of
the modes that the photodetectors D1, D2 measure. Consequently, the final
states of the modes A and C read:

∣∣∣
√

nAnB

nA + 2nB

[
α? − α1 −

√
1

nA

% +
1

nA

ν − 1

nB

β

] 〉
A
≡ |µ1〉A ;

(4.156)
∣∣∣
√

nAnC

nA + 2nC

[
α2 − α? −

√
1

nA

%− 1

nA

ν +
1

nC

γ

] 〉
C
≡ |µ2〉C ,

where ν ≡ ∑nA

k=1 νk, β ≡ ∑nB

k=1 βk, γ ≡ ∑nC

k=1 γk. Now we have to eval-
uate the probability of the projection of these states |µ1〉A, |µ2〉C onto the
vacuum. Subsequently, we will integrate this partial result to obtain the
probability P (Dk|ρi(α)) that the photodetector Dk (k = 1, 2) does not click.
Probabilities P (Dk|ρi(α)) are related to Tr(Eiρj(α)) in the following way:

Tr(E1ρ1) = [1− P (D1|ρ1)].P (D2|ρ1) ;

Tr(E1ρ2) = [1− P (D1|ρ2)].P (D2|ρ2) ;

Tr(E2ρ1) = P (D1|ρ1).[1− P (D2|ρ1)] ;

Tr(E2ρ2) = P (D1|ρ2).[1− P (D2|ρ2)] , (4.157)

where the argument of ρi(α) is omitted for brevity. Finally, we obtain the
quantities Tr[Eiρj(α)] that we need for evaluating the reliability according
to Eq. (4.154).

Using the formula |〈0|µi〉|2 = e−|µi|2 for the modulus of the overlap of two
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coherent states we obtain:

P (D1|ρi(α)) =

∫

Cm

d%dγdν

(2πσ2)m
exp

[
−|%|

2 +
∑nA

k=1 |νk|2 +
∑nB

k=1 |γk|2
2σ2

−
nAnC

∣∣∣α2 − α? −
√

1
nA

%− 1
nA

ν + 1
nC

γ
∣∣∣
2

nA + 2nC

]
;

(4.158)

P (D2|ρi(α)) =

∫

Cn

d%dβdν

(2πσ2)n
exp

[
−|%|

2 +
∑nA

k=1 |νk|2 +
∑nB

k=1 |γk|2
2σ2

−
nAnB

∣∣∣α? − α1 −
√

1
nA

% + 1
nA

ν − 1
nB

β
∣∣∣
2

nA + 2nB

]
,

(4.159)

where m = nA + nC + 1, n = nA + nB + 1. The integrals in Eq. (4.158)
and (4.159) can be performed using the relations derived in Appendix B.2.
The results of the integration read:

P (D1|ρi(α)) =
1

1 + 2σ2
e
− 1

1+2σ2
nAnC

nA+2nC
|αi−α2|2 ; (4.160)

P (D2|ρi(α)) =
1

1 + 2σ2
e
− 1

1+2σ2
nAnB

nA+2nB
|αi−α1|2 , (4.161)

where we have used the formulas for the case xi, i.e. α? = αi. Consequently,
using these results in Eq. (4.157) we obtain:

Tr(E1ρ1) =
1 + 2σ2 − e

− 1
1+2σ2

nAnC
nA+2nC

|α1−α2|2

(1 + 2σ2)2
;

Tr(E1ρ2) =
2σ2

(1 + 2σ2)2
e
− 1

1+2σ2
nAnB

nA+2nB
|α1−α2|2 ;

Tr(E2ρ1) =
2σ2

(1 + 2σ2)2
e
− 1

1+2σ2
nAnC

nA+2nC
|α1−α2|2 ;

Tr(E2ρ2) =
1 + 2σ2 − e

− 1
1+2σ2

nAnB
nA+2nB

|α1−α2|2

(1 + 2σ2)2
.

(4.162)
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Figure 4.17: The reliability of the UI setup (M = 2, nA = nB = nC = 1)
as a function of the typical displacement ξ. Different curves correspond to
different values of σ i.e. to different fuzziness of the states. As is seen from
the figure all curves in the limit of large ξ are approaching the unity.

Now in order to obtain the reliability it remains to substitute Eqs. (4.155),
(4.162) into Eq. (4.154) and to perform the remaining integrals. Those inte-
grals can be performed in polar coordinates, where the angular dependence
is trivial and the radial part can be simplified with the help of a substitution
t = e−r2/2. After performing the integration we obtain the final result, which
can be, for nB = nC , written in the compact form:

R(E1) = R(E2) =
1 + θ

1 + 2θ
;

θ =
nA + 2nB

nAnB

(
σ

2ξ

)2

. (4.163)

Let us note that limσ→0 R(Ei) = 1 as it should be. Moreover, the reliability
depends only on the fuzziness σ of the states entering the UI setup, the
typical difference of the amplitudes of the reference states 2ξ, and the number
of copies that are available. If σ ¿ ξ, i.e. the fuzziness of the states, is much
smaller than the displacement used to encode the information, then θ → 0
and R(Ei) approaches the unity. More quantitative insight in the case of
a single copy of the unknown and the reference states is provided by Fig.
4.17. In order to see how the noise influences other relevant quantities we
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will calculate P, PE, PF , which are called the averaged probability of success,
the error, and the failure, respectively. Obviously, we either guess correctly,
or incorrectly, or do not guest at all (inconclusive result/failure), therefore
P + PE + PF = 1 must hold. It is useful to rewrite the definition of these
quantities in the following form:

P =
1

2

2∑
i=1

∫

C2

dαTr(Eiρi(α))χi(α) ;

PE =
1

2

∫

C2

dα(Tr(E2ρ1(α)) + Tr(E1ρ2(α)))χ1(α) ;

PF = 1− P − PE . (4.164)

Now it suffice to substitute Eqs. (4.162) into the above equations and to per-
form the integration in polar coordinates in the same way as in the previous
paragraph. The resulting expressions read:

P =
1

1 + 2σ2
(1− 1

1 + 2σ2 + 8nAnB

nA+2nB
ξ2

) ;

PE =
1

1 + 2σ2
(

2σ2

1 + 2σ2 + 8nAnB

nA+2nB
ξ2

) ; (4.165)

PF =
2σ2

1 + 2σ2
+

1− 2σ2

1 + 2σ2

1

1 + 2σ2 + 8nAnB

nA+2nB
ξ2

.

(4.166)

More quantitative insight is presented in Fig. 4.18, which for the fixed σ =
0.25 presents the behavior of the calculated quantities P, PE, PF as a function
of the typical displacement ξ. It is worth mentioning that for ξ → ∞ the
average probability of error goes to zero, but PF > 0, because the noise
causes inconclusive results by firing both detectors simultaneously.

4.3.9 Summary

Let me summarize the unambiguous identification (UI) part of the chapter.
In UI we are given a set of identical quantum systems prepared in pure states,
which are labeled as unknown and reference states. The promise is that one
type of reference state is the same as the unknown state and the task is to
find out unambiguously which one it is. After stating precise definition of
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Figure 4.18: The reliability and the average probability of success (P ), the
error (PE), and the failure (PF ) for the “phase keying” scenario (M = 2,
nA = nB = nC = 1) with σ = 0.25 as a function of the typical displacement
ξ .

the problem and review of previous work we present the general approach
to UI of two types of reference states. This approach is well suited for fi-
nite dimensional Hilbert spaces and it is based on reformulation of UI as
discrimination of two known mixed states. When the probability distribu-
tion governing the choice of each reference state is uniform and supported
on the whole Hilbert space H or on its subspace the problem can be solved
completely due to simple structure of corresponding mixed states. However,
my main focus was on the case where the set of possible reference states is
formed by coherent states of an electromagnetic field. The relevance of this
prior knowledge is illustrated in Section 4.3.5, where I show that the special-
ized measurement outperforms the universal unambiguous identification, i.e.
the UI measurements that can be applied for all pure states. The difference
between the measurements was quantified by the probability of identifica-
tion for particular choice of reference states [see Eqs.(4.113),(4.115)] and is
visualized by Figure 4.8. The interesting qualitative difference between the
specialized and the universal measurement is in the probability of success
for nearly orthogonal states. While our specialized measurement succeeds
almost always the universal measurement produces conclusive result at most
with probability 1/3. Moreover, our specialized measurement can be easily
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experimentally realized, because it consists of three beam splitters and two
photodetectors (see Figure 4.7). The setup was recently build and tested by
L. Bart̊ušková [49].

The beamsplitter setup was motivated by an intuitive reduction of the
unambiguous identification problem into specific ”distribution” task and an
unambiguous state comparison. As a next step the generalization of this
optical setup to situations with more copies of the unknown and the reference
states was presented in Section 4.3.6. Our approach was based on an idea
of the “concentration” of the same type of states into strong coherent states
that were subsequently identified by setups for the single-copy scenario. In
the UI task it is assumed that the particular choice of the reference states is
unknown to us, and only the probability distribution χ describing this choice
is known. Nevertheless, even without having χ it is possible to derive the
optimal choice of transmittivities in the beam-splitter setup we proposed for
two types of reference states and an equal number of copies of each of the
reference states (nB = nC). In that case the probability of identification for
the reference states |α1〉, |α2〉 reads:

P(|α1〉, |α2〉) = 1− e
− nAnB

nA+2nB
|α1−α2|2 . (4.167)

Under the condition that the experimental setup consists only of linear opti-
cal elements and photodetectors we also proved the optimality of the setup.
In the limit of nB = nC →∞ the two reference states become known. There-
fore, one needs to unambiguously discriminate the unknown state between
two known pure states. The probability of success of our setup in this case
coincides with the optimal value achieved by the Ivanovic-Dieks-Peres mea-
surement [4, 5, 6].

In Section 4.3.7 we addressed the question whether the coherent reference
states can be recreated after our UI measurement. We showed that the
reference states can be partially recovered only if the measurement yielded a
conclusive outcome. The recovered reference states can be used in the next
round of the UI if another unknown state is provided. This might be seen as
a repeated search in a quantum database, where the data, i.e. the reference
states, degrade with repeated use of the database.

Recently, a framework for transformations induced by linear optics on
coherent states was proposed by B. He and J. Bergou in Ref. [47]. These
authors illustrated their method on the three beam splitter setup proposed in
Section 4.3.5 and suggested that the reference states can be always perfectly
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recovered. However, in their case the reference states are known, whereas
in our case the complex amplitudes of all coherent states are not known in
advance.

Finally, in Section 4.3.8 we investigated how a particular type of noise
influence the reliability of the conclusions drawn by our UI setup. More pre-
cisely, we considered a communication scenario called the phase keying, with
two coherent reference states of equal amplitude, but the opposite phases.
We saw that the reliability of results, expressed by Eq. (4.163), depends
only on the ratio of the amplitudes of the noise and the signal. However, for
nonzero noise the unambiguity of the conclusions is lost.
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Chapter 5

Unambiguous tasks for
channels

The aim of quantum channels is to describe the overall effect of a temporal
evolution on the considered quantum system. A quantum channel prescribes
the final state to any possible input state, but it does not characterize how
the transformation is achieved. This is similar to having a black box eval-
uating function f without knowing how the calculation proceeds inside. In
this chapter we shall consider experiments in which the investigated quan-
tum channel is used just once. Our aim will be to distinguish among the
expected possibilities (i.e. expected channels) by a single run of the experi-
ment. In order to do that we shall control both the state preparation and the
final measurement surrounding the use of the investigated channel. General
experiment of this kind (see figure 5.1) uses also an ancillary system that
does not evolve, while the principal quantum system is exposed to the tested

Figure 5.1: Scheme of general experiment for distinguishing quantum chan-
nels by their single use.

113
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channel. Thus, the evolution of the compound system takes place in between
the preparation and the measurement part of the experiment, which should
be under our control. Class of such experiments is very broad, because the
Hilbert space of ancilla can have arbitrary dimension and we can indepen-
dently tune state preparation and the final measurement. Fortunately, many
of those experiments are completely equivalent. For example, one can show
that in general it suffices to consider pure state preparation and an ancilla
with at most the dimension of the principal quantum system. Taking this into
account some basic problems for quantum channels were studied. In partic-
ular, researchers investigated the minimum error discrimination for unitary
channels [50, 51] and for some other specific channels [52, 53, 54, 55, 56]. In
contrast to quantum states it was found that a finite number of uses of a
unitary channel makes it possible to discriminate perfectly among discrete
set of unitary channels, which are not distinguishable perfectly by a single
use. For general quantum channels partial results were obtained also for
the unambiguous discrimination. Wang and Ying [16] found the necessary
and sufficient conditions for unambiguous channel discrimination in terms
of Kraus operators, which characterize each channel. Chefles and Barnett
in [57] investigated unambiguous discrimination of unitary operators. Focus
on discrimination of unitary operators is naturally motivated by the area
of quantum computation. Algorithms that provide speed up with respect
to their classical counterparts are very often based on the use of coherent
quantum superpositions, which are not degraded only by unitary channels.
Many practically interesting problems (database search etc.) are theoreti-
cally formulated as an oracle identification problem. Here oracle is a black
box, whose internal operating mechanism defines the solution of the prob-
lem. Unfortunately, we can not solve the problem by directly looking into
the black box, instead we have to do it by testing the transformation that the
oracle introduces on its inputs. Usually we know which finite set of transfor-
mations the oracle may implement and we want to discover which of them
it actually is with as few uses (queries) of the oracle as possible. By conven-
tion the oracles in quantum computation are chosen to implement unitary
channels. For unambiguous discrimination of such channels from their single
use Chefles and Barnett proved the following statements: Unitary operators
{Uj}N

j=1 acting on a Hilbert space H are unambiguously distinguishable if and
only if they are linearly independent. Moreover, set of linearly independent
unitary operators can always be unambiguously discriminated using any en-
tangled probe state with maximum Schmidt rank d, the dimensionality of
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H. For a set of commuting unitary operators Uj any unambiguous discrim-
ination experiment involving ancilla (see figure 5.1) is completely equivalent
to an experiment without ancilla. The above two statements restrict the
number of commuting unitary operators that can be unambiguously discrim-
inated to d = dimH. Chefles and Barnett in [57] were most concerned with
the distinguishability of so called standard oracle operators, which are usually
considered as (reversible) quantum realizations of classical oracles. These are
unitary operators acting on two subsystems of the same dimension and mod-
ify the basis in the following way |i〉|j〉 7→ |i〉|j ⊕ f(i)〉, where f is an integer
valued function. The work of Chefles and Barnett laid foundations for un-
ambiguous discrimination of quantum oracles and also reviewed the related
previous work.

As we announced already in Chapter 3 for discussing experiments involv-
ing single use of the tested channel we will use framework of process positive
operator valued measure (PPOVM). This framework exploits a specific rep-
resentation of channels defined via Choi-Jamiolkowski isomorphism [58, 59].
According to the theorem a channel on D dimensional quantum system can
be represented by a positive operator acting on a bipartite quantum system
D ×D. In particular, a channel E is represented by an operator

ωE = (I ⊗ E)[Ψ+
D], (5.1)

where Ψ+
D = |Ψ+

D〉〈Ψ+
D| and |Ψ+

D〉 =
∑D

j=1 |j〉 ⊗ |j〉. Let us note that Ψ+
D

is not a projector, because it is not normalized and Tr(Ψ+
D) = D. The

operator 1
D

Ψ+
D is a one-dimensional projector onto the maximally entangled

state |ψ+〉 = 1√
D

∑
j |j〉 ⊗ |j〉 ∈ H ⊗H.

Process POVM is defined [27, 60] as a collection of positive operators
(effects) M1, . . . ,Mn such that

∑
j Mj = ξT ⊗ I for some state ξ of the D

dimensional system. An event that we can observe in the experiment consists
of a preparation of the test state % and an observation of the effect Ej in the
measurement E of the output state. Let us note that in the experiment we
are allowed to use an ancilla of arbitrary size, i.e. % and Ej are operators
defined on danc ×D-dimensional Hilbert space. The conditioned probability
to observe an event consisting of the state preparation % and the observation
of an effect Ej providing that channel E is tested equals

p(%,Ej|E) = Tr (Ej(I ⊗ E)[%]) . (5.2)

Using the Choi-Jamiokowski relation % = (R%⊗I)[Ψ+
D], where R% : L(H) →

L(Hanc) is a completely positive map, and the duality relation Tr(Y F [X]) =
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Tr(F∗[Y ]X) determining the dual channel F∗ we can write

p(%,Ej|E) = Tr((R∗
% ⊗ I)[Ej](I ⊗ E)[Ψ+

D])

= Tr(Mj ωE) , (5.3)

where Mj is an element of PPOVM. By definition Mj is positive and
∑

j Mj =

(R∗
%⊗I)[I] = ξT⊗I, where ξ = tranc[%]. Thanks to linearity of Eqs. (5.2),(5.3)

the derivation of the PPOVM elements remains valid also for experiments in
which the test state %k and the measurement {E(k)

j } are together randomly
chosen according to an ensemble % =

∑
k pk%k. Thus, any conceivable ex-

periment in which the channel is used once can be formalized as a PPOVM
and the converse also holds [27], i.e. any PPOVM can be experimentally
implemented. Let us note that for a given PPOVM, i.e. a set of positive op-
erators M1, . . . , Mn such that

∑
x Mx = %T ⊗ ID there exists many different

experiments with different choices of test states and POVMs.

