The Mathematical Language of Quantum Theory
Teiko Heinosaari and Mario Ziman
Cambridge University Press, 2012

ERRATA

(21.3.2013)

- page 13, equation above Eq.(1.21):

The equality should be \leq.

- page 14, Example 1.19, 3rd displayed equation:
$\sum_{j=0}^{\infty}\left|\zeta_{j}\right|^{2}$ should be $\sqrt{\sum_{j=0}^{\infty}\left|\zeta_{j}\right|^{2}}$.
- page 59 , 1st line:
... but $\xi_{\epsilon} \notin \mathcal{S}(\mathcal{H})$. ... should be ... but ξ_{ϵ} is not positive. ...
- page 59, Proof of Proposition 2.18, 3rd line:

Sentence "In particular, $\xi_{\epsilon} \notin \mathcal{S}(\mathcal{H})$." should be removed.

- pages 68-69 (proof of Prop. 2.30) and also pages 74-75:

Strictly speaking, to say linearity (for the extensions), one has to show also that $\tilde{E}(c T)=c \tilde{E}(T)$ for $c \in C$ (in addition to $\tilde{E}(T+S)=\tilde{E}(T)+\tilde{E}(S)$). This follows directly from Eq.(2.20).

- page 103 , the first displayed equation:

It should read

$$
P_{\psi}=|\psi\rangle\langle\psi|=\sum_{j, k=1}^{n} \sqrt{p_{j} p_{k}}\left|\eta_{j}\right\rangle\left\langle\eta_{k}\right| \otimes\left|\phi_{j}\right\rangle\left\langle\phi_{k}\right|
$$

- page 112, Example 3.11, 1st line under Eq.(3.7):
... satisfy the relation $\vec{m}_{j} \cdot \vec{m}_{k}=-\frac{1}{2}$ for $j \neq k \ldots$ should be ... satisfy the relations $\vec{m}_{j} \cdot \vec{m}_{k}=-\frac{2}{9}$ for $j \neq k$ and $\left\|\vec{m}_{k}\right\|=\frac{2}{3} \ldots$
- page 145, displayed Eq. above Eq.(3.43):
$\frac{2}{3}$ should be $\frac{3}{2}$
- page 147, 4th line from bottom:

Notation is not properly introduced. In fact, $E_{\vec{j}}=\mathrm{A}(\vec{j})=\mathrm{A}\left(j_{1}\right) \otimes \cdots \otimes \mathrm{A}\left(j_{n}\right)$, $f_{j}=f(j)$ and $p_{j}=p(j)$.

- page 166, Example 3.83, last reference:
[5] should be [4]
- page 181 , 2 nd line of the first displayed equation:
tr_{B} should be $\operatorname{tr}_{\text {anc }}$
- page 181 , 2nd displayed equation:
tr_{B} should be $\operatorname{tr}_{\text {anc }}$
- page 192, Proof of Proposition 4.27, beginning of the 7th line:
\sum_{s} should be $\sum_{s} \sum_{j, j^{\prime}}$
- page 208, right-hand side of Eq.(4.49): indexes,
$\left|\varphi_{j} \otimes \varphi_{k}\right\rangle\left\langle\varphi_{j} \otimes \varphi_{k}\right|$ should be $\left|\varphi_{j} \otimes \varphi_{j}\right\rangle\left\langle\varphi_{k} \otimes \varphi_{k}\right|$
- page 268, Example 6.12:

In the first displayed equation \pm is missing on the right-hand side.

- page 288 , line before eq (6.34):
\mathcal{R} should be \mathbb{R}

