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1. Introduction

Position coordinates and corresponding components of linear momentum of a free
quantum particle are — according to usual quantum mechanics — complementary
observables, a term coined by Niels Bohr. The main expression of this property (for
quantum mechanics on the real line) are Heisenberg’s uncertainty relations ∆q∆p ≥ ~/2,
implying that there are no quantum states with arbitrarily narrow distributions of both
q and p. If there were normalized states with ∆q = 0, i.e. eigenstates of q, then ∆p
would diverge, hence measured values of p couldn’t be predicted. However, due to
continuity of spectra of q and p, the strict limits ∆q = 0 or ∆p = 0 cannot be physically
attained. Complementarity thus means that quantum systems possess properties that
are mutually exclusive: the observation of one of them precludes the observation of the
other. A mathematical expression of complementarity of coordinate and momentum is

|〈p|q〉|2 = const., (1)

i.e. if we know everything about position, we know nothing of momentum, and vice
versa.

It is interesting and may have deep physical significance that pairs of complementary
observables also exist for systems with finite-dimensional Hilbert spaces, as noted by
J. Schwinger [1] (see also [2, 3]). For such pairs precise knowledge of one of them
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implies that all possible outcomes of measuring the other one are equally probable, as
exemplified in (1).

If complementary observables have non-degenerate spectra, complementarity can be
expressed in terms of the corresponding normalized eigenstates forming complementary
bases. Then a measurement over one basis provides maximum uncertainty as to the
outcome of a measurement in the other because all N possible outcomes will have equal
probabilities 1/N . The first attempt to use complementary bases in quantum state
determination is due to Ivanović [4] who provided explicit formulae for N + 1 such
bases if N is an odd prime. The idea of using these bases for optimal quantum state
determination was further developed by Wootters [5] and by Wootters and Fields [6]
who called them mutually unbiased. In the latter paper they presented a construction of
N + 1 mutually unbiased bases in an arbitrary prime power-dimensional Hilbert space
and also demonstrated that they may serve as a maximal collection of measurements
for optimal state determination.

Our main concern are N -level systems which provide basic models proposed
for quantum information processing, since mutually unbiased bases find important
applications there [7]. Their property that the outcome of a measurement in one
selected basis gives no information about the possible results of measurements in all
other mutually unbiased bases is of advantage for instance in key distribution protocols
in quantum cryptography [8]. Observables with such a property for two-level systems
(whose vectors are called qubits in quantum computation) are three Pauli matrices.
Recently, d-level quantum systems (with vectors called qudits) have come to a closer
attention. It has been shown that such systems can be realized experimentally and
quantum key distribution protocols using qudits have been introduced (see e.g. [9]).
Since such protocols use mutually unbiased bases in dimensions higher than two, it is
desirable to study constructions of mutually unbiased bases for higher dimensions, too.
It is also known that complementary observables are useful in quantum state tomography
[10].

2. Quantum structures in finite-dimensional Hilbert spaces

Our starting point for quantum mechanics in the Hilbert space of finite dimension N
is a model of quantum kinematics due to H. Weyl [11]. Its geometric interpretation as
the simplest quantum kinematic on a finite discrete configuration space formed by a
periodic chain of N points was elaborated by J. Schwinger [2]. In [12, 13] we proposed
its group theoretical formulation based on Mackey’s system of imprimitivity [14] which
provides a group theoretical generalization of Heisenberg’s commutation relations. For
a recent review of the topic see [15, 16].

In anN -dimensional Hilbert space with orthonormal basis B = {|0 〉, |1 〉, . . . |N − 1 〉}
we can establish a group generated by unitary operators QN , PN defined by the relations

QN |j 〉 = ωj
N |j 〉, j = 0, 1, . . . , N − 1, (2)

PN |j 〉 = |j − 1 (mod N )〉; (3)

here ωN is a primitive N -th root of unity, e.g. ωN = exp(2πi/N). If B is the standard
(or canonical) basis of CN , the operators PN and QN are represented by matrices

QN = diag
(
1, ωN , ω

2
N , · · · , ωN−1

N

)
(4)
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and

PN =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

. . .
0 0 0 · · · 0 1
1 0 0 · · · 0 0




(5)

In finite-dimensional quantum mechanics the unitary matrices QN and PN are analogues
of exponentials of position and momentum in the continuous coordinate representation
[11]. Namely, they fulfil an algebraic relation

PNQN = ωNQNPN (6)

which is analogous to the relation for Weyl’s exponential form of Heisenberg’s
commutation relations. Further,