Ancilla-free test state

Consider a PPOVM such that Mj = %T ⊗ Fj for all j. Since the identity

Tr(E [%]Fj) = Tr((I ⊗ E)[Ψ+
D](%T ⊗ Fj)) = Tr(ωEMj)

holds for all qudit channels E and all qudit operators %, F , it follows that
this type of PPOVM can be realized by using a single ancilla-free test state
% and performing the measurement described by POVM elements Fj.

Maximally entangled probe

On the other hand, let us consider that an unknown qudit channel is probed
by a (normalized) maximally entangled state |ψ+〉 = 1√

D

∑
j |j〉⊗|j〉 ∈ H⊗H.

In this case the mapping Rψ+ = 1
D
I, i.e. |ψ+〉〈ψ+| = 1

D
Ψ+

D. That is, M =
(R∗

ψ+
⊗ I)[F ] = 1

D
F , where F is a two-qudit effect. Considering a POVM

consisting of effects F1, . . . , Fn the corresponding PPOVM is composed of
positive operators Mj = 1

D
Fj.

In the following we shall apply the PPOVM framework to unambiguous
tasks for quantum channels. We will first summarize the results on unambigu-
ous discrimination of a pair of general channels and then restrict ourselves
to unitary channels.
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5.1 Unambiguous discrimination of two chan-

nels

PPOVM for unambiguous discrimination of two channels should consist of
three elements {M0,M1,M2}. We associate observation of result i with use
of channel Ei and declare outcome 0 as inconclusive. Unambiguity of mea-
surement outcomes requires following two equations to be satisfied

Tr(M1ω2) = 0, T r(M2ω1) = 0. (5.4)

The optimal measurement should maximize the probability of success

Psucc = η1Tr(ω1M1) + η2Tr(ω2M2), (5.5)

while preserving positivity of PPOVM elements Mi and normalization M0 +
M1+M2 = ξT⊗I with ξ being a state of the principal quantum system. Thus,
the problem is similar to the unambiguous discrimination of states except for
the normalization of the operator measure. This normalization ξ provides ad-
ditional freedom, which complicates the optimization. Nevertheless, some ba-
sic features of the problem remain unchanged. For example two mixed states
can be unambiguously discriminated if and only if they have distinct sup-
ports. The same holds also for channels i.e. channels E1, E2 can be unambigu-
ously distinguished by a single use of the channel if and only if their process
states ωi = (I ⊗Ei)[Ψ

+
D] have distinct supports. This can be easily seen after

denoting by Π1, Π2 the projectors onto the supports of ω1, ω2, respectively.
If Π1 = Π2 then Eq. (5.4) implies 0 = Tr(MiΠ3−i) = Tr(MiΠi) and conse-
quently Psucc = 0 i.e. the condition on supports is necessary. The sufficiency
of the condition is proved by considering the PPOVM M1 = 1

2D
(I − Π2),

M2 = 1
2D

(I −Π1), M0 = 1
D

I −M1−M2, which can be seen as an experiment
with maximally entangled state |ψ+〉. Let us stress that this PPOVM is not
always optimal, but it succeeds with non-zero probability due to Π1 ≤ Π2,
Π2 ≤ Π1 not holding simultaneously. The above condition judging the pos-
sibility of unambiguous channel discrimination via the supports of ω1, ω2 is
an alternative to the condition found by Wang and Ying [16] and in some
cases it may be more easily checked. Similarly as for unambiguous discrimi-
nation of states also for channels single channel detection measurements are
optimal for very unbalanced prior probabilities. This, as we will see later,
holds for a pair of unitary channels and seems to be a very plausible conjec-
ture also for arbitrary two channels. For example, experiments with channels
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that contract everything into a fixed state are equivalent to experiments for
state discrimination, because the state of the system that was affected by the
channel is factorized from the potentially used ancilla. Hence, an attempt
to unambiguously discriminate the possible final states for very unbalanced
prior probabilities is an unambiguous state discrimination problem for which
single state detection measurement is optimal.

In the language of PPOVM unambiguous detection of the channel E1

within the set {E1, E2} corresponds to M2 = O. In this case only the no-
error condition Tr(M1ω2) = 0 applies and the optimal probability of success
contains just a single term Psucc = η1Tr(M1ω1).

Let us now return to a general case assuming arbitrary prior probabilities
η1, η2 = 1−η1. In the following we present an upper bound on the probability
of success proposed by Ziman et.al. [23]. This bound is an analog of the so
called ”Fidelity bound” known for the unambiguous discrimination of two
mixed states (see Section 4.1 or for instance [61]).

Proposition 1 Let E1, E2 be channels (i.e. completely positive trace preserv-
ing linear maps) and η1, η2 be their prior probabilities. Then

Psucc ≤ 1− 2
√

η1η2 min
ξ

Tr|√ω1(ξ
T ⊗ I)

√
ω2| , (5.6)

where ωj = (I ⊗ Ej)[Ψ
+
D].

Proof 3 Proving the above proposition is equivalent to showing

Pfail ≥ 2
√

η1η2 min
ξ

Tr|√ω1(ξ
T ⊗ I)

√
ω2| , (5.7)

because probability of failure equals to 1 − Psucc. We set a = η1Tr(M0ω1),
b = η2Tr(M0ω2) and since for all numbers a2 + 2ab + b2 ≥ 4ab holds we get

(Pfail)
2 = (a + b)2 ≥ 4η1η2Tr(M0Ω1)Tr(M0ω2) . (5.8)

Using the Cauchy-Schwartz inequality for arbitrary unitary operator U we
obtain

Tr(M0ω1)Tr(M0ω2) = Tr(U
√

ω1

√
M0

√
M0

√
ω1U

†)×
× Tr(

√
ω2

√
M0

√
M0

√
ω2)

≥ (Tr(U
√

ω1M0

√
ω2))

2 .
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By definition M0 = ξT ⊗ I −M1 −M2. Due to no-error conditions ω1M2 =
M1ω2 = O holds and it follows that

√
ω1M0

√
ω2 =

√
ω1(ξ

T ⊗ I)
√

ω2. Thus,

pfailure ≥ 2
√

η1η2|Tr(U
√

ω1(ξ
T ⊗ I)

√
ω2)| . (5.9)

Using the identity supU |Tr(XU)| = tr|X| holding for all operators X the
inequality reads

pfailure ≥ 2
√

η1η2tr|√ω1(ξ
T ⊗ I)

√
ω2| , (5.10)

which proves the proposition after the optimization over the PPOVM nor-
malization is taken into account.

The function F (ω1, ω2) = minξ tr|√ω1(ξ ⊗ I)
√

ω2| is called completely
bounded process fidelity in analogy with the completely bounded norm || · ||cb.

5.2 Unambiguous discrimination of two uni-

tary channels

Unitary channels are associated with Choi-Jamiokowski operators propor-
tional to one-dimensional projectors. In particular, EU = U ·U † is represented
by ωU = D|ψU〉〈ψU |, where |ψU〉 = (I ⊗ U)|ψ+〉. Given a pair of unitary
channels U, V , then the joint support of ωU , ωV specifies a two-dimensional
subspace Q of H⊗H, which is relevant for discrimination.

Since supports of ωU and ωV are different, two unitaries can be always
unambiguously distinguished. Let us denote by Q a projector onto the linear
subspace Q spanned by vectors |ψU〉, |ψV 〉. The unambiguous no-error con-
ditions require that on the relevant subspace Q the operators MU ,MV are
rank-one and take the form

MQ
U = cU(Q− |ψV 〉〈ψV |) , (5.11)

MQ
V = cV (Q− |ψU〉〈ψU |) . (5.12)

In addition, MU + MV ≤ ξT ⊗ I for some state ξ. The optimal success
probability reads

Psucc = max
PPOVM

(ηUTr(MUωU) + ηV Tr(MV ωV ))

= max
PPOVM

(
ηUTr(MQ

U ωU) + ηV Tr(MQ
V ωV )

)

= max
ϕ

max
POVM

(ηU〈ϕU |FU |ϕU〉+ ηV 〈ϕV |FV |ϕV 〉) .
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Here we used the fact that PPOVM can be always implemented using a pure
test state (see [27]). This test state is associated with a suitable vector |ϕ〉 =
(A⊗ I)|Ψ+

D〉 leading to MU = (A†⊗ I)FU(A⊗ I), MV = (A†⊗ I)FV (A⊗ I),
where effects FU , FV represent the conclusive outcomes of the performed
POVM, i.e. FU + FV ≤ I ⊗ I. We have used the notation |ϕU〉 = (I ⊗U)|ϕ〉
and |ϕV 〉 = (I ⊗ V )|ϕ〉.

For a fixed test state |ϕ〉〈ϕ| the POVM maximizing the success probability
ηU〈ϕU |FU |ϕU〉+ ηV 〈ϕV |FV |ϕV 〉 is known from the problem of unambiguous
discrimination of two pure states |ϕU〉, |ϕV 〉 (see Section 4.1.1). Without
loss of generality we can assume ηU ≥ ηV . In such case the optimal POVM
consists of effects

FU = min





1−
√

ηV

ηU
|〈ϕU |ϕV 〉|

1− |〈ϕU |ϕV 〉|2 , 1



 (Qϕ − |ϕV 〉〈ϕV |) ,

FV = max





1−
√

ηU

ηV
|〈ϕU |ϕV 〉|

1− |〈ϕU |ϕV 〉|2 , 0



 (Qϕ − |ϕU〉〈ϕU |) ,

F0 = I − FU − FV ,

where Qϕ is a projector onto the subspace spanned by vectors |ϕU〉, |ϕV 〉.
The success probability optimized also over choices of test state |ϕ〉 reads

Psucc =





1− 2
√

ηUηV F (U, V ) if F (U, V ) ≤
√

ηV

ηU
≤ 1

ηU(1− F (U, V )2) if F (U, V ) ≥
√

ηV

ηU
≤ 1

, (5.13)

where we denoted F (U, V ) = minϕ |〈ϕU |ϕV 〉|. As we will see F (U, V ) is
the completely bounded process fidelity from the previous section, which for
unitaries turns out be

F (U, V ) = min
ξ∈SP(H)

|Tr(ξU †V )|. (5.14)

To see this we first consider PPOVM corresponding to experiments with
pure test state % = |ϕ〉〈ϕ|. Any unit vector |ϕ〉 can be expressed as |ϕ〉 =√

D(A⊗ I)|ψ+〉, thus |ϕ〉〈ϕ| = (Rϕ ⊗ I)[Ψ+
D] = (A⊗ I)Ψ+

D(A† ⊗ I) and the
normalization requirement Tr(|ϕ〉〈ϕ|) = 1 corresponds to Tr(A†A) = 1. The
test state |ϕ〉 fixes the normalization of the related PPOVM to be ξT ⊗ I =



5.2. DISCRIMINATION OF TWO UNITARY CHANNELS 121

∑
j Mj = (R∗

ϕ ⊗ I)[I] = A†A ⊗ I i.e. A†A = ξT . The minimum overlap of
the final states |ϕU〉, |ϕV 〉 reads

min
ϕ
|〈ϕU |ϕV 〉| = D min

A:Tr(A†A)=1
|〈(A⊗ U)ψ+|(A⊗ V )ψ+〉|

= min
A
|Tr((A†A)T U †V )|

= min
ξ∈S(H)

|Tr(ξU †V )| , (5.15)

where we used the explicit form of state |ψ+〉 = 1√
D

∑
j |j〉 ⊗ |j〉.

As a second step we evaluate the completely bounded process fidelity
according to its definition from the previous section. For a pair of unitary
channels U , V we have

√
ωU =

√
D|ψU〉〈ψU |, √ωV =

√
D|ψV 〉〈ψV | and using

the formula Tr|X| = Tr
√

X†X the required expression follows:

F (U, V ) ≡ min
ξ

Tr|√ωU(ξT ⊗ I)
√

ωV |
= D Tr(|ψU〉〈ψU |) min

ξ
|〈ψU |(ξT ⊗ I)ψV 〉| (5.16)

= min
ξ
|Tr(ξU †V )|

From equations (5.13), (5.16) we see that the upper bound from Proposition

1 is saturated for F (U, V ) ≤
√

ηV

ηU
. However, for F (U, V ) ≥

√
ηV

ηU
the optimal

probability of success Psucc = ηU(1 − F (U, V )2) is smaller. We see that this
bound is not achievable in general. In fact, the existence of the PPOVM
giving the bound is not guaranteed in its derivation.

Let us now investigate equation (5.14). The quantity on the right hand
side was also analyzed in the study of perfect discrimination of unitary chan-
nels [50, 51] and we will repeat the analysis to illustrate its geometrical
meaning. Let us denote by {φk} the eigenvectors of U †V associated with
eigenvalues eiθk . Then

F (U, V ) = min
ξ∈SP(H)

|
∑

k

eiθk〈φk|ξ|φk〉| (5.17)

The number on the right hand side is a convex combination of complex square
roots of unity. Thus, it can be visualized as an element of the convex hull
of points (eigenvalues of U †V ) on the unit circle of the complex plane. Our
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Figure 5.2: Geometrical interpretation of completely bounded process fidelity
for two unitary channels.

aim is to find the complex number within this convex hull which is closest to
zero. In particular, if 0 is not contained in the convex hull, then

F (U, V ) =
1

2
min
k,l
|eiθk + eiθl | , (5.18)

which means (see figure 5.2) that state ξ minimizing the expression has only
two nonanishing diagonal entries (equal to 1/2) in its matrix with respect
to orthonormal basis {φk}. The minimum in the Eq.(5.17) depends only on
the diagonal entries of ξ, thus we can always choose optimal ξ to be a pure
state. That is, no ancilla is needed in order to realize an optimal experiment
unambiguously discriminating two unitaries.

Since for two-dimensional Hilbert space the unitary operators have only
two eigenvalues, the minimalization is trivial [50] and

F (U, V ) =
1

2
|eiθk + eiθl| = 1

2
|Tr(U †V )| . (5.19)

Hence in this case the orthogonality in the Hilbert-Schmidt sense is necessary
and sufficient for perfect discrimination of EU and EV . Moreover, the maxi-
mally entangled state (for which ξ = 1

2
I) is a universal test state, because it

optimizes unambiguous discrimination of any two unitary channels.
Of course, the measurements depend on the particular task and the uni-

taries. Unfortunately, these properties do not hold in the higher dimensions.
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For example, CNOT and SWAP gate can be perfectly discriminated even
without being orthogonal. In this particular case also the maximally entan-
gled test state is not very usable.

5.3 Unambiguous comparison of unitary chan-

nels

Our goal in this section is to investigate a comparison of quantum devices
implementing unknown unitary channels. Such universal comparator of uni-
tary channels can be of use, for instance, in the calibration and testing of the
quality of elementary quantum gates.

Quantum channels are tested in two steps. First we prepare a so-called
test state and apply the channel. After that the output state is measured.
Therefore, it seems natural to compare a pair of channels by comparing the
states they produce out of the same initial state. Indeed state comparison
is closely related to channel comparison, but there are also important differ-
ences concerning the optimal strategies as we shall see later. The first who
considered unambigous comparison of unitary channels were Andersson, Jex,
and Barnett [62]. They proposed several strategies and developed also their
generalizations for comparing more than two unitaries. However, they did
not investigate the optimality of the strategies, which is our aim here. In the
following we reformulate the problem in the PPOVM framework and show
existence of a solution. Consequently, the optimal solution shall be described
together with its uniqueness.

