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Historical background

e entanglement - a relationship or involvement that compromises the participants

e quantum entanglement - introduced by E.Schrodinger
(“entanglement of predictions” )

E. Schrodinger, Die gegenwartige Situation in der Quantenmechanik
Naturwissenschaften 23: pp.807-812; 823-828; 844-849 (1935)

http://www.tu-harburg.de/rzt/rzt/it/QM/cat.html
e existence of two-particle states ¥ o5 # ¢4 ® xB
e properties of individual systems seems to be senseless in such cases

e strange “correlations” of predictions between experiments on individual particles




Einstein-Podolski-Rosen problem

e realism = ability of deterministic predictions require that the state possess the prop-
erty before the measurement, i.e. even without the measurement

e |ocality = no instantenuous actions, i.e. operations on system A does not affect the
properties of system B instantenuously, and vice versa

e EPR requirement every theory must satisfy such conditions

e two half-spins in state |U) = \}5(| Da®|p—[1)a®]| 1))

o %

e fact: measuring a- o ® Ip determines outcomes of /4 ® b- & with certainty if b = a

e |ocal realism = spin B must possess the property “having spin @’ before the mea-
surement, or we must consider existence of instantenuous nonlocal action



Einstein-Podolski-Rosen problem

e two half-spins in state |U) = \}§(| Nax| De—11)a®| T)ps)

e |ocal realism = spin B must possess the property “having spin a" before the mea-
surement, or we must consider existence of instantenuous nonlocal action

e 1st BUT: choice of @ is arbitrary and can be decided after the state is created
local realism = spin is determined in all directions

e 2nd BUT: QT description = spin can be determined at most in one direction !!!

e EPR conclusion — quantum state description is incomplete and allows spooky actions
at a distance

e alternative: local hidden variables predicting individual outcomes

e EPR believed that such theory is possible



Bell inequalities

e local realistic model: A(@, \), B(b,\) € +1 and (@ ® b) = 1 dXo(A\)A(a@, \)B(b, \)
e )\ is the hidden parameter, or set of parameters
e knowledge of A\ = ability to make deterministic predictions for all measurements

e local hidden variable model
Brov = |(d (b+b’)+a ®(b—b’>>|
= MA@, N)[B(b,\) + B'(V, M) + A'(@, N)[B(b,\) — B/, )]

g i 1
< 1dAA(@ N)[B(b,A) + B'(V, \)] + A'(@, N)[B(b, \) — B'(Y, )] 1)
< 2
e quantum theory prediction for singlet
Bow = @@ b+0)+d@ @ b-0)=|—a (b+t)—a-(b-1b) B

= 2/2>2> By
e QM violates the LHV model contraints given by Bell inequality
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Outline

1. History and motivation
2. LOCC operations and entanglement
3. Maximally entangled states

4. Applications of maximally entangled states



Pure states entanglement

e entanglement: difference between classical and quantum
- feature of quantum state necessary in violation of Bl, nonexistence of LHV model

e definition: pure state |®) 4p is entangled if and only if |®)ap # [P) a4 ® |X)B
e Schmidt decomposition: (important tool)
0)ap = TjzgyAjles)a @ |f) (3)

where (ejle’) = 0,51, (f;f;) = ;7 and A; are positive and sum up to unity. Hence
all states are locally unitary equivalent to states |V) 45 = a|00) 4+ b[11) = (Us ®
Up)|®) 5.

° Xq) = (Agy-..,Ag_1) is the vector of Schmidt numbers ordered decreasingly, i.e.
Ao A > > A

e what about mixed states?



Concept of LOCC operations

e central notion describing specific manipulation of physical systems

e LOCC = local operations (local measurements, local Hamiltonians) and classical
communication

e for classical states:
- all states are closed under LOCC operations, i.e. for all probability distributions
m(a,b), ' (a,b): ™ < 7" by means of LOCC
- all classical operations are LOCC type

e for pure quantum states:

- factorized states are closed under LOCC operations
- entangled pure states can be transformed into factorized states

e LOCC-based partial ordering
0 > w if there exists & occ such that ELocclo] = w



Entanglement for mixed states

e LOCC-based partial ordering: ¢ > w if there exists £ occ such that Epcclo] = w

e separable states Seep
- def 1: set of LOCC-smallest states
- def 2: convex hull of factorized states, i.e. ¢ = X;p;|¢;)(P;| @ |x;)(X;l-
- closed under LOCC operations
- every state can be transformed into arbitrary separable state

e entangled states: complement of the set of separable states, i.e. Sent = S(H) \ Ssep

e formal definition: a state p is entangled if and only if it cannot be written in the form

