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Historical background

• entanglement - a relationship or involvement that compromises the participants

• quantum entanglement - introduced by E.Schrödinger
(“entanglement of predictions”)

E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik
Naturwissenschaften 23: pp.807-812; 823-828; 844-849 (1935)
http://www.tu-harburg.de/rzt/rzt/it/QM/cat.html

• existence of two-particle states ΨAB 6= φA ⊗ χB

• properties of individual systems seems to be senseless in such cases

• strange “correlations” of predictions between experiments on individual particles
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Einstein-Podolski-Rosen problem

• realism = ability of deterministic predictions require that the state possess the prop-
erty before the measurement, i.e. even without the measurement

• locality = no instantenuous actions, i.e. operations on system A does not affect the
properties of system B instantenuously, and vice versa

• EPR requirement every theory must satisfy such conditions

• two half-spins in state |Ψ〉 = 1√
2
(| ↑〉A ⊗ | ↓〉B − | ↓〉A ⊗ | ↑〉B)

• fact: measuring ~a · ~σ⊗ IB determines outcomes of IA⊗~b · ~σ with certainty if ~b = ~a

• local realism ⇒ spin B must possess the property “having spin ~a” before the mea-
surement, or we must consider existence of instantenuous nonlocal action
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Einstein-Podolski-Rosen problem

• two half-spins in state |Ψ〉 = 1√
2
(| ↑〉A ⊗ | ↓〉B − | ↓〉A ⊗ | ↑〉B)

• local realism ⇒ spin B must possess the property “having spin ~a” before the mea-
surement, or we must consider existence of instantenuous nonlocal action

• 1st BUT: choice of ~a is arbitrary and can be decided after the state is created
local realism ⇒ spin is determined in all directions

• 2nd BUT: QT description ⇒ spin can be determined at most in one direction !!!

• EPR conclusion→ quantum state description is incomplete and allows spooky actions
at a distance

• alternative: local hidden variables predicting individual outcomes

• EPR believed that such theory is possible

4



Bell inequalities

• local realistic model: A(~a, λ), B(~b, λ) ∈ ±1 and 〈~a⊗~b〉 =
∫
dλ%(λ)A(~a, λ)B(~b, λ)

• λ is the hidden parameter, or set of parameters

• knowledge of λ ⇒ ability to make deterministic predictions for all measurements

• local hidden variable model

BLHV = |〈~a⊗ (~b +~b′) + ~a′ ⊗ (~b−~b′)〉|
=

∣∣∣∣∣∫ dλA(~a, λ)[B(~b, λ) +B′(~b′, λ)] + A′(~a′, λ)[B(~b, λ)−B′(~b′, λ)]
∣∣∣∣∣

≤ ∫
dλ

∣∣∣∣∣A(~a, λ)[B(~b, λ) +B′(~b′, λ)] + A′(~a′, λ)[B(~b, λ)−B′(~b′, λ)]
∣∣∣∣∣

≤ 2

(1)

• quantum theory prediction for singlet

BQM = |〈~a⊗ (~b +~b′) + ~a′ ⊗ (~b−~b′)〉| = | − ~a · (~b +~b′)− ~a · (~b−~b′)|
= 2

√
2 > 2 ≥ BLHV

(2)

• QM violates the LHV model contraints given by Bell inequality
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Outline

1. History and motivation

2. LOCC operations and entanglement

3. Maximally entangled states

4. Applications of maximally entangled states
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Pure states entanglement

• entanglement: difference between classical and quantum
- feature of quantum state necessary in violation of BI, nonexistence of LHV model

• definition: pure state |Φ〉AB is entangled if and only if |Φ〉AB 6= |φ〉A ⊗ |χ〉B
• Schmidt decomposition: (important tool)

|Φ〉AB = Σd−1
j=0

√
λj|ej〉A ⊗ |fj〉B (3)

where 〈ej|e′j〉 = δjj′, 〈fj|f ′j〉 = δjj′ and λj are positive and sum up to unity. Hence
all states are locally unitary equivalent to states |Ψ〉AB = a|00〉 + b|11〉 = (UA ⊗
UB)|Φ〉AB.

• ~λΦ = (λ0, . . . , λd−1) is the vector of Schmidt numbers ordered decreasingly, i.e.
λ0 ≥ λ1 ≥ . . . ≥ λd−1.

• what about mixed states?
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Concept of LOCC operations

• central notion describing specific manipulation of physical systems

• LOCC = local operations (local measurements, local Hamiltonians) and classical
communication

• for classical states:
- all states are closed under LOCC operations, i.e. for all probability distributions
π(a, b), π′(a, b): π ↔ π′ by means of LOCC
- all classical operations are LOCC type

• for pure quantum states:
- factorized states are closed under LOCC operations
- entangled pure states can be transformed into factorized states

• LOCC-based partial ordering
% � ω if there exists ELOCC such that ELOCC[%] = ω
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Entanglement for mixed states

• LOCC-based partial ordering: % � ω if there exists ELOCC such that ELOCC[%] = ω

• separable states Ssep

- def 1: set of LOCC-smallest states
- def 2: convex hull of factorized states, i.e. % = Σjpj|φj〉〈φj| ⊗ |χj〉〈χj|.
- closed under LOCC operations
- every state can be transformed into arbitrary separable state

• entangled states: complement of the set of separable states, i.e. Sent = S(H) \ Ssep

• formal definition: a state % is entangled if and only if it cannot be written in the form

% 6= Σjpj|φj〉〈φj| ⊗ |χj〉〈χj|
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Maximally entangled states

• definition: states from which all states can be prepared by deterministic LOCC

• alternatively, largest element(s) with respect to LOCC ordering

• is/are there such state/states? if yes, are they LOCC related?