5.3.1 Formulation of the problem

Consider we are given two black boxes implementing unknown unitary chan-
nels EU and EV on qudit, i.e. d-dimensional quantum system. Our task is to
unambiguously decide whether the black boxes perform the same unknown
unitary channel, or not. More formally, whether a process implemented on
D = d × d dimensional quantum system by the pair of devices is described
by a channel EU ⊗EV with U 6= V , or by a channel EU ⊗EU . As in any com-
parison problem we implicitly assume that the probability that the channels
are the same is nonzero. Otherwise the problem would be senseless.

Let us note that unlike preparators (represented by states) the processes
(associated with channels) can be used sequentially. In general, this is an
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Figure 5.3: Experiment for comparison of two unitary channels EU , EV .

important difference between the usage of preparators and processes provid-
ing us with a resource of a potential use. However, it does not give us any
advantage in the case of the considered comparison problem. In particular,
one cannot distinguish whether the product of two unknown unitary chan-
nels is EU ◦ EV (for U 6= V ), or EU ◦ EU , because for any unitary operator W
there exist unitary operators U, V 6= W such that W 2 = UV .

The experimental procedure for the comparison is illustrated in figure
5.3. Using each of the quantum boxes at most once the experiment will end
by a measurement, whose outcome uniquely determines our conclusion. In
particular, the experiment consists of three steps. At first, we prepare a so-
called test state % on Hanc⊗Hd⊗Hd, where Hanc is the Hilbert space of some
ancilliary system. After that black boxes are applied and a measurement F on
the whole system including the ancilla is performed. Measurement outcomes
are associated with effects Fsame, Fdiff , F0 forming a three-valued POVM, i.e.

O ≤ Fsame, Fdiff , F0 ≤ I ; F0 + Fsame + Fdiff = I .

As in any other unambiguous task the inconclusive outcome F0 is needed in
order to make the conclusive outcomes Fsame, Fdiff unambiguous. In fact, we
shall see explicitly that F0 6= O. An outcome x ∈ {same, diff, 0} is observed
with the probability

px(U ⊗ V ) = Tr(Fx(Ianc ⊗ EU ⊗ EV )[%]) , (5.20)

where EU [·] = U ·U †, EV [·] = V ·V † are unitary channels implemented by the
black boxes.

Our goal is to characterize all possible experiments (determined by pairs
%, F ) performing the unambiguous comparison of unitary channels and iden-
tify the optimal strategy. The figure of merit for the optimization will be
specified in details later.
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5.3.2 Requirements on unambiguous comparators

Translating the comparison problem into PPOVM framework we set D = d2

and associate the two black boxes acting on d-dimensional systems with
operators

ωU⊗U = (ID ⊗ U ⊗ U)Ψ+
D(ID ⊗ U † ⊗ U †) , (5.21)

ωU⊗V = (ID ⊗ U ⊗ V )Ψ+
D(ID ⊗ U † ⊗ V †) , (5.22)

where Ψ+
D = |Ψ+

D〉〈Ψ+
D| and |Ψ+

D〉1234 = |Ψ+
d 〉13 ⊗ |Ψ+

d 〉24 ∈ H⊗4
d with |Ψ+

d 〉 =∑d
j=1 |j〉 ⊗ |j〉. Operators Msame,Mdiff ,M0 defining the PPOVM have to

satisfy following no-error conditions ensuring the unambiguity of the corre-
sponding conclusion:

pdiff(U ⊗ U) = Tr(ωU⊗UMdiff) = 0

psame(U ⊗ V ) = Tr(ωU⊗V Msame) = 0

for all U, V ∈ U(d), where U(d) denotes the group of unitary operators on
d-dimensional Hilbert space.

Defining average channels as

A[X] =

∫

U(d)

dU UXU † , (5.23)

T [Y ] =

∫

U(d)

dU (U ⊗ U)Y (U † ⊗ U †) , (5.24)

the above conditions can be equivalently rewritten as

0 = Tr((I12 ⊗ T34)[Ψ
+
D]Mdiff) , (5.25)

0 = Tr((I12 ⊗A3 ⊗A4)[Ψ
+
D]Msame) , (5.26)

because all the relevant operators are positive. The actions of the twirling
channel T and the average channel A are derived in Appendix C. In partic-
ular,

A[X] = Tr(X)
1

d
Id , (5.27)

T [Y ] =
Tr(Y P sym)

dsym

P sym +
Tr(Y P asym)

dasym

P asym , (5.28)
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where P sym, P asym are projectors onto symmetric and antisymmetric sub-
space of Hd ⊗ Hd, respectively. Dimensions of these subspaces are denoted
as dsym, dasym and read

dsym = Tr(P sym) = d(d + 1)/2

dasym = Tr(P asym) = d(d− 1)/2.

(5.29)

Let us note that P sym = 1
2
(I +Swap), P asym = 1

2
(I−Swap), where the swap

operator acts as Swap|ψ〉 ⊗ |ϕ〉 = |ϕ〉 ⊗ |ψ〉 for all ψ, ϕ ∈ Hd. Using these
expressions we obtain

(I12 ⊗A3 ⊗A4)[Ψ
+
D] =

1

d2
I⊗4
d (5.30)

and since

T [|jm〉〈kn|] =
1

dsym

〈kn|P sym|jm〉 P sym +
1

dasym

〈kn|P asym|jm〉 P asym

=
δjkδmn + δjnδmk

2dsym

P sym +
δjkδmn − δjnδmk

2dasym

P asym

we have

ωT = (I12 ⊗ T34)[(Ψ
+
d )13 ⊗ (Ψ+

d )24]

=
∑

j,k,m,n

|jm〉12〈kn| ⊗ T34[|jm〉34〈kn|]

=
1

2dsym

∑
j,m

[
|jm〉〈jm|+ |jm〉〈mj|

]
⊗ P sym

+
1

2dasym

∑
j,m

[|jm〉〈jm| − |jm〉〈mj|]⊗ P asym

=
1

4dsym

∑
j,m

[(|jm〉+ |mj〉)(〈jm|+ 〈mj|)]⊗ P sym

+
1

4dasym

∑
j,m

[(|jm〉 − |mj〉)(〈jm| − 〈mj|)]⊗ P asym

=
1

dsym

P sym ⊗ P sym +
1

dasym

P asym ⊗ P asym .
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Putting all formulas together the conditions in Eqs.(5.25),(5.26) take the
form

0 = Tr(ωτMdiff) , (5.31)

0 =
1

d2
Tr(I⊗4

d Msame) = Tr(Msame) . (5.32)

Since Msame,Mdiff are positive operators it follows that Msame = O and Mdiff

has support in the orthocomplement of ωτ . Consequently, we can unambigu-
ously conclude only that the unitary channels are different. We can formulate
the following proposition.

Proposition 2 If a PPOVM Msame,Mdiff ,M0 describes an unambiguous com-
parison of arbitrary unitary channels, then necessarily

suppMdiff ⊥ suppωT ; Msame = O ;

M0 = ξT ⊗ ID −Mdiff , (5.33)

for some state ξ on HD ≡ Hd ⊗Hd.

5.3.3 Optimal unambiguous comparator

Following the previous section as a figure of merit for unambiguous compara-
tors of unitary channels we shall use the average conditioned probability of
revealing their difference

pdiff =

∫

U(d)×U(d)

dUdV pdiff(U ⊗ V )

= Tr((I12 ⊗A3 ⊗A4)[Ψ
+
D]Mdiff)

=
1

d2
Tr(Mdiff) . (5.34)

The overall average success probability Psucc equals (1 − ηsame)pdiff , where
ηsame 6= 0 is the prior probability for channels being the same. This prior is
independent of the particular PPOVM {Mdiff ,M0} and therefore we shall use
only the conditional average probability to evaluate the quality of the unam-
biguous comparison strategy. Hence, our task is to maximize the conditional
success probability psuccess ≡ pdiff by finding a positive operator Mdiff defined
on HD ⊗ HD together with a state ξ on HD such that also the operator
M0 = ξT ⊗ ID −Mdiff is positive. Before specifying the optimal solution let
us prove the following upper bound on the (conditional) success probability.
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Theorem 4 If a process POVM consisting of positive operators Mdiff ,M0

with normalization Mdiff+M0 = ξT⊗ID unambiguously compares an arbitrary
pair of unitary channels, then

psuccess ≤
d + 1

2d
. (5.35)

Proof 4 The validity of the no-error condition Tr(ωT Mdiff) = 0 implies that
supports of Mdiff and ωT are orthogonal. Let us denote by |s1〉, . . . , |sdsym〉,
|a1〉, . . . , |adasym〉 the vectors forming orthonormal bases of symmetric and
antisymmetric subspaces of Hd⊗Hd, respectively. Then supp ωT = span{|sj⊗
sk〉, |am⊗a.n〉}, where j, k = 1, . . . , dsym and m,n = 1, . . . , dasym, and because
of the mentioned orthogonality

suppMdiff ⊂ span{|sj ⊗ an〉, |am ⊗ sk〉} . (5.36)

It follows that in a spectral form

Mdiff =
∑

α

λα|φα〉〈φα| , (5.37)

where 0 ≤ λα ≤ 1 and

|φα〉 =
∑
nj

cα
nj|an ⊗ sj〉+ dα

jn|sj ⊗ an〉 . (5.38)

Consequently,

Mdiff =
∑

n

|an〉〈an| ⊗ An +
∑

n

Bn ⊗ |an〉〈an|+ R ,
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with

An =
∑

α

λα

∑

jl

cα
njc

α
nl|sj〉〈sl| ;

Bn =
∑

α

λα

∑

jl

dα
njd

α
nl|sj〉〈sl| ;

R =
∑

α

λα

[ ∑

m6=n,j,l

cα
mj cα

nl|am ⊗ sj〉〈an ⊗ sl|+

+
∑

m6=n,j,l

dα
jm dα

ln|sj ⊗ am〉〈sl ⊗ an|+

+
∑

m,n,j,l

cα
mj dα

ln|am ⊗ sj〉〈sl ⊗ an|+

+
∑

m,n,j,l

dα
jm cα

nl|sj ⊗ am〉〈an ⊗ sl|
]

.

Since Tr(R) = 0 we get for the average success probability

psuccess =
1

d2

dasym∑
n=1

(Tr(An) + Tr(Bn)) . (5.39)

The operators An, Bn have the form of positive sum of one-dimensional pro-
jectors, hence they are positive.

Let us evaluate the mean value of operator M0 = ξT ⊗ I −Mdiff in a pure
state associated with the vector |sj⊗an〉. Due to the required positivity of M0

we get the inequality

0 ≤ 〈sj ⊗ an|M0|sj ⊗ an〉 = 〈sj|ξT −Bn|sj〉 . (5.40)

Similarly, also the inequality

0 ≤ 〈an ⊗ sj|M0|an ⊗ sj〉
≤ 〈an|ξT |an〉 − 〈sj|An|sj〉 (5.41)

holds. These two inequalities can be used to bound the trace of the density
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operator ξT as follows

Tr(ξT ) =
∑

n

〈an|ξT |an〉+
∑

j

〈sj|ξT |sj〉

≥
∑

n

〈sk|An|sk〉+
∑

j

〈sj|Bm|sj〉

≥ 〈sk|
∑

n

An|sk〉+ Tr(Bm) , (5.42)

where we used the fact that by definition operators Bm have support only on
the symmetric subspace. The inequality holds for all choices of k and m.
Moreover, since Tr(ξT ) = 1 and Bm is positive, i.e. Tr(Bm) ≥ 0, we obtain
that also

〈sk|
∑

n

An|sk〉 ≤ 1 . (5.43)

for all k. Using these inequalities the success probability can be upper bounded
as follows

psuccess =
1

d2

(
dsym∑
j=1

〈sj|
dasym∑
n=1

An|sj〉+

dasym∑
m=1

Tr(Bm)

)

=
1

d2

[
dasym∑
m=1

(
〈sm|

dasym∑
n=1

An|sm〉+ Tr(Bm)

)
+

+

dsym∑

j=dasym+1

〈sj|
dasym∑
n=1

An|sj〉



≤ 1

d2
(dasym + d) =

dsym

d2
=

d + 1

2d
, (5.44)

which proves the theorem.

Antisymmetric test states

In what follows we shall design a process POVM saturating the upper bound
on the success probability. In particular, for operators

Mdiff = %T ⊗ P sym , M0 = %T ⊗ P asym . (5.45)
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the success probability equals

psuccess =
1

d2
Tr(Mdiff) =

1

d2
Tr(%T ⊗ P sym) =

dsym

d2
, (5.46)

hence the upper bound is saturated. Let us note that the state % is not
arbitrary, because the support of Mdiff must be orthogonal to support of ωT
(see Eq.(5.36)). It implies that the state % has support only on antisymmetric
subspace. We shall call such states antisymmetric. Similarly, if the support
of a state is only in symmetric subspace we denote it as symmetric state.

The form of PPOVM in Eq. (5.45) suggests that one possible experimen-
tal realization consists of the folowing steps: i) prepare a two-qudit antisym-
metric state %; ii) insert each qudit into different black box; iii) measure a
two-valued observable described by POVM Fdiff = P sym and F0 = P asym,
which identifies the exchange symmetry of the joint state of the two-qudit
system.

The test state % is antisymmetric. If U = V the action of the channels
preserves the symmetry, i.e. the output state remains antisymmetric and in
such case F0 must be observed. For U 6= V the measurement outcome cannot
be predicted with certainty, so both outcomes Fdiff , F0 have nonvanishing
probability of occurence. However, if an outcome Fdiff is observed, we can
unambiguously conclude that U and V are different.

Symmetric test states

Alternatively, we can consider a process POVM

Mdiff = %T ⊗ P asym , M0 = %T ⊗ P sym (5.47)

satisfying all the constraints providing % has support in the symmetric sub-
space. For this choice the success probability reads

psuccess = Tr(%T ⊗ P asym) =
dasym

d2
=

d− 1

2d
, (5.48)

which is not optimal. Such PPOVM describes an experiment in which a
”symmetric“ test state is used. The same measurement is carried out as in
the antisymmetric case, but the role of conclusive and inconclusive results is
exchanged, i.e. Fdiff = P asym and F0 = P sym.

As we have mentioned at the beginning of this section one possibility
how to tackle the problem of unambiguous comparison of unitary channels
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is to adopt the universal comparison machines for states. Consider a pair
of unitary channels applied on independent systems initially prepared in the
same state. If U = V , then the resulting states are still described by the
same state. However, if U 6= V , then the output states can be different.
That is the state comparator can be used to find out whether the output
states are different, which means that the unitary channels are different as
well. In the language of channel comparison the described strategy can be
interpreted as a strategy with pure, symmetric and factorized test state % =
|ϕ ⊗ ϕ〉〈ϕ ⊗ ϕ|. Since the optimal state comparison is based on projective
measurement described by projectors P sym, P asym, the value of the success
probability is given in Eq.(5.48).

Uniqueness of optimal solution

In previous paragraphs we have shown that optimal strategy for compari-
son of unitary channels saturates the upper bound on probability of success
imposed by Theorem 4. It means that PPOVM elements of each optimal
strategy have to saturate all inequalities used in proof of this theorem. An-
alyzing this fact we can characterize all optimal strategies.

Theorem 5 If a process POVM {Mdiff , M0} with normalization ξT ⊗ ID un-
ambiguously compares arbitrary pair of unitary channels with psuccess = d+1

2d
,

then

Mdiff = ξT ⊗ P sym , M0 = ξT ⊗ P asym , (5.49)

where ξ is a state with a support belonging only to the antisymmetric subspace
of Hd ⊗Hd.

Proof 5 Saturation of inequality (5.43) for k = dsym together with inequality
(5.42) implies that Tr(Bn) = 0 for all n. Consequently, positivity of operators
Bn implies Bn = 0 for all n i.e. coefficients dα

jn vanish. This in turn requires

〈sk|
∑

n

An|sk〉 = 1 (5.50)

for all k. Using Eq. (5.41) and Eq. (5.50) we get

1 =
∑

n

〈sk|An|sk〉 ≤
∑

n

〈an|ξT |an〉 ≤ Tr(ξT ) = 1 ,
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thus,
∑

n〈an|ξT |an〉 = 1. Due to positivity of ξT we obtain 〈sj|ξT |sj〉 = 0 for
all j. This tells us that ξT has support only on antisymmetric states. Since
the used transposition is defined with respect to a product basis, the antisym-
metric states preserve their antisymmetry, i.e. the state ξ is antisymmetric
as it is stated in the theorem.