ωNPN = PNωN , ωNQN = QNωN , PN
N = QN

N = IN , ωN
N = 1, (7)

where IN is the N ×N unit matrix.
This model has a simple geometric interpretation. The cyclic group ZN =

{0, 1, . . .N − 1} serves as a configuration space for N -dimensional quantum mechanics.
Elements of ZN label the vectors of the basis B = {|0 〉, |1 〉, . . . |N − 1 〉} with the physical
interpretation that |j 〉 is the normalized eigenvector of position at j ∈ ZN . The natural
transitive action of ZN on ZN via addition modulo N is represented by unitary operators
U(k) = P k

N . Their action on vectors |j 〉 from basis B is given by

U(k)|j 〉 = P k
N |j 〉 = |j − k (mod N )〉 (8)

The ZN analogue of the Fourier transformation is the discrete Fourier
transformation given by the unitary Sylvester matrix SN with elements

(SN)jk = 〈j |SN |k〉 =
ωjk

N√
N
. (9)

The relations

S−1
N PNSN = QN , S−1

N QNSN = P−1
N (10)

show that the discrete Fourier transform diagonalizes the momentum operator,
i.e. performs the transition from the coordinate representation to the momentum
representation.

The finite group generated by ωN , QN and PN

ΠN =
{
ωl

NQ
i
NP

j
N |l, i, j = 0, 1, 2, . . . , N − 1

}
(11)

consists of N3 unitary matrices and is called the finite Heisenberg group [17] or the
Pauli group [18]. It has been found useful in connection with mutually unbiased bases
[19]. Note also that the set of N2 unitary matrices

{
Qa

NP
b
N |a, b ∈ {0, 1, . . . , N − 1}

}
constitutes, as Schwinger [1] has shown, a complete operator basis of the Hilbert space
of all complex matrices orthogonal in the sense of the inner product

Tr
((
Qa

NP
b
N

)†
Qc

NP
d
N

)
= Nδacδbd for all a, b, c, d ∈ ZN . (12)
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3. Complementary observables and mutually unbiased bases

Mutually unbiased bases in Hilbert spaces of finite dimensions are closely related to the
quantal notion of complementarity. Let us start with two almost identical definitions.

Definition 1 [3]. Two observables A and B of a quantum system with Hilbert space
of finite dimension N are called complementary, if their eigenvalues are non-degenerate
and any two normalized eigenvectors |ui〉 of A and |vj 〉 of B satisfy

|〈ui |vj 〉| =
1√
N
. (13)

Then in an eigenstate |ui〉 of A all eigenvalues b1, . . . , bN of B are measured with
equal probabilities, and vice versa. This means that exact knowledge of the measured
value of A implies maximal uncertainty to any measured value of B. For the next
definition note that the (non-degenerate) eigenvalues ai of of A and bj of B are in fact
irrelevant, since only the corresponding orthonormal bases |ui〉 and |vj 〉 are involved.

Definition 2 [5, 6]. Two orthonormal bases in an N-dimensional complex Hilbert
space

{|ui〉|i = 1, 2, . . . , N} and {|vj 〉|j = 1, 2, . . . , N}
are called mutually unbiased if inner products between all possible pairs of vectors taken
from distinct bases have the same magnitude 1/

√
N ,

|〈ui |vj 〉| =
1√
N

for all i, j ∈ {1, 2, . . . , N} . (14)

In the above sense one may call two measurements to be mutually unbiased, if the
bases composed of the eigenstates of their observables (with non-degenerate spectra)
are mutually unbiased. Further, a set of bases is called mutually unbiased if every two
different bases from the set are mutually unbiased.

An important fact was proved in [6] (for further references see also [20]) that the
upper limit to the maximal possible number of bases that can form a set of mutually
unbiased bases in an N -dimensional Hilbert space is N + 1:

Theorem 1. In an N-dimensional Hilbert space, there cannot be more than N + 1
mutually unbiased bases.

Finally we remark that a criterion of equivalence of two pairs of mutually unbiased
bases was formulated in [3].

4. Mutually unbiased bases for prime N

The question whether it is possible to attain the maximal number of N + 1 mutually
unbiased bases was answered in positive in [6], but under a number theoretic proviso:
a maximal collection of N + 1 mutually unbiased bases exists in Hilbert spaces of
dimensions equal to arbitrary powers of prime numbers. In this paper we will devote
our attention to prime dimensions.