0 7 Xpjld) (D] @ [x5) (X



Maximally entangled states

e definition: states from which all states can be prepared by deterministic LOCC
e alternatively, largest element(s) with respect to LOCC ordering
e is/are there such state/states? if yes, are they LOCC related?

e sufficient to prove for pure states, because mixed states are just classical distributions
over pure states, i.e. can be prepared by means of LOCC
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Maximally entangled pure states

e definition: states from which all states can be prepared by deterministic LOCC

o pure states: |U) — |®) iff Xy < X (majorization criterion), i.e. N_gA] < X_AY
forall J=0,...,d—1.

e maximally entagled pure state A} = 1/d for all j, i.e. [V, ) = \}EZUM ® |7)B.
e preparation of |¥) = a|00) + b[11):
1. addition of ancilla |0) 4 ® |V, ) 4p
2. local unitary operation [00) 44r — a|00) g4ar + b|11) gar, [01) gar — b|01) qur +
a|10) 44 resulting in state \}5[\O>A/ ® (a]00) ap + b|11) ap) + |1) 4 ® (b]10) 4p +
al01) ap))
3. measurement |0)(0| 4 @ Iap — [1)(1|4 ® Iup = 0 @ 145
4. Alice sends result to Bob

5. Bob performs og = I, or 1 = 0, on his qubit to end up with state a|00) + b|11)
deterministically.
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Maximally entangled states

e solution & definition: state is maximally entangled iff it is pure and its subsystems

are in total mixture state, i.e. TrgWap = TraWap = %].

e LOCC transformations can transform maximally entangled state to arbitrary other
state

e All maximally entangled states W, U’ are locally unitarily equivalent, i.e.

U = (Uy @ Up)V, in fact ¥ = (Uy @ 1)U

e Maximally entangled state cannot be prepared from any other state by mens of LOCC
operations, i.e. 0 /& VU,

o if o — W, then p is maximally entangled state.
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Application: superdense coding

e situation: Alice and Bob share |V ) = \}§(|OO> + [11))
e step 1 (encoding): apply operation 0; ® I on state |V )

e main trick: orthogonal basis related by local unitary transformations

(04 ® I5)¥, (0 @ Is)0,) = Trloyo] = ()

e step 2 (qubit transfer): Alice sends her qubit to Bob
e step 3 (measurement): Bell measurement in basis |(0; @ )V ) gives j

e usual magic note: qubit channel transfers 2 classical bits per one usage, but at most
single bit can be extracted from single qubit alone [classical bound|

e transfer is secure, because the transmitted qubit does not contain any information

e 2cbits=qbit + EPR
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Application: quantum teleportation

e not a matter transfer and not instantenuous = not StarTrek teleportation

e mathematics behind

[0)s @ Vi) ap = 1&5\@5@ | Dal s+ 11)al 1) (5)
= 35=0l(Is ® 0) V)54 ® |oj )5

e mutually orthogonal states |(0; ® 1)V ) forming Bell measurement

e step 1 (measurement): Alice measures outcome j and Bob's spin is in state |o;¢)

e step 2 (communication): transfer of 2 bits of information encoding the value j

e step 3 (correction): Bob applies o; to recover the original state |¢) (07 = I)

e note: teleportation transfers “only” (quantum) information and it is not instantenu-
ous

o gbit=2cbits+-EPR
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Entanglement theory

e decide (theoretically /experimentally) whether a given state is entangled, or not

e task: entanglement identification and quantification (entanglement measures)

e lacking of operational meaning of entanglement

e Bell inequality? — there are (mixed) entangled states with LHV models (Werner,1982)

e teleportation? — existence of bound entangled states

max

e superdense coding? — entangled states with Cyantum(0) < CH

e correlations? — equivalent for pure states, but for mixed states the intrinsic quantum
correlations (entanglement) cannot be separated from “classical” correlations

o nonlocality <5 entanglement < correlations
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Concluding remarks

e state g is entangled if and only if o # X;p;|1;) (V| @ |9;) (@]
e main concept: LOCC operations and LOCC-induced ordering

e nonlocality <5 entanglement <5 nonclassical correlations

e applications: teleportation, superdense coding, cryptography, g-computation

e entanglement is still not conceptually understood (lacking of operational definition)
e casy for pure states and two qubits

e multipartite entanglement (phase transitions, monogamy)
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N o oA e e

Entanglement measures - axioms

. Sharpness E(o) = 0 iff ¢ is not entangled

Local unitary invariance E(p) = E(U; ® UQQU{LU2T>
Nonincresing under LOCC E(p) > ¥;p,E(M,|o])
Normalization E/(p) is maximal only for maximally entangled states

Convexity E(o) < X;p;E(0))

. Additivity E(o ® o) = E(o) + S(o)
. Continuity
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