Using the spectral form (5.37) and Eq. (5.38) we can rewrite Mdiff as:

Mdiff =
∑

j

Cj ⊗ |sj〉〈sj|+ H , (5.51)

with

Cj =
∑

α

λα

∑
nm

cα
njc

α
mj|an〉〈am| ;

H =
∑

α

λα

∑

j 6=l,m,n

cα
mj cα

nl|am ⊗ sj〉〈an ⊗ sl|

We rewrite also the probability of success [Eq. (5.34)] in terms of Cj and
because the operator H is traceless we get

psuccess =
1

d2

∑
j

Tr(Cj). (5.52)

Positivity of M0 = ξT ⊗ I −∑
j Cj ⊗ |sj〉〈sj| −H implies

0 ≤ 〈a⊗ sj|M0|a⊗ sj〉 = 〈a|ξT − Cj|a〉 , (5.53)

where |a〉 is arbitrary vector from HD. Hence, we have that operator ξT −Cj

is positive for all j and consequently that 1 = Tr(ξT ) ≥ Tr(Cj). Saturation
of inequality (5.35) requires Tr(Cj) = 1 for all j, which in turn implies
Tr(ξT −Cj) = 0. This together with the positivity of operator ξT −Cj enables
us to conclude that Cj = ξT for all j. The operators Mdiff ,M0 therefore read

Mdiff = ξT ⊗ P sym + H ,

M0 = ξT ⊗ P asym −H .

The support of the selfadjoint operator H is orthogonal to the support of the
operator ξT ⊗ P asym. Since H is traceless it has both positive and negative
eigenvalues unless H = O. However, positive eigenvalues of H would spoil
positivity of M0, so the operator H must vanish, which concludes the proof.
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5.3.4 Conclusions

The goal of this section was to find an optimal strategy for comparison of two
unknown unitary channels. Exploiting the framework of process POVM we
have shown that the optimal strategy achieves the average conditional suc-
cess probability psuccess = (d+1)/(2d). An interesting observation is that the
optimal strategy for comparison of unitary channels is very closely related to
the comparison of pure states. In fact, the optimal state comparison is based
on the implementation of the two-valued projective measurement measuring
the exchange symmetry of the bipartite states. Outcomes are associated with
projectors onto symmetric and antisymmetric subspaces of the joint Hilbert
space. The optimal procedure for the comparison of unitary channels is
exploiting the same measurement, but the outcomes are interpreted in the
opposite way. Whereas for comparison of pure states the projector P sym cor-
responds to the inconclusive result, for unitaries this projector is associated
with the unambiguous conclusion that the channels are different. Similarly,
the projector P asym indicates the difference of compared pure states, but
corresponds to no conclusion for unitaries. In both cases, the unambiguous
conclusion that the states, or unitaries are the same, can not be made.

Devices implementing quantum channels are tested indirectly via their
action on quantum states. In the experiment the unknown apparatuses are
probed by some test states. We have shown that the optimal solution is
achieved if and only if the test state is antisymmetric, i.e. its support is only
in antisymmetric subspace. Let us note that if a state is separable, then nec-
essarily its support contains product vectors. However, by definition there is
no antisymmetric product vector, hence the support of each antisymmetric
state does not contain any product vectors. Consequently, each antisym-
metric state is necessarily entangled. In conclusion, the entanglement is the
key ingredient for comparison of unitary channels. It enhances the success
probability to reach the optimal value.

Let us note that the proposed optimal strategy is feasible in current quan-
tum information experiments with photons and ions. In particular, in the
qubit version the experiment consists of preparation of a singlet, applica-
tion of the unknown single-qubit unitary channels on individual qubits and
a projective measurement consisting of the projection onto a singlet, or arbi-
trary other maximally entangled state. As the measurement we can use, for
instance, the Bell measurement, but it is not necessary. Moreover, for the
optimal comparison of qudit unitary channels mixed test states are allowed.



Chapter 6

Unambiguous tasks for
measurements

The measurement part of an experiment correlates the state of the quantum
system with some classically distinguishable signals. The number of possible
signals is in practice finite and observation of such a signal is called an event
or an outcome. The rules of quantum mechanics tell us that a quantum state
is not an observable quantity. This means that there is always more than
one quantum state in the state space that could trigger the observed event.
In general this prevents us from deducing the (original) state precisely out
of a single measurement outcome. In fact, quantum mechanics predicts the
probability of a state % leading to the considered event to be Tr(%E), where
O ≤ E ≤ I is a positive operator i.e. an effect associated with the event.
If the set of states before the measurement is restricted so that for only one
of them Tr(%E) > 0 then the observation of effect E unambiguously implies
that the measured state was %. Also in other than unambiguous approaches
the outcomes of the measurement are most often used to infer something
about the measured state. Moreover, we often tune the measurements to
optimize this inference.

On the other hand, there are also situations, where we want to design
the experiment in such a way that it enables us to infer something about the
measurement itself. Hence, the measurement is partly unknown and fixed
and we want to deduce some of its properties out of its outcomes. This type
of experiments is a bit different from the experiments probing channels or
states, because the outcomes of the investigated measurement apparatus may
not be directly linked to the conclusions we want to make. As an illustration

135
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consider a discrimination among M measurement apparatuses, each having
N possible outcomes. For N < M a single outcome of the tested measure-
ment could not indicate each of the possibly used apparatuses. However,
consider the following strategy for a single use of the unknown measurement.
It would employ a principal system measured by the tested apparatus as
well as an ancillary quantum system, whose measurement depends on the
outcome of the tested POVM. The outcomes of the measurement on the an-
cilla could then directly correspond to the conclusions we want to make. One
can show that it suffices to consider an ancilla with the same Hilbert space
as the principal quantum system. Unfortunately, a suitable mathematical
framework for description of these type of experiments is not yet developed.
Moreover, sometimes it may happen that we are not allowed to use any other
measurement than the tested one. In such a situation the possible experi-
ments consist of the preparation that we control and a tested measurement,
whose outcomes can be linked to the test results in many ways.

6.1 Labeled vs. unlabeled observables

Let us now look on the description of measurement apparatuses from a bit
more operational point of view. Imagine we are given a Stern-Gerlach appa-
ratus, whose outcomes are labeled by 1 and 2. Suppose outcome 1 emerges
when the measured spin is along the measurement direction. Thus, if the
measurement direction is along the +z axes1 the effects associated with the
outcomes read: E1 = | + z〉〈+z|, E2 = | − z〉〈−z|. However, if the mea-
surement direction is along the −z axes the effects read: E1 = | − z〉〈−z|,
E2 = | + z〉〈+z|. Although, these two different POVMs correspond to two
different Stern-Gerlach apparatuses mutually rotated by 180 degrees, they
provide us with the same information. More precisely, after exchanging the
labels on one of the apparatuses, quantum mechanics predicts the same prob-
ability distribution on their outcomes for any possible input state. This il-
lustrates that by a suitable labeling (interpretation) of the outcomes a single
physical apparatus can realize several different POVMs. Thus, all the mea-
surements related in this way are equivalent after the desired labeling of the
outcomes is performed. This motivates us to consider two types of equiva-
lence among the POVMs. If the desired labeling of the apparatus outcomes

1In our 3D space or in the Bloch sphere representation if we are considering other two
level system than spin
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is done we may always assume that the outcomes are labeled by numbers
1, . . . , n. If the outcomes were not properly labeled yet, we assign a number
j ∈ Jn ≡ {1, . . . , n} to each of them. However, in such a case the ambiguity
in the labeling must be taken into account and the equivalence of observables
should be compatible with this freedom. Let us spell out the definitions of
observable equivalence explicitly.

Definition 1 Observables A : Jn → E(H) and B : Jn → E(H) are identical
if Aj = Bj for all j.

Definition 2 Observables A : Jn → E(H) and B : Jn → E(H) are equiva-
lent (in the unlabeled sense) if there exists a permutation π : Jn → Jn such
that Aj = Bπ(j) for all j.

Thus, we shall use the word identical for equivalence in the strict labeled
sense and the word equivalent for equivalence in the unlabeled sense. It fol-
lows from the definition that the equivalence class of an unlabeled observable
consists of POVMs with the same range, i.e. the elements of the set of un-
labeled measurements can be understood as unordered collections of effects
summing up to identity.

Equivalence in the unlabeled sense of Def. (2) guarantees that the same
property of the states is measured. An example are two Stern-Gerlach appa-
ratuses measuring a spin along the same unoriented axes. However, in order
to get the correct interpretation of the measured data one should calibrate
the apparatus to have the labels correctly attached. On the other hand, when
two measurements are identical, they have the same probability distributions
without any relabeling of the outcomes. For example, an impetuous use of
an equivalent measurement apparatus instead of the identical one in some
quantum circuit may change the circuit behavior dramatically.

6.2 Perfect discrimination of two single qubit

observables

Little is known about the discrimination of measurement apparatuses. The
first paper focusing on unambiguous tasks was published in 2006 by Ji, Feng,
Duan, and Ying [63]. These authors investigate the perfect discrimination of
projective measurements, whose outcomes are numbered. Their motivation
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Figure 6.1: Illustration of the M-U-M scheme.

was the following. It is known (see e.g. [64]) that perfect discrimination
between two nonorthogonal states is impossible unless we have access to an
infinite number of copies of the tested state. However, only a finite number
of uses suffices to discriminate between any two unitary channels. Thus, it
was very interesting to investigate, whether a finite number of uses of the
measurement apparatus suffice to distinguish between any two projective
measurements. The authors of [63] showed that a finite number of uses of
the apparatus always suffice, although the testing scheme depends on the
particular projective measurements. They define three schemes. The simple
scheme consists of a preparation of a test state, whose parts are then mea-
sured by the tested measurement apparatus. The second scheme they define
is M-M scheme. In this scheme, additional known measurements can be used
to measure the test state. In their third M-U-M scheme (depicted in figure
6.1), the outcomes of some measurements can determine the unitary opera-
tion that is applied before the remaining measurements are performed. The
authors prove three theorems stating the necessary and sufficient conditions
for perfect discrimination of two projective measurements within the simple
and the M-M scheme. They use them to show that for general qubit projec-
tive measurements, the M-M scheme is needed and they derive the minimal
number of uses of the tested apparatus. For general projective measurements
on more dimensional systems they show that a finite number of uses of the
apparatus within the M-U-M scheme suffices for perfect discrimination.

6.3 Unambiguous discrimination of unlabeled

qubit observables

In contrast to the previous section, here we turn our attention to the dis-
crimination of unlabeled observables. The first who considered this kind of
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problem were M. Ziman and T. Heinossari [65]. In their setting, the tested
apparatus is modeled as a black box with leds. After a measurement is per-
formed one of the leds is flashing to indicate the obtained outcome. The
tested apparatus is known to be either the unlabeled measurement A or the
unlabeled measurement B. A single measurement outcome tells us that a
support of the associated effect E has overlap with the support of the mea-
sured state %. However, in the unlabeled case this information does not help
us to learn something about that particular effect. To illustrate this, we con-
sider an unlabeled measurement described by effects {A1, . . . ,An}, which
form a particular POVM once the ordering is fixed. In fact, we have to label
the leds, which is inevitably done in a random way. This causes that for each
artificially named outcome the predicted probability is the same, i.e.

pj(A) =
1

n!

∑

π∈S(n)

Tr(%Aπ(j)) =
(n− 1)!

n!

∑

j′
Tr(%Aj′) =

1

n
, (6.1)

where we used the fact that n! is the total number of permutations on Jn,
and that (n−1)! is the number of them having a specific label j′ on the fixed
(jth) position.

Using the apparatus once more, we can distinguish whether the observed
outcomes coincide, or not. After fixing the labels 1, . . . , n of the measurement
device, the probability to observe a pair of outcomes j, k reads

pjk(A) =
1

n!

∑

π∈S(n)

Tr(%Aπ(j) ⊗Aπ(k)) (6.2)

=





(n−1)!
n!

∑
j′ Tr(%Aj′ ⊗Aj′) if j = k

(n−2)!
n!

∑
j′ 6=k′ Tr(%Aj′ ⊗Ak′) if j 6= k

,

where (n − 2)! is the number of permutations resulting in fixed operators
Aj′ ,Ak′ for outcomes j, k. Let us note that the values of pjk do not depend
on the particular values of j, k, but only on their relative relation (whether
j = k, or j 6= k). Consequently, the probability to find the same/different
outcomes in two shots reads

psame = npjj =
∑

j

Tr(%Aj ⊗Aj) ,

pdiff = n(n− 1)pjk =
∑

j 6=k

Tr(%Aj ⊗Ak) .
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We used the fact that for an n-valued measurement used twice, there are n
pairs of same outcomes and n(n−1) pairs of different outcomes. In this two-
shot scenario, the probabilities psame, pdiff depend on the particular properties
of the effects A1, . . . ,An, hence they contain some information about A.
Thus, with two uses of the unknown unlabeled apparatus we might be able
to decide, whether it is apparatus A or B. Ziman and Heinossari showed that
for qubits, perfect discrimination is possible only if the measurements A and
B correspond to Stern-Gerlach apparatuses oriented in mutually orthogonal
directions. An example of this are the measurements of σZ and σX and all
the other pairs can be obtained by their simultaneous rotation via a qubit
unitary transformation.

Due to the freedom in the labeling of the outcomes the probabilities are
equal for certain sequences of outcomes (see Eq. (6.2)). Hence, it is meaning-
ful to distinguish only the symmetry of the sequence with respect to renum-
bering of the outcomes. Two outcomes can be either same ↔ xx or different
↔ xy. For three measurement outcomes, there are five types of sequences:
xxx, xxy, xyx, xyy, xyz. However, for more outcomes, the classification of
the sequences becomes complicated.

Ziman and Heinossari concentrated on discrimination based on two mea-
surement outcomes. If measurements A and B can not be perfectly discrim-
inated, we need to allow the inconclusive result of the unambiguous discrim-
ination. This means we need to drop one possible conclusion, because the
relation of the two outcomes is only binary (same/different). Thus, the task
Ziman and Heinossari studied might be called unambiguous detection of the
unlabeled measurement A out of the measurements A,B. They showed that
a qubit unlabeled measurement A can be unambiguously detected if and
only if the measurement B is projective. Let us denote by ηA, ηB the prior
probability that the tested measurement is A, B, respectively. There are two
optimal strategies for detecting the measurement A. In one of them, same
outcomes unambiguously indicate A and diff outcomes are inconclusive. The
other optimal strategy uses a different probe state and the role of same/diff
outcomes is exchanged. For sharp unlabeled measurements A and B defined
by the unordered sets of effects {1

2
(I+~a.~σ), 1

2
(I−~a.~σ)}, {1

2
(I+~b.~σ), 1

2
(I−~b.~σ)}

(‖a‖ = ‖b‖ = 1, ~σ - vector of sigma matrices) both optimal strategies succeed
with probability Psucc = ηA sin2 θab, where θab is the angle between vectors
~a,~b. The work of Ziman and Heinosaari defined the concept of unlabeled
observable discrimination. They provided basic results for qubits, however
there are many interesting open problems for qudits and for more than two
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uses of the tested apparatus.

6.4 Comparison of sharp qubit observables

Suppose that we are given a pair of experimental setups implementing qubit
measurements, each of them designed by a different experimentalist. Is there
a way to unambiguously compare their performance? Especially, are they
same or different? As independent experimentalists we can think of these
experimental setups as black boxes, producing outcomes after a qubit is
inserted. Our conclusions then have to be based on the acquired measurement
outcomes.

For quantum measurements, there are two natural variations of the com-
parison problem. First of all, we can ask whether the given black boxes are
identical. This means that they produce the same measurement outcome
statistics in any state. In particular, also the labeling of the outcomes is
similar. For instance, two Stern-Gerlach apparatuses oriented in opposite
directions are considered to be different in this strict sense. However, they
can be made identical by simply re-labeling the outcomes in one of them.
Thus, the other way to compare two black boxes is to ask whether they are
equivalent, i.e., identical after suitable re-labeling of the outcomes.

As an example, suppose we are comparing whether two Stern-Gerlach
apparatuses are identical. A singlet state of two qubits inserted into the
measurements cannot lead to the same outcomes unless the measurement
devices (including the labeling) are different. If labeling of the outcomes
is not given or it is part of the comparison problem, then we can perform
this singlet-based test for all possible labelings independently. Finding the
same unambiguous conclusions in all of them leads to a conclusion also for
measurements without apriori labels. Since for each of the Stern-Gerlach
apparatuses we have two different choices of labels, we need to perform the
singlet-based comparison four times, i.e. each of the apparatuses is used 4
times. We will show that there are also better strategies in which each of the
unlabeled apparatuses is used only twice.