In the particular case N = 2 it can be easily verified that the set of eigenvectors of
the Pauli matrices forms a complete collection of three mutually unbiased bases:

{|0 〉, |1 〉} ,
{
|0 〉 + |1 〉√

2
,
|0 〉 − |1 〉√

2

}
,

{
|0 〉 + i|1 〉√

2
,
|0 〉 − i|1 〉√

2

}
. (15)

The construction of such a set of bases in higher dimensions can be understood as a
generalization of this property. The formulae for N+1 mutually unbiased bases forming
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a maximal set for any odd prime dimension N were first given (not derived) in [4]; we
quote them according to [6]:

|v (0 )
k 〉j = δjk,

|v (1 )
k 〉j =

1√
N
e

2πi
N

(j2+jk),

...

|v (r)
k 〉j =

1√
N
e

2πi
N

(rj2+jk),

...

|v (N−1 )
k 〉j =

1√
N
e

2πi
N

((N−1)j2+jk),

|v (N )
k 〉j =

1√
N
e

2πi
N

jk.

Here |v (r)
k 〉j denotes the j-th component of the k-th vector in r-th basis, r = 0, 1, . . . , N .

The first (r = 0) basis is the canonical basis, the last one (r = N) is its discrete Fourier
transform. Mutual unbiasedness of the bases follows from the Gauss sums of number
theory valid for p odd prime [21]

∣∣∣∣∣

p−1∑

k=0

e
2πi
p

(ak2+bk)

∣∣∣∣∣ =
1
√
p
; (16)

here a, b ∈ N, a 6= 0 and a is not an integral multiple of p.
A derivation of these N + 1 mutually unbiased bases has been given for any prime

dimension N in [19] in terms of unitary operators QN , PN defined in Section 2:
Theorem 2. Let N be a prime. Then the bases composed of eigenvectors of N + 1

operators

QN , PN , PNQN , PNQ
2
N , . . . , PNQ

N−1
N (17)

are pairwise mutually unbiased and form therefore a maximal set of N + 1 mutually
unbiased bases.

In this paper we are going to give an alternative construction of a complete collection
of N + 1 mutually unbiased bases in a prime-dimensional Hilbert space by using the
finite phase space related to the finite Heisenberg group. We hope that our approach
could provide better insight also in the open problem of composite dimensions.

5. Finite phase space and its group of automorphisms

In order to arrive at an independent proof of Theorem 2 we have to introduce the
necessary group theoretical notions.

First we need to establish a connection between the finite Heisenberg group and
the finite phase space ΓN = ZN × ZN , N = 2, 3, . . . [17, 10]. The elements (l, i, j) of
the finite Heisenberg group were given in (11) with l, i, j = 0, 1, . . . , N − 1. Its center
Z(ΠN) is the set of those elements of ΠN which commute with all elements in ΠN ,

Z(ΠN) = {(l, 0, 0)|l = 0, 1, . . . , N − 1} . (18)

Since the center is a normal subgroup, we can go over to the quotient group ΠN/Z(ΠN).
Its elements are the cosets labeled by pairs (i, j), i, j = 0, 1, . . . , N − 1. The quotient
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group is identified with the finite phase space ΓN . To simplify notation, we shall denote
the cosets corresponding to elements (i, j) of the phase space ΓN by QiP j without
subscripts N ,

QiP j =
{
ωl

NQ
i
NP

j
N | l = 0, 1, . . . , N − 1

}
. (19)

Note that all operators belonging to the same coset have the same eigenvectors because
they differ only by multipliers ωl

N .
Now it is easily seen that the correspondence

φ : ΠN/Z(ΠN) → ΓN = ZN × ZN : QiP j 7→ (i, j),

is an isomorphism of Abelian groups, since

φ
((
QiP j

) (
Qi′P j′

))
= φ

((
QiP j

))
φ

((
Qi′P j′

))
=

= (i, j) + (i′, j ′) = (i+ i′, j + j ′).

We shall now focus on the group of automorphisms of the phase space ΓN . It was
studied in [17]. However, we follow the approach of [22], where instead of cosets the one-
dimensional grading subspaces of the Pauli graded Lie algebra gl(N,C) were considered
and their transformations under the automorphisms of gl(N,C) were investigated. The
subgroup of inner automorphisms was induced by the action

ψX(A) = X−1AX (20)

of matrices X from GL(N,C).
In the same vein we will concentrate on the automorphisms of the form (20),

acting on elements of ΠN , which induce permutations of cosets in ΠN/Z(ΠN). Since
the operators ωl

NQ
a
NP

b
N have the same spectra, the matrices X which induce the

automorphisms (20) are unitary. They can be understood as transformation matrices
that transform a unitary operator (of the form ωl

NQ
a
NP

b
N) to a different basis, in which

the operator is of the form ωmQcP d. Thus X is a transformation matrix between two
orthonormal bases. For explicit forms of matrices X see [17] (for N odd prime), but the
results of [22] will suit better to our purpose.