• sufficient to prove for pure states, because mixed states are just classical distributions
over pure states, i.e. can be prepared by means of LOCC
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Maximally entangled pure states

• definition: states from which all states can be prepared by deterministic LOCC

• pure states: |Ψ〉 → |Φ〉 iff ~λΨ ≺ ~λΦ (majorization criterion), i.e. ΣJ
j=0λ

Ψ
j ≤ ΣJ

j=0λ
Φ
j

for all J = 0, . . . , d− 1.

• maximally entagled pure state λΨ
j = 1/d for all j, i.e. |Ψ+〉 = 1√

d
Σ|j〉A ⊗ |j〉B.

• preparation of |Ψ〉 = a|00〉 + b|11〉:
1. addition of ancilla |0〉A′ ⊗ |Ψ+〉AB
2. local unitary operation |00〉AA′ → a|00〉AA′ + b|11〉AA′, |01〉AA′ → b|01〉AA′ +
a|10〉AA′ resulting in state 1√

2
[|0〉A′ ⊗ (a|00〉AB + b|11〉AB) + |1〉A′ ⊗ (b|10〉AB +

a|01〉AB)]

3. measurement |0〉〈0|A′ ⊗ IAB − |1〉〈1|A′ ⊗ IAB = σA
′

z ⊗ IAB
4. Alice sends result to Bob

5. Bob performs σ0 = I , or σ1 = σx on his qubit to end up with state a|00〉+ b|11〉
deterministically.
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Maximally entangled states

• solution & definition: state is maximally entangled iff it is pure and its subsystems
are in total mixture state, i.e. TrBΨAB = TrAΨAB = 1

2I .

• LOCC transformations can transform maximally entangled state to arbitrary other
state

• All maximally entangled states Ψ,Ψ′ are locally unitarily equivalent, i.e.
Ψ′ = (UA ⊗ UB)Ψ, in fact Ψ′ = (UA ⊗ I)Ψ

• Maximally entangled state cannot be prepared from any other state by mens of LOCC
operations, i.e. % 6→ Ψ+

• if %→ Ψ+, then % is maximally entangled state.
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Application: superdense coding

• situation: Alice and Bob share |Ψ+〉 = 1√
2
(|00〉 + |11〉)

• step 1 (encoding): apply operation σj ⊗ IB on state |Ψ+〉
• main trick: orthogonal basis related by local unitary transformations

〈(σk ⊗ IB)Ψ+|(σj ⊗ IB)Ψ+〉 =
1

2
Tr[σjσk] = δjk (4)

• step 2 (qubit transfer): Alice sends her qubit to Bob

• step 3 (measurement): Bell measurement in basis |(σj ⊗ I)Ψ+〉 gives j

• usual magic note: qubit channel transfers 2 classical bits per one usage, but at most
single bit can be extracted from single qubit alone [classical bound]

• transfer is secure, because the transmitted qubit does not contain any information

• 2cbits=qbit + EPR
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Application: quantum teleportation

• not a matter transfer and not instantenuous = not StarTrek teleportation

• mathematics behind

|φ〉S ⊗ |Ψ+〉AB = 1√
2
|φ〉S ⊗ [| ↑〉A| ↑〉B + | ↓〉A| ↓〉B]

= 1
2Σ

3
j=0|(IS ⊗ σj)Ψ+〉SA ⊗ |σjφ〉B

(5)

• mutually orthogonal states |(σj ⊗ I)Ψ+〉 forming Bell measurement

• step 1 (measurement): Alice measures outcome j and Bob’s spin is in state |σjφ〉
• step 2 (communication): transfer of 2 bits of information encoding the value j

• step 3 (correction): Bob applies σj to recover the original state |φ〉B (σ2
j = I)

• note: teleportation transfers “only” (quantum) information and it is not instantenu-
ous

• qbit=2cbits+EPR
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Entanglement theory

• decide (theoretically/experimentally) whether a given state is entangled, or not

• task: entanglement identification and quantification (entanglement measures)

• lacking of operational meaning of entanglement

• Bell inequality? → there are (mixed) entangled states with LHV models (Werner,1982)

• teleportation? → existence of bound entangled states

• superdense coding? → entangled states with Cquantum(%) ≤ Cmax
class

• correlations? → equivalent for pure states, but for mixed states the intrinsic quantum
correlations (entanglement) cannot be separated from “classical” correlations

• nonlocality 6⇔ entanglement 6⇔ correlations
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Concluding remarks

• state % is entangled if and only if % 6= Σjpj|ψj〉〈ψj| ⊗ |φj〉〈φj|
• main concept: LOCC operations and LOCC-induced ordering

• nonlocality 6⇔ entanglement 6⇔ nonclassical correlations

• applications: teleportation, superdense coding, cryptography, q-computation

• entanglement is still not conceptually understood (lacking of operational definition)

• easy for pure states and two qubits

• multipartite entanglement (phase transitions, monogamy)
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Entanglement measures - axioms

1. Sharpness E(%) = 0 iff % is not entangled

2. Local unitary invariance E(%) = E(U1 ⊗ U2%U
†
1U

†
2)

3. Nonincresing under LOCC E(%) ≥ ΣjpjE(Mj[%])

4. Normalization E(%) is maximal only for maximally entangled states

5. Convexity E(%) ≤ ΣjpjE(%j)

6. Additivity E(%⊗ σ) = E(%) + S(%)

7. Continuity
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