6.4.1 Apriori information

From now on, we assume that the two compared measurement apparatuses
are described by sharp non-degenerate observables, which we denote asA and
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B. Otherwise the measurement apparatuses are completely unknown. This
assumption represents a very important part of our apriori information. As
such, these observables are in direct correspondence with orthonormal bases
and have the same number of outcomes as the dimension of the Hilbert space
(n = d = 2). Let us fix an orthonormal basis |ψ1〉, . . . , |ψd〉 and denote by AU

j

the projections onto vectors U |ψj〉, where U is a unitary operator defined on
H. The projections AU

1 , . . . ,AU
d form a non-degenerate sharp observable AU .

Moreover, every non-degenerate sharp observable is of the form AU for some
unitary operator U . As in any other comparison problem we shall assume
that prior probabilities ηsame, ηdiff of observables being same, different are
both nonzero. Otherwise the comparison problem is meaningless and the
conclusion is obvious from our prior knowledge. To properly define the prob-
lem we have to specify also the probability distribution in the subset of same
observables and in the subset of different observables. The natural choice is
to use to the Haar measure on the group of unitary operators that are in
direct correspondence to sharp non-degenerate observables as we illustrated
above. Thus, in the subset of same measurement apparatuses A = B = AU

the probability distribution equals ηsamedU and in the subset of different ap-
paratuses A = AU 6= B = AV the probability distribution reads ηdiffdUdV .
We shall use the following notation. For labeled observables the probability of
observing outcomes j, k on the two compared apparatuses will be denoted by
qj,k(A = B), where the relation in the brackets indicates that the probability
is conditioned on the measurement apparatuses being the same. According
to our prior information we have

qj,k(A = B) =

∫
Tr(%AU

j ⊗AU
k ) dU (6.3)

=

{
Tr(%

∫
ψ ⊗ ψ dψ) if j = k

Tr(%
∫

ψ ⊗ ψ⊥ dψdψ⊥) if j 6= k
,

where dψ⊥ denotes the integration over all vectors orthogonal to ψ. Similarly
if the apparatuses are different the probability to observe outcomes j, k is
equal to

qj,k(A 6= B) =

∫
Tr(%AU

j ⊗AV
k ) dUdV (6.4)

= Tr(%

∫
ψ dψ ⊗

∫
ϕ dϕ)

= Tr(%
1

d
I ⊗ 1

d
I) =

1

d2
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The overall average probability to observe outcomes j, k on the two tested
apparatuses is ηsameqj,k(A = B) + ηdiffqj,k(A 6= B). The introduced nota-
tion can be easily extended to multiple outcomes of the compared appara-
tuses. For unlabeled observables we shall use analogous notation pj,k(A = B),
pj,k(A 6= B), which differs only by using letter p instead of q. However, as
one might expect later we will show that for unlabeled observables we need
to use each apparatus at least twice to be able to compare them.

6.4.2 Comparison of labeled observables

In this section we assume that the outcomes of the compared measurement
apparatuses A and B are labeled by numbers 1, . . . , d. We study the simplest
experimental scenario in which each of the apparatuses is used only once.
Our goal is to find a test state % and divide the potential outcomes (j, k)
into three families associated with conclusions: i) observables are identical,
ii) observables are different (not identical), iii) no conclusion (inconclusive
result).

Using a pair of labeled measurements (each of them once) we distinguish
d2 different outcomes (j, k) appearing with probabilities qjk that depend on
the equivalence of A and B (see equations (6.3),(6.4)). Our prior information
causes that the probabilities qjk(A = B) and qjk(A 6= B) do not depend on
particular values of j, k, but only on their mutual relation j = k, or j 6= k.
That is, whatever test state is used, we can split the outcomes at most into
two outcome classes x ∈ {same, diff}. Consequently, only two out of three
conclusions can be made.

In general, conclusion y ∈ {identical, not identical} based on observed
outcome from the outcome class x is unambiguous, if for all other alternatives
z , z 6= y the conditional probability p(y|x, z) of concluding y vanishes. In
order to conclude that the observables are different (A 6= B) the condition
qx(A = B) = 0 must hold for some outcome class x. Similarly, if we can
unambiguously conclude that A = B, then there must exist an outcome
class x′ such that qx′(A 6= B) = 0. We refer to such conditions as the
no-error conditions. Their validity is necessary to call a solution of the
problem unambiguous. Outcomes that are not associated with unambiguous
conclusions lead to an inconclusive result. Our task now is to show, which
conclusion can be made unambiguously in an experiment involving single use
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of the compared measurement apparatuses. Let us note that

∫
dψ ψ⊗k =

(d− 1)!k!

(d + k − 1)!
P sym

1...k ≡
1

dk

P sym
1...k , (6.5)

where P sym
1...k is the projection onto the completely symmetric subspace of H⊗k

and dk = Tr(P sym
1...k ) = (d+k−1)!

(d−1)!k!
is the dimension of that subspace. For a fixed

vector ψ
∫

dψ⊥ ψ⊗k
⊥ =

∫

H⊥ψ
dϕϕ⊗k

=
(d− 2)!k!

(d + k − 2)!
(I − ψ)⊗kP sym

1...k , (6.6)

where we used H⊥
ψ to denote the subspace of H orthogonal to |ψ〉 ∈ H.

We use these identities in the evaluation of the probabilities qjk(A = B)
and qjk(A 6= B). In particular, from equations (6.3),(6.4) we have

qjj(A = B) =
1

d2

Tr(%P sym
12 ) , (6.7)

qjk(A = B) =
1

d− 1
Tr(%(

1

d
I ⊗ I − 1

d2

P sym
12 )) . (6.8)

qjj(A 6= B) =
1

d2
Tr(%) , (6.9)

qjk(A 6= B) =
1

d2
Tr(%) , (6.10)

We see that if the measurement devices are different (A 6= B), then for
all test states % the probabilities qjj(A 6= B) and qjk(A 6= B) do not vanish
for any outcome. Because of that the identicality of the observables cannot
be concluded unambiguously.

Using the relation P sym
12 + P asym

12 = I ⊗ I between the projectors onto the
symmetric and antisymmetric subspace of H⊗H we can rewrite the operator

1

d
I ⊗ I − 1

d2

P sym
12 =

1

d
P asym

12 +
d− 1

d(d + 1)
P sym

12

in the spectral form. Since this is positive full-rank operator it follows that
also qjk(A = B) > 0 for all test states. Therefore, the occurence of different
outcomes cannot be used to unambiguously conclude that the measurements
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are different. However, qjj(A = B) = 0, if Π% ≤ P asym
12 , where we denoted

by ΠX the projection onto the support of operator X. Hence, if we use test
state % supported only on the antisymmetric subspace and observe the same
outcomes then we can conclude with certainty that A 6= B.

In summary, the identicality of unknown sharp non-degenerate observ-
ables cannot be unambiguously confirmed if each of the labeled apparatuses
is used only once. Using an antisymmetric test state % and observing the
same outcomes on both apparatuses lead us to unambiguous conclusion that
the apparatuses are different. For fixed observables A 6= B the conditional
probability of unambiguous conclusion reads

qsame(A,B) =
∑

j

Tr(%Aj ⊗ Bj) . (6.11)

On average

qsame(A 6= B) =
d∑

j=1

qjj(A 6= B) = d
1

d2
=

1

d
.

This value gives the average conditional success probability for revealing the
difference of the compared sharp labeled observables. It is independent of
the used test state, however, the no-error conditions restrict the possible test
states to antisymmetric states, i.e. to states supported only in the antisym-
metric subspace spanned by P asym

12 . Let us stress that if we choose a test
state % = 1

d−
P asym, then qsame(A,B) > 0 whenever A 6= B.

6.4.3 Comparison of unlabeled measurements

In this section we assume that the outcomes of measurement apparatuses
are not labeled. As previously, our goal is to design an experiment from
which we are able to unambiguously conclude whether these apparatuses are
same or not. But same now means that the observables are equivalent in the
unlabeled sense.

Consider a fixed pair of unlabeled measurement apparatuses A and B. A
single usage of each of the apparatuses leads us to outcome j on A-apparatus
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and a on B-apparatus with probability

pj,a =
1

(d!)2

∑

π,π′∈S(d)

Tr(%Aπ(j) ⊗ Bπ′(a))

=
1

d2

∑

j′,a′
Tr(%Aj′ ⊗ Ba′)

=
1

d2
Tr(%) ,

where we used that outcomes of each apparatus are labeled independently
and we performed the summations in the same way as in equation (6.1).
Since this probability is independent on whether A = B or A 6= B none of
the outcomes can be used to make a conclusion. In fact pj,a is independent
of particular observables at all. Hence, we need to use the unlabeled appa-
ratuses more times. In particular, if each of them is used twice, then the
independence of the labeling of the two apparatuses implies

pjk,ab =
1

d!d!

∑

π,π′
Tr(%Aπ(j) ⊗Aπ(k) ⊗ Bπ′(a) ⊗ Bπ′(b))

=





1
d2 Tr(%Asame ⊗ Bsame) if j = k, a = b

1
d2(d−1)

Tr(%Asame ⊗ Bdiff) if j = k, a 6= b
1

d2(d−1)
Tr(%Adiff ⊗ Bsame) if j 6= k, a = b

1
d2(d−1)2

Tr(%Adiff ⊗ Bdiff) if j 6= k, a 6= b ,

(6.12)

where the summations are done analogously to equation (6.2) and we denoted

Asame ≡
∑

j

Aj ⊗Aj , Adiff ≡
∑

j 6=k

Aj ⊗Ak ,

similarly for Bsame and Bdiff . We see that irrespectively whether A = B or
A 6= B probability pjk,ab depends only on the mutual relation of the outcomes
j, k and a, b of the two usages of the measurement A respectively B. Hence,
also for unknown A and B distributed according to our prior knowledge it is
meaningful to distinguish at most four corresponding classes of outcomes.

Conditioned on measurement apparatuses being different (A 6= B) we
shall calculate the average probability of observing outcomes from the four
outcome classes. The probability to find the same outcomes on apparatus A
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and the same outcomes on apparatus B, respectively, can be expressed as

psame,same(A 6= B) =
∑
j,a

pjj,aa(A 6= B) =
∑
j,a

∫
pjj,aa(AU ,AV ) dUdV

= d2

∫
1

d2
Tr(%AU

same ⊗AV
same) dUdV

= Tr(%OA6=B
same,same) , (6.13)

where by pjj,aa(AU ,AV ) we mean equation (6.12) with A = AU ,B = AV . In
equation (6.13) the factor d2 stands for the number of same outcome pairs
that can be observed on individual apparatuses. The operator OA6=B

same,same

defined via this equation reads

OA6=B
same,same =

∫
dUdVAU

same ⊗AV
same

= d2

∫
dψdϕ ψ ⊗ ψ ⊗ ϕ⊗ ϕ

= d2Rsame ⊗Rsame . (6.14)

We used the definitions

Rsame =

∫
dψψ ⊗ ψ =

1

d2

P sym ,

Rdiff =

∫
dψdψ⊥ψ ⊗ ψ⊥ =

1

d
I − 1

d2

P sym .

Similarly, for other outcomes we find that

OA6=B
diff,diff = d2(d− 1)2Rdiff ⊗Rdiff (6.15)

OA6=B
diff,same = d2(d− 1)Rdiff ⊗Rsame (6.16)

OA6=B
same,diff = d2(d− 1)Rsame ⊗Rdiff , (6.17)

providing A 6= B. Let us define operators

ΠA6=B
same,same = P sym

12 ⊗ P sym
34 ΠA6=B

same,diff = P sym
12 ⊗ I34

ΠA6=B
diff,same = I12 ⊗ P sym

34 ΠA6=B
diff,diff = I12 ⊗ I34 ,

that project onto the supports of operators OA6=B
same,same, OA6=B

same,diff , OA6=B
diff,same,

OA6=B
diff,diff , respectively.
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Similarly, conditioned on measurement apparatuses being equivalent (A =
B) we calculate the average probability of observing outcomes from the four
outcome classes. For this purpose we define operators OA=B

same,same, OA=B
same,diff ,

OA=B
diff,same, OA=B

diff,diff in analogous way to equation (6.13):

psame,same(A = B) = Tr(%OA=B
same,same) =

∑
j,a

∫
pjj,aa(AU ,AU) dU ,

where

OA=B
same,same = d2

∫
dU

1

d2
AU

same ⊗AU
same

= d

∫
dψψ ⊗ ψ ⊗ ψ ⊗ ψ

+d(d− 1)

∫
dψdψ⊥ ψ ⊗ ψ ⊗ ψ⊥ ⊗ ψ⊥ (6.18)

and in the second term of equation (6.18) the integration over dψ⊥ runs over
all vectors orthogonal to a fixed ψ.In a general case the operators OA=B

x,x′ =∫
dUAU

x ⊗AU
x′ read

OA=B
same,diff = d(d− 1)

∫
ψ ⊗ ψ ⊗ [ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ]

+
d!

(d− 3)!

∫
ψ ⊗ ψ ⊗ ψ′ ⊗ ψ′⊥ ,

OA=B
diff,same = d(d− 1)

∫
ψ ⊗ ψ⊥ ⊗ [ψ ⊗ ψ + ψ⊥ ⊗ ψ⊥]

+
d!

(d− 3)!

∫
ψ′ ⊗ ψ′⊥ ⊗ ψ ⊗ ψ ,

OA=B
diff,diff = d(d− 1)

∫
ψ ⊗ ψ⊥ ⊗ [ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ]

+
d!

(d− 3)!

∫
ψ ⊗ ψ⊥ ⊗ [ψ ⊗ ψ′ + ψ′ ⊗ ψ]

+
d!

(d− 3)!

∫
ψ ⊗ ψ⊥ ⊗ [ψ⊥ ⊗ ψ′ + ψ′ ⊗ ψ⊥]

+
d!

(d− 4)!

∫
ψ ⊗ ψ⊥ ⊗ ψ′ ⊗ ψ′⊥

(6.19)
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where for simplicity we do not write explicitly the Haar measures dψ, dψ′,
dψ⊥, dψ′⊥ and ψ′, ψ′⊥ are vectors orthogonal to ψ and ψ⊥. Of course, 〈ψ|ψ⊥〉 =
〈ψ′|ψ′⊥〉 = 0. Since for qubits the Hilbert space is two dimensional the terms
containing ψ′ or ψ′⊥ do not appear in these expressions. There are no two
orthogonal vectors to a fixed ψ in such case.

Let us note that the integration leading to OA6=B
x,x′ includes the integration

covered in OA=B
x,x′ . Therefore,

ΠA=B
x,x′ ≤ ΠA6=B

x,x′ , (6.20)

which implies that whenever px,x′(A 6= B) = Tr(%OA6=B
x,x′ ) = 0, then also

px,x′(A = B) = Tr(%OA=B
x,x′ ) = 0, hence, in two shots we can not unambigu-

ously conclude that the apparatuses are equivalent. We can only approve the
difference of the measurement devices.

In what follows we are going to specify for which test states and for which
outcomes classes x, x′ ∈ {same, diff} the no-error conditions Tr(%OA=B

x,x′ ) = 0
are satisfied and simultaneuously, whether the associated conditional success
probability rates psuccess = px,x′(A 6= B) = Tr(%OA6=B

x,x′ ) > 0 are nonvanishing.
We shall show that for qubits (d = 2)

ΠA6=B
same,same = ΠA=B

same,same + Qsame,same ,

ΠA6=B
same,diff = ΠA=B

same,diff + Qsame,diff ,

ΠA6=B
diff,same = ΠA=B

diff,same + Qdiff,same ,

ΠA6=B
diff,diff = ΠA=B

diff,diff + Qdiff,diff ,

where Qsame,same = O, Qdiff,diff 6= Qsame,diff = Qdiff,same are projections forming
the relevant parts of the supports of potential test states % enabling us to
conclude the difference. That is, we shall see that three out of four outcomes
classes can be used to make the unambiguous conclusion.

Support of operator OA=B
same,same

Evaluating the operator OA=B
same,same we obtain

1

d
OA=B

same,same =

∫
ψ⊗4 + (d− 1)

∫
ψ⊗2 ⊗ ψ⊗2

⊥

=
1

d4

P sym
1234 +

2(d− 1)

d(d− 1)
R12−34P

sym
34 , (6.21)
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where

R12−34 =

∫
ψ⊗2 ⊗ (I − ψ)⊗2

=
1

d2

P sym
12 +

1

d4

P sym
1234 −

1

d3

(P sym
123 + P sym

124 ) .

Due to positivity of operators in Eq. (6.21) the unambiguous no-error con-
ditions require that

Tr(%P sym
1234) = 0 , T r(%R12−34P

sym
34 ) = 0 ,

hold simultaneously. Hence, the support of R12−34P
sym
34 is of interest for us

and in particular we should decide whether it is different from ΠA6=B
same,same =

P sym
12 ⊗ P sym

34 . If yes, then we can use this outcome for making the unam-
biguous conclusion.

Let us analyze properties of R12−34 and its terms. First of all by definition
R12−34P

sym
34 is a positive operator, hence necessarily [R12−34, P

sym
34 ] = 0 and

also [P sym
123 + P sym

124 , P sym
34 ] = 0. The support of the projections P sym

12 , P sym
1234 ,

P sym
123 , and P sym

124 contains the completely symmetric subspace spanned by
P sym

1234 . As it is shown in Appendix D it is their greatest joint subspace and
since 1

d2
+ 1

d4
− 2

d3
> 0 the operator R12−34 is indeed supported on the whole

P sym
1234 .

It remains to analyze the properties of R12−34P
sym
34 on the subspace Q+

12 =
P sym

12 ⊗ P sym
34 − P sym

1234 . In particular, we are interested whether

〈ϕ| 1

d2

Q+
12 −

1

d3

(Q123 + Q124)|ϕ〉 > 0 (6.22)

for all |ϕ〉 from the support of Q+
12, where Q123 = P sym

123 −P sym
1234 , Q124 = P sym

124 −
P sym

1234 . For qubits these subspaces are described in details in Appendix D.1,
where it is shown that the operator Q123 + Q124 has two nonzero eigenvalues
4/3 and 2/3. However, the eigenvectors associated with 4/3 are from the
subspace spanned by P sym

12 ⊗P asym
34 , which is irrelevant due to multiplication of

R12−34 by P sym
34 . The eigenvectors associated with the eigenvalue 2/3 are from

P sym
12 ⊗P sym

34 , thus 〈ϕ|Q123 + Q124|ϕ〉 ≤ 2/3 for all |ϕ〉 ∈ P sym
12 ⊗P sym

34 ≥ Q+
12.

Since d2 = 3, d3 = 4 (see equation (6.5))

〈ϕ|1
3
Q+

12 −
1

4
(Q123 + Q124)|ϕ〉 ≥ 1

3
− 1

6
> 0 . (6.23)
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As a result we have shown that support of R12−34P
sym
34 equals to support of

P sym
12 ⊗ P sym

34 , thus ΠA=B
same,same = P sym

12 ⊗ P sym
34 = ΠA6=B

same,same. In summary, an
observation of pairs of same outcomes on both apparatuses cannot be used
to make any unambiguous conclusion, because Qsame,same = O.

Support of operator OA=B
diff,diff

In this case our aim is to show that Qdiff,diff 6= O. For qubits there are at
most two mutually orthogonal vectors, hence

OA=B
diff,diff = d(d− 1)

∫
ψ ⊗ ψ⊥ ⊗ (ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ) .

Let us remind that for larger systems, this expression contains additional
terms. Using the operators R13−24, R14−23 introduced in a similar way as
R12−34 defined in the previous section we obtain

OA=B
diff,diff = 2(R13−24P

sym
24 + R14−23P

sym
23 ). (6.24)

Using the same arguments as for R12−34 we find that R13−24P
sym
24 is supported

on P sym
13 ⊗ P sym

24 and R14−23P
sym
23 is supported on P sym

14 ⊗ P sym
23 . Therefore,

for the test state % we can write the following no-error condition

0 = Tr(%(P sym
13 ⊗ P sym

24 + P sym
14 ⊗ P sym

23 )) . (6.25)

The completely symmetric subspace P sym
1234 is the greatest joint subspace of

P sym
13 ⊗ P sym

24 and P sym
14 ⊗ P sym

23 . According to Appendix D.1.1 the support
of P sym

13 ⊗ P sym
24 + P sym

14 ⊗ P sym
23 is 13 dimensional, because d4 = 5 and Q+

13 =
P sym

13 ⊗P sym
24 −P sym

1234 and Q+
14 = P sym

14 ⊗P sym
23 −P sym

1234 are both four dimensional.
Since the total Hilbert space H⊗4 for qubits is 16-dimensional, it follows
that test states satisfying the no-error conditions live in a three-dimensional
subspace. In Appendix D.1.1 it is shown that this subspace is a linear span
of vectors

|κ1〉 =
1√
2
(|00〉|ψ+〉 − |ψ+〉|00〉) ,

|κ2〉 =
1√
2
(|0011〉 − |1100〉) ,

|κ3〉 =
1√
2
(|11〉|ψ+〉 − |ψ+〉|11〉) ,
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where |ψ+〉 = 1√
2
(|01〉+ |10〉). Thus, Qdiff,diff =

∑
j |κj〉〈κj| ≤ Q+

12 ≤ P sym
12 ⊗

P sym
34 and arbitrary test state % ≤ Qdiff,diff satisfies the no-error condition.

Let us optimize the conditional probability

pdiff,diff(A 6= B) = Tr(%OA6=B
diff,diff) (6.26)

where

OA6=B
diff,diff = 4(

1

2
I − 1

3
P sym

12 )⊗ (
1

2
I − 1

3
P sym

34 )

= I − 2

3
(P sym

12 + P sym
34 ) +

4

9
P sym

12 ⊗ P sym
34 .

Arbitrary pure state |ϕ〉 ∈ Qdiff,diff is an eigenvector of projections P sym
12 ,

P sym
34 and P sym

12 ⊗P sym
34 . Therefore, the probability is independent of the test

states % ≤ Qdiff,diff and reads

pdiff,diff(A 6= B) = 1− 4

3
+

4

9
=

1

9
. (6.27)

Support of operator OA=B
same,diff

For qubits

OA=B
same,diff = d(d− 1)

∫
ψ⊗2 ⊗ (ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ)

= d

(
1

d3

(P sym
123 + P sym

124 )− 2

d4

P sym
1234

)
,

and since P sym
1234 ≤ P sym

123 , P sym
124 ; 1/d3 > 1/d4 we can conclude that the no-error

condition reads

Tr(%(P sym
123 + P sym

124 )) = 0 . (6.28)

Let us remind that ΠA6=B
same,diff = P sym

12 and P sym
123 , P sym

124 ≤ P sym
12 . The question

is whether ΠA=B
same,diff = P sym

12 , or not. We know (see Appendix D.1) that
P sym

123 , P sym
124 are not orthogonal, however, their greatest joint subspace is the

completely symmetric one. The dimension of P sym
12 is 12, whereas the total

support of P sym
123 +P sym

124 is 11 dimensional. It follows that there exist a unique
vector such that ΠA6=B

same,diff |ϕQ〉 = |ϕQ〉, and, simultaneuously, ΠA=B
same,diff |ϕQ〉 =

0, thus, Qsame,diff = |ϕQ〉〈ϕQ|. For such test state the observation of outcomes
from (same, diff) class leads to unambiguous confirmation of the difference
of the measurement apparatuses.
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Support of operator OA=B
diff,same

There is no substantial difference in the analysis of this case and the previ-
ous one. We only need to exchange the role of pairs of indexes 12 and 34.
Therefore, there exists a unique vector |ϕ′Q〉 such that ΠA=B

diff,same|ϕ′Q〉 = 0, but

ΠA6=B
diff,same|ϕ′Q〉 = P sym

34 |ϕ′Q〉 = |ϕ′Q〉. Surprisingly, we shall see that |ϕ′Q〉 ≡
|ϕQ〉, which means that the same test state |%Q〉 guarantees the unambiguity
of both outcomes Osame,diff ,Odiff,same.

On the systems j and k we define a singlet vector as |ψ−jk〉 = 1√
2
(|01〉jk −

|10〉jk). After a short calculation one can verify that the vector

|ϕQ〉 =
1√
3
(|ψ−13 ⊗ ψ−24〉+ |ψ−14 ⊗ ψ−23〉) (6.29)

satisfies all the required properties, i.e. it is symmetric with respect to 1 ↔ 2,
3 ↔ 4 exchanges, i.e. ΠA6=B

same,diff |ϕQ〉 = ΠA6=B
diff,same|ϕQ〉 = |ϕQ〉, and P sym

123 |ϕQ〉 =
P sym

124 |ϕQ〉 = P sym
134 |ϕQ〉 = P sym

234 |ϕQ〉 = 0, because both terms of |ϕQ〉 are
antisymmetric exactly in one pair of all considered triples of indexes.

Using |ϕQ〉 as the test state we get

psame,diff(A 6= B) = 〈ϕQ|OA6=B
same,diff |ϕQ〉

=
4

3
〈ϕQ|1

6
P sym

12 ⊗ P sym
34 +

1

2
P sym

12 ⊗ P asym
34 |ϕQ〉 .

Similarly, we find

pdiff,same(A 6= B) =
4

3
〈ϕQ|1

6
P sym

12 ⊗ P sym
34 +

1

2
P asym

12 ⊗ P sym
34 |ϕQ〉 .

Since P sym
12 |ϕQ〉 = P sym

34 |ϕQ〉 = |ϕQ〉 implies P sym
12 ⊗ P sym

34 |ϕQ〉 = |ϕQ〉 and

〈ϕQ|P asym
12 ⊗ P sym

34 |ϕQ〉 = 〈ϕQ|P sym
12 ⊗ P asym

34 |ϕQ〉 = 0 ,

we obtain

psame,diff(A 6= B) + pdiff,same(A 6= B) =
4

9
. (6.30)

This gives a better success rate than we achieved for the outcome class
(diff, diff). Unfortunately, |ϕQ〉 6∈ Qdiff,diff . In conclusion, p = 4/9 is the
optimal value of the conditional success probability psuccess for unambiguous
comparison of unlabeled sharp qubit observables in two shots.
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Consider a fixed pair of unlabeled observables A = {ψ, ψ⊥}, B = {ϕ, ϕ⊥}
such that ψ 6= ϕ. Then the projections

Odiff,same = (ψ ⊗ ψ⊥ + ψ⊥ ⊗ ψ)⊗ (ϕ⊗ ϕ + ϕ⊥ ⊗ ϕ⊥) ,

Osame,diff = (ψ ⊗ ψ + ψ⊥ ⊗ ψ⊥)⊗ (ϕ⊗ ϕ⊥ + ϕ⊥ ⊗ ϕ)

determine the probability of observing outcomes from the corresponding mea-
surement class via the relation pdiff,same = Tr(%Odiff,same). The success prob-
ability of revealing the difference of the observables using the test state |ϕQ〉
reads

psuccess(ψ, ϕ) = 〈ϕQ|Osame,diff +Odiff,same|ϕQ〉 . (6.31)

Let us note that in a fixed orthonormal basis |ψ〉, |ψ⊥〉 the test state |ϕQ〉
takes the form

|ϕQ〉 =
1√
3

(|ψ⊗2 ⊗ ψ⊗2
⊥ 〉+ |ψ⊗2

⊥ ⊗ ψ⊗2〉 − |ψ+ ⊗ ψ+〉) ,

where |ψ+〉 = 1√
2
(|ψ ⊗ ψ⊥〉 + |ψ⊥ ⊗ ψ〉). Using the identities |〈ψ|ϕ〉| =

|〈ψ⊥|ϕ⊥〉| = cos θ, |〈ψ|ϕ⊥〉| = |〈ψ⊥|ϕ〉| = sin θ a direct calculation gives

〈ϕQ|Osame,diff |ϕQ〉 =
1

3
〈ψ⊗2

⊥ |ϕ⊗ ϕ⊥ + ϕ⊥ ⊗ ϕ|ψ⊗2
⊥ 〉

+
1

3
〈ψ⊗2|ϕ⊗ ϕ⊥ + ϕ⊥ ⊗ ϕ|ψ⊗2〉

=
4

3
|〈ψ|ϕ〉|2|〈ψ⊥|ϕ〉|2 .

Since 〈ϕQ|Osame,diff |ϕQ〉 = 〈ϕQ|Odiff,same|ϕQ〉 the success probability reads

psuccess(ψ, ϕ) =
2

3
(sin 2θ)2 . (6.32)

It vanishes only if θ = 0, or θ = π/2 when ψ ≡ ϕ, or ψ ≡ ϕ⊥, respectively.
As a result we get that the optimal test state detects unambiguously the dif-
ference for any pair of non-equivalent sharp qubit observables with strictly
nonzero success probability. The actual probability depends on the angle be-
tween the observables. In fact, if sharp qubit observables are understood as
ideal Stern-Gerlach apparatuses, then α = 2θ is the angle between the mea-
sured spin directions. The probability achieves its maximum for orthogonal
spin directions as one would expect.
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6.4.4 Summary

We have investigated the problem of unambiguous comparison of quantum
measurements. We restricted our analysis to subset of sharp non-degenerate
observables that can be associated with non-degenerate selfadjoint operators.
Let us note that without any restriction the comparison problem has only a
trivial solution.

We distinguished two different types of measurement apparatuses depend-
ing whether the labels of their outcomes are apriori given, or not. We give
solution to single shot comparison of labeled measurements in arbitrary di-
mension. For unlabeled measurements the single usage of each of the ap-
paratuses is not sufficient. In the two shots scenario we find solution for
unlabeled qubit measurement apparatuses. In both cases, the unambiguous
confirmation of the equivalence of measurements is not possible. Similarly, as
in the case of pure states and unitary channels, also for sharp non-degenerate
observables only the difference can be unambiguously concluded.

In summary, for the measurement apparatuses with labeled outcomes the
optimal procedure exploits the so-called antisymmetric test states. For any
such test state % the success is associated with the observation of the same
outcomes. The difference of observables can be concluded with the average
conditional probability

qsuccess(A 6= B) = 1/d . (6.33)

In the case of unlabeled measurements individual outcomes can be asso-
ciated with an unambiguous conclusion only if the support of the test state
belongs to at least one of the subspaces spanned by projections I − ΠA=B

x,x′ ,
x, x′ ∈ {same, diff}. We showed that only part of the test state acting on the
support of the projections Qsame,same = O, Qdiff,diff and Qsame,diff = Qdiff,same =
|ϕQ〉〈ϕQ|may contribute to the success probability. Out of these possibilities,
it turns out that the optimal test state is

|ϕQ〉 =
1√
3
(|ψ−13 ⊗ ψ−24〉+ |ψ−14 ⊗ ψ−23〉) , (6.34)

for which the average conditional probability of the unambiguous conclusion
equals

psuccess(A 6= B) = 4/9 . (6.35)



156 CHAPTER 6. UNAMBIGUOUS TASKS FOR MEASUREMENTS

Figure 6.2: Illustration of the optimal scheme for unambiguous comparison
of qubit apparatuses leading to unambiguous conclusion A 6= B with average
conditional probability 4/9.

Using such test state and finding on one of the measurement apparatuses dif-
ferent outcomes, whereas on the second the same outcomes, we can conclude
with certainty that the apparatuses are different. This scheme is illustrated
on Fig. 6.2.

Let us compare these success probabilities with the comparison problem
for pure states and unitary channels. In particular, for single shot compar-
isons

pstate = (d− 1)/2d , (6.36)

punitary = (d + 1)/2d . (6.37)

We see that unlike for states and channels the success rate for comparison of
labeled measurements vanishes as the dimension is increasing. Unfortunately,
for unlabeled measurements on systems of larger dimensions the situation is
more complex and two shots are not sufficient to make any unambiguous
conclusion. The problem is still open and will be analyzed elsewhere.



Chapter 7

Conclusion

Quantum mechanics is a statistical theory and its predictions are conveyed
by probabilities. However, in experiments we do not observe probabilities,
but rather single experimental events called “clicks” or outcomes. Repeating
the experiment many times we acquire frequencies, which express statistics
of the observed clicks. When the number of repetitions of the experiment
is really huge we intuitively expect that the predicted probabilities and the
observed frequencies should coincide. From this point of view it may appear
counterintuitive that single experiments may suffice to make reliable conclu-
sions from the quantum mechanical predictions. In fact these conclusions can
be even unambiguous if the probability distributions for all the alternatives
are very well distinguishable. Mutual orthogonality of these probability dis-
tributions implies perfect discrimination among the alternatives. If a given
click (outcome) can be observed for only one of the alternatives then we can
use it to unambiguously conclude which alternative actually took place in
the experiment. This means probability distributions must be orthogonal on
the subset of outcomes usable for unambiguous conclusions. The remaining
outcomes are inconclusive, as they may be a consequence of more than one
alternative. In most experiments one can think of the subset of outcomes
usable for unambiguous conclusions would be empty. However, in certain sit-
uations our prior knowledge allows us to design the experiment in such a way
that it gives us unambiguous information about its constituents. The entire
thesis is devoted to study of this kind of unambiguous tasks. In Chapter 3
I formulated a framework which accommodates many problems of this type.
I show that the prior information about any type of a constituent (state,
channel, observable) allows us to reformulate the discrimination among fi-
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nite number of alternatives as discrimination among finite number of average
constituents.

Chapter 4 concentrates on tasks for quantum states. The relation of
the quantum state comparison and the unambiguous identification to the
discrimination of mixed states was recognized soon after the problem of un-
ambiguous discrimination of mixed states was defined. My original results
in this chapter cover two topics. One is comparison of ensembles of quantum
states and the other one is unambiguous identification of coherent states.

In the comparison of two ensembles of k and l copies prepared by two
preparators of unknown pure states I derived the conditional probability of
revealing the difference of arbitrary pure states |ψ1〉, |ψ2〉. The conditional
probability is a polynomial in k, l, |〈ψ1|ψ2〉|2 and does not depend on the di-
mension of the system. This is in contrast to the average success probability,
which is essentially given by the ratio of the dimensions of the symmetric
subspaces H⊗k+l

sym and H⊗k
sym⊗H⊗l

sym. If the total number of available copies N
is fixed then the success probability is maximized for equal number of copies,
i.e. k = l = N/2. The success probability can be slightly increased given the
prior knowledge that the states are coherent. In this case the improvement is
most significant for small number of copies. Moreover, I have proposed an op-
tical implementation of the optimal quantum-state comparator of two finite
ensembles of coherent states. This proposal is relatively easy to implement,
since it consists only of N − 1 beam-splitters and a single photodetector.

Let me summarize the new results in the unambiguous identification (UI)
part of Chapter 4. In UI we are given a set of identical quantum systems pre-
pared in pure states, which are labeled as unknown and reference states. The
promise is that one type of reference state is the same as the unknown state
and the task is to find out unambiguously which one it is. My main focus
was on the case where the set of possible reference states is formed only by
coherent states of an electromagnetic field. I illustrated the relevance of this
prior knowledge by showing that the specialized measurement outperforms
the universal unambiguous identification, i.e. the UI measurements that can
be applied for all pure states. The interesting qualitative difference between
the specialized and the universal measurement for single copy of unknown
and the reference states is in the probability of success for nearly orthogo-
nal states. While the specialized measurement succeeds almost always the
universal measurement produces conclusive result at most with probability
1/3. Moreover, the specialized measurement can be easily experimentally
realized, because it consists of beam splitters and photodetectors. The ba-
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sic version of the setup was recently build and tested by L. Bart̊ušková et.
al. [49]. The beamsplitter setup was motivated by an intuitive reduction
of the unambiguous identification problem into specific ”distribution” task
and an unambiguous state comparison. The optical setup can be general-
ized to situations with more copies of the unknown and the reference states.
The generalization is based on an idea of the “concentration” of the same
type of states into strong coherent states that are subsequently identified by
setups for the single-copy scenario. In the UI task it is assumed that the
particular choice of the reference states is unknown to us, and only the prob-
ability distribution χ describing this choice is known. Nevertheless, even
without having χ it is possible to derive the optimal choice of transmit-
tivities in the beam-splitter setup for two types of reference states and an
equal number of copies of each of the reference states (nB = nC). In that
case the probability of identification for the reference states |α1〉, |α2〉 reads
P(|α1〉, |α2〉) = 1 − exp[− nAnB

nA+2nB
|α1 − α2|2]. Under the condition that the

experimental setup consists only of linear optical elements and photodetec-
tors I proved the optimality of the setup. In the limit of nB = nC →∞ the
two reference states become known. Therefore, one needs to unambiguously
discriminate the unknown state between two known pure states. The prob-
ability of success of our setup in this case coincides with the optimal value
achieved by the Ivanovic-Dieks-Peres measurement [4, 5, 6]. I addressed also
the question whether the coherent reference states can be recreated after our
UI measurement. I showed that the reference states can be partially recov-
ered only if the measurement yielded a conclusive outcome. The recovered
reference states can be used in the next round of the UI if another unknown
state is provided. This might be seen as a repeated search in a quantum
database, where the data, i.e. the reference states, degrade with repeated
use of the database. Another aspect I investigated was the influence of a
particular type of noise on the reliability of the conclusions drawn by the
UI setup. More precisely, I considered a communication scenario called the
phase keying, with two coherent reference states of equal amplitude, but the
opposite phases. I saw that the reliability of results depends only on the ratio
of the amplitudes of the noise and the signal. However, for nonzero noise the
unambiguity of the conclusions is lost.

The goal of Chapter 5 was to investigate unambiguous tasks for quantum
channels. Many experiments probing channels are equivalent with respect
to probability distribution on outcomes they generate. Without taking this
equivalence into account optimization of any discrimination problem is very
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difficult, because we need to vary independently preparation and the mea-
surement part of the experiment. Process positive operator valued measure
(PPOVM) is a framework introduced by M. Ziman [27], which systematically
takes this equivalence into account and works with the equivalence classes
instead. Unambiguous discrimination of channels is much less studied than
the discrimination of states. Using the PPOVM framework I defined the
general problem and provided some insight for unitary channels. My main
contribution in this chapter is the solution of comparison of two unknown
unitary channels. Exploiting the framework of process POVM I have shown
that the optimal strategy achieves the average conditional success proba-
bility psuccess = (d + 1)/(2d). Quantum channels are tested indirectly via
their action on quantum states called also test states. I have shown that the
optimal solution is achieved if and only if the test state is antisymmetric,
i.e. its support is only in antisymmetric subspace. Let me note that such
state is necessarily necessarily entangled. Hence, the entanglement is the key
ingredient for comparison of unitary channels.

Unambiguous tasks for measurements were studied in Chapter 6. In con-
trast to states and channels quantum measurements act both quantumly
and classically as they signalize the observed outcome. The prior knowledge
about the signalling of outcomes motivates us two distinguish two types of
equivalence among observables. We call observables identical if their out-
comes are marked in the same way and they produce the same probability
distribution for any measured state. We call observables equivalent if they can
be made identical by suitable labeling of the outcomes. Suitable framework
for description of experiments distinguishing observables was not established
even for their single use. This is the reason why my studies were restricted
to experiments, where only the tested measurements can be used and no
feed forward of the outcomes is allowed. More precisely, I investigated the
problem of unambiguous comparison of quantum measurements. I restricted
the analysis to subset of sharp non-degenerate observables. It is important
to note that without any restriction the unambiguous comparison of mea-
surements has only a trivial solution. I distinguished two different types of
measurement apparatuses depending whether the labels of their outcomes
are apriori given, or not. I have presented solution to single shot comparison
of labeled measurements in arbitrary dimension. For unlabeled measure-
ments the single usage of each of the apparatuses is not sufficient. In the
two shots scenario I give solution for unlabeled qubit measurement appara-
tuses. In both cases, the unambiguous confirmation of the equivalence of
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the measurements is not possible. Similarly, as in the case of pure states
and unitary channels, also for sharp non-degenerate observables only the dif-
ference can be unambiguously concluded. For the measurement apparatuses
with labeled outcomes the optimal procedure exploits the antisymmetric test
states. For any such test state the success is associated with the observation
of the same outcomes. The difference of observables can be concluded with
the average conditional probability qsuccess(A 6= B) = 1/d. In the case of
unlabeled measurements the optimal test state also has some antisymmetry.
The unambiguous conclusion for this test state is possible only if we find
on one of the measurement apparatuses different outcomes, whereas on the
second the same outcomes. The average conditional probability of revealing
the difference of the apparatuses equals psuccess(A 6= B) = 4/9.

Let me compare these conditional success probabilities with the compar-
ison problem for pure states and unitary channels. In particular, for single
shot comparisons pstate = (d−1)/2d, punitary = (d+1)/2d. We see that unlike
for states and channels the success rate for comparison of labeled measure-
ments vanishes as the dimension is increasing. Unfortunately, for unlabeled
measurements on systems of larger dimensions the situation is more complex
and two shots are not sufficient to make any unambiguous conclusion.

Let me discuss my results also from a bit more general point of view. In
classical physics we are used to have a direct relation of the measured prop-
erty of the physical system to its implicitly assumed preexisting value before
the measurement. In quantum physics it follows from Bells inequalities that
for some sets of observables assuming preexisting values before the measure-
ment is forbidden. On the other hand, there are well defined properties of
the system before the measurement (e.g. states being same or different in the
comparison problem), which are not directly observable in the experiment.
Unambiguous approach to the discrimination tasks brings into the quantum
world the direct relation of the measured outcomes to the preexisting prop-
erties of the quantum systems. This thesis tries to understand what kind
of tasks can be solved unambiguously and what kind of information we may
acquire about the quantum system in an unambiguous way. Motivated by
the results on unambiguous comparison of states, channels and observables,
where equality of quantum objects can not be concluded, one might con-
jecture that equality of quantum objects can not be proved in general from
finite statistics of outcomes. Although I do not prove this conjecture in the
thesis I consider it to be one of the the interesting problems that remain as
an open question for further studies.
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Recently, G. M. D’Ariano [66] and his coworkers from the group in Pavia,
Italy developed a framework called quantum combs. Its aim is to describe
most general transformations of constituents (states, channels, measurements)
and represent them in a unified way. Similarly to PPOVM framework quan-
tum combs are based on Choi-Jamiolkowski isomorphism. It seems that they
are well suited also for experiments containing multiple uses of the tested con-
stituent. Quantum combs were not yet applied to unambiguous discrimina-
tion tasks, however they were already applied in quantum algorithm learning
[67], optimal tomography [68] or optimal cloning of a unitary transformation
[69]. I think that application of quantum combs in unambiguous discrimina-
tion may advance our understanding of this kind of task. On the other hand,
the actual calculations have to be the same as in the presently used calculus.
Thus, one can not expect that complicated problems as a discrimination of
mixed states will be solved by quantum combs easily. The more expectable
advantage of better suited framework is in more clear and unified way of
working with the quantum objects.
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Appendix A

Calculations for state
comparison

A.1 Proof of lemma

Lemma
Suppose we have a polynomial Qr(x) =

∑r
m=0 amxm with the following prop-

erties:

1. Qr(1) = 0

2. am ≥ 0 for m ≤ r0 and am ≤ 0 for r0 < m ≤ r

Then Qr(x) ≥ 0 for all x ∈ [0, 1].
Proof: For x ∈ [0, 1] and a > b it follows that xa < xb. Therefore we can
write

Qr(x) =

r0∑
m=0

amxm +
r∑

m=r0+1

amxm

≥ xr0

r0∑
m=0

am + xr0+1

r∑
m=r0+1

am (A.1)

= (1− x)xr0

r0∑
m=0

am (A.2)

≥ 0 , (A.3)

where we have used the fact that 0 = Qr(1) =
∑r0

m=0 am +
∑r

m=r0+1 am, i.e.∑r
m=r0+1 am = −∑r0

0 am.
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A.2 Projectors onto coherent states

Coherent states |α〉 are intimately related to the group of phase-space dis-
placements G generated by the Glauber operator Dα = exp(αa† − α∗a) via
the following relation Dα|0〉 = |α〉, where |0〉 is the vacuum (ground) state
of a harmonic oscillator. Using the group invariant measure dg (its support
contains all coherent states) the operator ∆ can be expressed as follows

∆ =

∫

G

dg(Dg|0〉〈0|D†
g)
⊗N . (A.4)

Applying the theorem proved in Ref. [70] to the representation of the group
of displacements we find that

∆ =

∫

G

dg(Dg|0〉〈0|D†
g)
⊗N = λ∆N

coh , (A.5)

where λ is a positive number (∆ is positive) and ∆N
coh is the projector onto

the linear subspace spanned by the product states |α〉⊗n. A particular choice
of the group invariant measure dg affects the value of the parameter λ. Our
goal is to calculate the projector ∆N

coh, hence we are looking for a measure dg
such that λ = 1. The canonical Lebesgue measure dα on the complex plane
C is invariant under complex translations (displacements) and therefore the
correct measure dg is proportional to dα, that is dg = µdα for some positive
number µ, i.e.

∆N
coh = µ

∫

C
dα|α〉〈α|⊗N . (A.6)

Now, setting α = reiθ, we have, expanding the coherent states in terms
of number states,

∆N
coh|0〉⊗N = µ

∫

C
dαe−N |α|2/2 ×

×
∞∑

l1=0

αl1

√
l1!

. . .

∞∑

lN=0

αlN

√
lN !

(〈α|0〉)N |l1, . . . lN〉

= 2πµ

∫ ∞

0

dr re−Nr2|0〉⊗N

= µ
π

N
|0〉⊗N , (A.7)
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because
∫ 2π

0
eiθ(l1+···+lN )dθ = 2π if l1 + · · · + lN = 0, and vanishes otherwise.

The invariance of the canonical Lebesgue measure implies that

∆N
cohD

⊗N
β = D⊗N

β D⊗N
−β ∆N

cohD
⊗N
β

= D⊗N
β µ

∫

C
dα|α− β〉〈α− β|⊗N

= D⊗N
β µ

∫

C
d(α− β)|α− β〉〈α− β|⊗N

= D⊗N
β µ

∫

C
dα|α〉〈α|⊗N

= D⊗N
β ∆N

coh (A.8)

The previous identity (A.8) implies

∆N
coh|β〉⊗n = ∆N

cohD
⊗N
β |0〉⊗N = D⊗N

β ∆N
coh|0〉⊗N . (A.9)

Consequently, for all |ψ〉 ∈ Hcoh ≡ span{|α〉⊗N} it holds that

∆N
coh|ψ〉 = µ

π

N
|ψ〉 , (A.10)

and for all |ψ⊥〉 ∈ H⊥
0 we have ∆N

coh|ψ⊥〉 = 0. The above equality fixes the
invariant measure dg to be N

π
dα, where dα is the Lebesgue measure on the

complex plane.
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Appendix B

Calculations for UI problems

B.1 Eigenvalues of Esb
0

The operator Esb
0 is defined in Eq.(4.94). As we have already mentioned there

this operator is block diagonal consisting of three types of blocks. 1. Trivial
〈iii|Esb

0 |iii〉 = 1.
2. 3× 3 matrix 〈σ1(iij)|Esb

0 |σ2(iij)〉:

Q3 =




iij iji jii
iij 1− c1/2 0 c1/2
iji 0 1− c2/2 c2/2
jii c1/2 c2/2 1− c1/2− c2/2


 (B.1)

with eigenvalues

λ
(3)
1 = 1 ; (B.2)

λ
(3)
2,3 =

2− c1 − c2 ±
√

c2
1 − c1c2 + c2

2

2

3. 6× 6 matrix 〈σ1(ijk)|Esb
0 |σ2(ijk)〉:

Q6 =




ijk kji jki ikj kij jik
ijk X c1/2 0 0 0 c2/2
kji c1/2 X c2/2 0 0 0
jki 0 c2/2 X c1/2 0 0
ikj 0 0 c1/2 X c2/2 0
kij 0 0 0 c2/2 X c1/2
jik c2/2 0 0 0 c1/2 X




, (B.3)
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where X = 1− c1
2
− c2

2
. The corresponding eigenvalues read

λ
(6)
1 = 1

λ
(6)
2 = 1− c1 − c2

λ
(6)
3,4 =

2−c1−c2+
√

c21−c1c2+c22
2

λ
(6)
5,6 =

2−c1−c2−
√

c21−c1c2+c22
2

.

(B.4)

For qubits we have 23-dimensional Hilbert space and Esb
0 is represented

by 8 × 8 matrix with two 3 × 3 blocks and two 1 × 1 blocks. So for qubits
the sufficient condition for positivity of Esb

0 reads

2− c1 − c2 ±
√

c2
1 − c1c2 + c2

2 ≥ 0

For qudits, d > 2, at least one 6 × 6 block appears in the matrix of Esb
0 .

The eigenvalues of the 6× 6 block satisfy the following inequality:

λ
(6)
1 ≥ λ

(6)
3,4 ≥ λ

(6)
5,6 ≥ λ

(6)
2 ,

so the sufficient condition for positivity of Esb
0 when d > 2 is λ

(6)
2 = 1−c1−c2 ≥

0.

B.2 Evaluation of Gaussian type of integrals

As we have seen the following type of integrals

Im =
1

(2πσ2)m

∫

Cm

dα1 . . . dαme−
∑m

i=1
|αi|2
2σ2 −a

b
|x+

∑m
i=1 αi|2

emerge often in our calculation for the noise model. These integrals can be
evaluated recursively using the relation

1

(2πσ2)

∫

C
dα e−

|α|2
2σ2 −a

b
|x+α|2 =

b

b + 2aσ2
e
− a

b+2aσ2 |x|2

(B.5)

we are going to derive now. Left hand side (LHS) of Eq. (B.5) can be
rewritten using the following modification of the rectangular identity

k |β − α1|2 + l|β − α2|2 = (B.6)

=
∣∣∣
√

k + lβ − kα1 + lα2√
k + l

∣∣∣
2

+
kl

k + l
|α1 − α2|2
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as

LHS =
e
− a

b+2aσ2 |x|2

(2πσ2)

∫

C
dα e

−
∣∣∣√ 1

2σ2 +a
b
α− 2bσ2

b+2aσ2 x

∣∣∣
2

=
e
− a

b+2aσ2 |x|2

(2πσ2)

∫

C
dα e

−
∣∣∣√ 1

2σ2 +a
b
α

∣∣∣
2

=
b

b + 2aσ2
e
− a

b+2aσ2 |x|2 1

2πσ′2

∫

C
dα e−

|α|2
2σ′2

=
b

b + 2aσ2
e
− a

b+2aσ2 |x|2 , (B.7)

where we have used the fact that we are integrating over the whole complex
plane. As a consequence, a constant shift of argument does not matter and
the Gaussian distribution is normalized to unity. Hence we have proved Eq.
(B.5), which we can be rewritten as

Im(a, b) =
b

b + 2aσ2
Im−1(a, b + 2aσ2).

From this recursive rule it follows that

Im(a, b) =
b

b + 2aσ2m
e
− a

b+2maσ2 |x|2 , (B.8)

which is the result we wanted to obtain.
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Appendix C

Calculations for channels

C.1 Average unitary channel

In this section we shall prove that the action of the average unitary channel
can be expressed as

A[X] =

∫

U(d)

dU UXU † =
Tr(X)

d
I , (C.1)

where dU is the unique Haar invariant measure defined on the group of
unitary operators U(d). By definition the image A[X] of any operator X
must commute with all unitary operators, i.e. [A[X], U ] = 0 for all U ∈ U(d).
The Schurr lemma implies that A[X] = c(X)I. The transformation A is by
definition trace-preserving. That is, Tr(X) = c(X)Tr(I) = c(X)d. It follows
that c(X) = Tr(X)/d, hence the Eq.(C.1) holds.

C.2 Twirling channel

We shall prove that the action of the twirling channel

T [X] =

∫

U(d)

dU U ⊗ UXU † ⊗ U † , (C.2)

on selfadjoint operators X takes the form

T [X] =
Tr(XP sym)

dsym

P sym +
Tr(XP asym)

dasym

P asym . (C.3)
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The properties of Haar invariant measure dU implies that the operator
T [X] commutes with all unitary operators of the type U ⊗U . If X is selfad-
joint, then T [X] is also selfadjoint and T [X] =

∑
j xjPj, where xj are real

eigenvalues and Pj are the corresponding eigenprojectors. The commutation
of T [X] with unitaries U ⊗ U implies that [Pj, U ⊗ U ] = 0 for all U . The
subspaces Hj = Pj(Hd ⊗ Hd) = {ψ ∈ Hd ⊗ Hd such that Pj|ψ〉 = |ψ〉} are
invariant under the action of operators U ⊗ U .

It turns out there are only two invariant subspaces ofHd⊗Hd - symmetric
and antisymmetric subspace. A vector ψ ∈ Hd⊗Hd is called symmetric (an-
tisymmetric) if Swap|ψ〉 = ±|ψ〉, respectively, where we employed the swap
operator. Let us denote by P sym, P asym the projectors onto the symmetric
and antisymmetric subspaces, respectively.

Consider an orthonormal basis {|j〉}d
j=1 of Hd. Defining the vectors

|ϕ±jk〉 = 1√
2
(|j ⊗ k〉 ± |k ⊗ j〉) for j < k, |ϕ+

jj〉 = |j ⊗ j〉 we can write

P sym =
∑

j≤k

|ϕ+
jk〉〈ϕ+

jk|, P asym =
∑

j<k

|ϕ−jk〉〈ϕ−jk|. (C.4)

Let us note that vectors |ϕ±jk〉 (j, k = 1, . . . , d) are forming an orthonormal

basis of Hd ⊗Hd and Swap|ϕ±jk〉 = ±|ϕ±jk〉. It follows that the dimensions of
symmetric and antisymmetric subspaces are d± = d(d ± 1)/2, respectively.
As a result we obtain that

T [X] = a+(X)P sym + a−(X)P asym (C.5)

is the spectral form of T [X]. In order to verify that Eq.(C.2) and Eq.(C.3)
define the same mapping, it is sufficient to verify their actions on elements
of arbitrary operator basis. We shall use an orthonormal operator basis
consisting of operators Ej±k,m±n = |ϕ±jk〉〈ϕ±mn|.

According to Eq.(C.5) Tr(Y †T [X]) = 0 for arbitrary operator Y or-
thogonal to P sym and P asym, i.e. if Tr(Y †P sym) = Tr(Y †P asym) = 0.
This identity holds for both expressions of T . Consequently, it is suffi-
cient to verify that the values of ∆sym = Tr(P symT [Ej±k,m±n]) and ∆asym =
Tr(P asymT [Ej±k,m±n]) coincide for both expressions of the twirling channel
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given in Eq.(C.2) and in Eq.(C.3). Direct calculation gives

∆sym = Tr(P sym

∫

U(d)

dU U ⊗ UEj±k,m±nU † ⊗ U †)

= Tr(Ej±k,m±n

∫

U(d)

dU U ⊗ UP symU † ⊗ U †)

= Tr(Ej±k,m±nP sym) ;

∆asym = Tr(Ej±k,m±nP asym)

and, simultaneuously,

∆sym =
Tr(Ej±k,m±nP

sym)

dsym

Tr(P symP sym)

+
Tr(Ej±k,m±nP asym)

dasym

Tr(P symP asym)

= Tr(Ej±k,m±nP sym) ;

∆asym = Tr(Ej±k,m±nP asym) .

That is, the Eqs.(C.3) and (C.2) determine the same channel.
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Appendix D

Calculations for Measurements

D.1 Subspaces

In this appendix we shall analyze the subspaces of four quantum systems
H⊗4, especially four qubits. Let us start with the simpler case of H ⊗ H.
Denote by |j〉 the basis of H and define

|ϕ±jk〉 =
1√
2
(|j ⊗ k〉 ± |k ⊗ j〉) . (D.1)

for j < k. For j = k

|ϕ+
jj〉 = |j ⊗ j〉 . (D.2)

These vectors form an orthonormal bases of symmetric and antisymmetric
subspaces of H⊗H, i.e. they define the projections

P sym =
∑

j≤k

|ϕ+
jk〉〈ϕ+

jk|, P asym =
∑

j<k

|ϕ−jk〉〈ϕ−jk|.

We shall use the notation P sym
12 ≡ P sym

12 ⊗ I34 = P sym
12 ⊗ (P sym

34 + P asym
34 ).

Let us stress that P sym
1234 ≤ P sym

123 ≤ P sym
12 . We shall be interested in proper-

ties of projections that are substracted from other projections to create the
projections onto the completely symmetric subspace, for example, operators
Q12 = P sym

12 − P sym
1234 and Q123 = P sym

123 − P sym
1234 . Similar notations, definitions

and relations hold also for other combination of indexes.
For qubits dimP sym

12 = d2 ·d2 = 12, dimP sym
12 ⊗P sym

34 = d2
2 = 9, dimP sym

123 =
dimP sym

124 = d · d3 = 8 and dimP sym
1234 = d4 = 5, thus, dimQ123 = dimQ124 = 3

and Q12 = 7., etc.
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D.1.1 P sym
12 ⊗ P sym

34 and P sym
1234

Let us start with the analysis of the subspace of P sym
12 not contained in P sym

1234 ,
i.e. with Q12. In the first step, let us split Q12 into Q12 = Q−

12 + Q+
12, where

Q+
12 = P sym

12 ⊗ P sym
34 − P sym

1234 , Q−
12 = P sym

12 ⊗ P asym
34 . Due to asymmetry of

P sym
12 ⊗P asym

34 in 3 ↔ 4 exchange the projections P sym
1234 and Q−

12 are orthogonal.
For Q+

12 the situation is more tricky. Our goal is to design a basis of the
support of Q+

12. The completely symmetric subspace P sym
1234 is spanned by the

following orthonormal basis

|η0〉 = |ϕ+
00 ⊗ ϕ+

00〉
|η1〉 =

1√
2
(|ϕ+

00 ⊗ ϕ+
01〉+ |ϕ+

01 ⊗ ϕ+
00〉)

|η2〉 =

√
2

3
|ϕ+

01 ⊗ ϕ+
01〉+

√
1

6
(|ϕ+

00 ⊗ ϕ+
11〉+ |ϕ+

11 ⊗ ϕ+
00〉)

|η3〉 =
1√
2
(|ϕ+

11 ⊗ ϕ+
01〉+ |ϕ+

01 ⊗ ϕ+
11〉)

|η4〉 = |ϕ+
11 ⊗ ϕ+

11〉 .

Our aim is to specify a basis spanning the support of Q+
12. Since dimP sym

1234 = 5
and dimP sym

12 ⊗ P sym
34 = 9 it follows we need to find four mutually orthog-

onal vectors in P sym
12 ⊗ P sym

34 that are also orthogonal to vectors |ηj〉. It is
straightforward to verify that the following vectors

|κ1〉 =
1√
2
(|ϕ+

00 ⊗ ϕ+
01〉 − |ϕ+

01 ⊗ ϕ+
00〉)

|κ2〉 =
1√
2
(|ϕ+

00 ⊗ ϕ+
11〉 − |ϕ+

11 ⊗ ϕ+
00〉)

|κ′2〉 =

√
1

3
(|ϕ+

01 ⊗ ϕ+
01〉 − |ϕ+

00 ⊗ ϕ+
11〉 − |ϕ+

11 ⊗ ϕ+
00〉)

|κ3〉 =
1√
2
(|ϕ+

11 ⊗ ϕ+
01〉 − |ϕ+

01 ⊗ ϕ+
11〉)

form such a basis.

Let us abbreviate the swap operator implementing the exchange of the
subsystems a, b by Sab ≡ Swapab = P sym

ab − P asym
ab . This operation is uni-

tary and arbitrary permutation can be written as a composition of swap
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operations. The following identities hold

P sym
13 ⊗ P sym

24 = S23(P
sym
12 ⊗ P sym

34 )S23 ,

P sym
14 ⊗ P sym

23 = S34(P
sym
13 ⊗ P sym

24 )S34 ,

P sym
12 ⊗ P sym

34 = S24(P
sym
14 ⊗ P sym

23 )S24 .

The vectors |κ1〉, |κ2〉, |κ3〉 defined with respect to division P sym
12 ⊗ P sym

34 are
orthogonal to all vectors |κj〉, |κ′2〉 defined with respect to splittings P sym

13 ⊗
P sym

24 and P sym
14 ⊗P sym

23 , i.e. P sym
13 ⊗P sym

24 |κj〉 = P sym
14 ⊗P sym

23 |κj〉 = 0. However,
〈κ′2|P sym

13 ⊗ P sym
24 |κ′2〉 = 〈κ′2|P sym

14 ⊗ P sym
23 |κ′2〉 = 1/4, because the vectors |κ′2〉

defined with respect to different splittings are mutually nonorthogonal. This
means that the 4 dimensional projections Q+

12, Q
+
13, Q

+
14 are not orthogonal,

however, there is a three-dimensional subspace of Q+
12 (spanned by vectors

|κj〉) orthogonal to both Q+
13 and Q+

14.

D.1.2 P sym
123 + P sym

124

For the purposes of this paper it is of interest to analyze the relation of the
supports of projections P sym

123 and P sym
124 . The swap operator S34 can be written

as a composition S34 = S24S23S24. Consider a vector |ϕ〉 belonging to both
subspaces, i.e. P sym

123 ϕ = P sym
124 |ϕ〉 = |ϕ〉. For such vector S12|ϕ〉 = S13|ϕ〉 =

S14|ϕ〉 = S23|ϕ〉 = S24|ϕ〉 = |ϕ〉 and therefore also S34|ϕ〉 = S24S23S24|ϕ〉 =
|ϕ〉, hence the state ϕ is symmetric also with respect to exchange 3 ↔ 4.
Consequently, it is invariant under the swap of arbitrary subsystems, i.e. it
belongs to the completely symmetric subspace. Therefore, the greatest joint
subspace of supports of P sym

123 and P sym
124 corresponds to the projection P sym

1234 .
Further we shall prove that the projections Q123 = P sym

123 − P sym
1234 and

Q124 = P sym
124 − P sym

1234 are not mutually orthogonal and we shall specify the
support of Q123 + Q124. It is relatively stragihtforward to verify that the
following unnormalized vectors

|ω1〉 = |ϕ+
00〉12|ϕ−01〉34 + |ϕ+

00〉13|ϕ−01〉24 + |ϕ+
00〉23|ϕ−01〉14 ,

|ω2〉 = |ϕ+
00 ⊗ ϕ+

11〉 − |ϕ+
11 ⊗ ϕ+

00〉+ 2|ϕ+
01 ⊗ ϕ−01〉 ,

|ω3〉 = |ϕ+
11〉12|ϕ−01〉34 + |ϕ+

11〉13|ϕ−01〉24 + |ϕ+
11〉23|ϕ−01〉14 ,

form an orthogonal basis of the support of Q123. These vectors are orthogonal
to vectors |ηj〉 forming the completely symmetric subspace. In fact, they are
completely symmetric only with respect to three indexes (123), but they not
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with respect to exchanges with the fourth qubit, hence, P sym
12 ⊗ P sym

34 |ωj〉 is
not proportional to |ωj〉. In the same way we can design a basis for each
Qjkl, in particular, for Q124

|ω′1〉 = −|ϕ+
00〉12|ϕ−01〉34 + |ϕ+

00〉14|ϕ−01〉23 + |ϕ+
00〉24|ϕ−01〉13 ,

|ω′2〉 = |ϕ+
00 ⊗ ϕ+

11〉 − |ϕ+
11 ⊗ ϕ+

00〉 − 2|ϕ+
01 ⊗ ϕ−01〉 ,

|ω′3〉 = −|ϕ+
11〉12|ϕ−01〉34 + |ϕ+

11〉14|ϕ−01〉23 + |ϕ+
11〉24|ϕ−01〉13 .

Since 〈ωj|ω′k〉 = −2δjk the pair of unnormalized vectors |ωj〉, |ω′j〉 forms a
two-dimensional subspace orthogonal to remaining vectors. Equal superpo-
sitions |ω+

j 〉 = |ωj〉 + |ω′j〉 are already symmetric in 3 ↔ 4 exchange, hence
|ω+

j 〉 ∈ P sym
12 ⊗ P sym

34 . On the other hand, the vectors |ω−j 〉 = |ωj〉 − |ω′j〉 are
antisymmetric in 3 ↔ 4, hence |ω−j 〉 ∈ P sym

12 ⊗P asym
34 . It is easy to verify that

they are orthogonal, i.e. 〈ω+
j |ω−j 〉 = 0, because 〈ωj|ωj〉 = 〈ω′j|ω′j〉 = 6 and

〈ωj|ω′j〉 = 〈ω′j|ωj〉 = −2. Moreover, 〈ω+
j |ω+

j 〉 = 8 and 〈ω−j |ω−j 〉 = 16. Since

|ωj〉 = 1
2
(|ω+

j 〉+ |ω−j 〉), |ω′j〉 = 1
2
(|ω+

j 〉 − |ω−j 〉) we have

Q123 + Q124 =
1

6

∑
j

(|ωj〉〈ωj|+ |ω′j〉〈ω′j|)

=
∑

j

1

12
(|ω+

j 〉〈ω+
j |+ |ω−j 〉〈ω−j |)

=
∑

j

(
4

3

1

16
|ω−j 〉〈ω−j |+

2

3

1

8
|ω+

j 〉〈ω+
j |

)
,

where 1
16
|ω−j 〉〈ω−j | and 1

8
|ω+

j 〉〈ω+
j | are one-dimensional projections, hence, we

get the spectral decomposition of Q123 + Q124 with eigenvalues 2/3, 4/3. For
our purposes the relevant part is associated with vectors |ω+

j 〉, because |ω−j 〉
are not from the support of P sym

12 ⊗ P sym
34 .
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