Automorphisms ψ of the form (20) are equivalent if they define the same
transformation of cosets in ΠN/Z(ΠN):

ψY ∼ ψX ⇔ Y −1QiP jY = X−1QiP jX for all (i, j) ∈ ZN × ZN . (21)

Since the group ΠN/Z(ΠN) has only two generators — the cosets P and Q — condition
(21) is equivalent to

ψY ∼ ψX ⇔ Y −1PY = X−1PX and Y −1QY = X−1QX. (22)

If ψY induces a transformation of ΠN/Z(ΠN), then there must exist elements a, b, c, d ∈
ZN such that

Y −1QY = QaP b and Y −1PY = QcP d. (23)

It follows that to each equivalence class of automorphisms ψY a quadruple (a, b, c, d) of
elements in ZN is assigned. We shall prove more, namely:

Theorem 3. For N prime there is an isomorphism Φ between the set of equivalence
classes of automorphisms ψY and the group SL(2,ZN ) of 2×2 matrices with determinant
equal to 1 modulo N ,

Φ(ψY ) =

(
a b
c d

)
, a, b, c, d ∈ ZN ;
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the action of these automorphisms on ΠN/Z(ΠN) is given by the right action of
SL(2,ZN) on the phase space ΓN = ZN × ZN ,

(i′, j ′) = (i, j)

(
a b
c d

)
. (24)

Proof: To the composition of two automorphisms ψX , ψY corresponding to
(aX , bX , cX , dX) and (aY , bY , cY , dY ), respectively, the product of matrices corresponding
to ψX and ψY is assigned, as can be seen from

(XY )−1Q(XY ) = (Y −1QY )aX (Y −1PY )bX =

= QaY aXP bY aXQcY bXP dY bX = QaXaY +bXcY P aXbY +bXdY ,

and similarly for P

(XY )−1P (XY ) = QcXaY +dXcY P cXbY +dXdY .

Hence

Φ(ψXψY ) = Φ(ψX)Φ(ψY ) (25)

and Φ is an injective homomorphism.
Now matrix elements a, b, c, d cannot be chosen arbitrarily. Consider the action of

ψY :

Y −1QY = QaP b =⇒ Y −1QNY = µQa
NP

b
N , |µ| = 1, (26)

Y −1PY = QcP d =⇒ Y −1PNY = λQc
NP

d
N , |λ| = 1. (27)

By multiplying equation (26) by equation (27) once from the left and once from the
right, we obtain

PNQNY = µλY Qc
NP

d
NQ

a
NP

b
N , QNPNY = µλY Qa

NP
b
NQ

c
NP

d
N . (28)

Using the commutation relation (6) we obtain

ω−ad
N µλY Qa+c

N P b+d
N = PNQNY = ω−1

N QNPNY = ω−1
N ω−bc

N µλY Qa+c
N P b+d

N (29)

leading to the condition

ω−ad
N = ω−bc−1

N . (30)

It will be fulfilled if and only if ad− bc = 1 (mod N), i.e.

det

(
a b
c d

)
= 1 (mod N). (31)

This means that to every ψY acting on ΠN/Z(ΠN) a matrix from SL(2,ZN)

Φ(ψY ) =

(
a b
c d

)

is assigned. Now to every coset from ΠN/Z(ΠN) an element (i, j) of the phase space
ZN × ZN was associated. So finally we check that the action of ψY on QiP j is given by

(i′, j ′) = Qi′P j′ = ψY

(
QiP j

)
= Y −1QiP jY =

= Y −1QiY Y −1P jY = Qia+jcP ib+jd = (ia + jc, ib+ jd),

and this means that the transformation of (i, j) can be written as the right action of
SL(2,ZN) on ZN × ZN

(i′, j ′) = (i, j)

(
a b
c d

)
. (32)
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Finally observe that mapping Φ is an isomorphism, since

Φ : ψX 7→ I2 =⇒ ψX ∈ [ψIN
]

follows from

(i′, j ′) = (i, j) if and only if X−1QiP jX = I−1
N QiP jIN . 2

We conclude this section with
Lemma 1 [23]. The right action of SL(2,ZN) on the phase space ZN × ZN does

not change the determinant of a matrix composed of components of two vectors from
ZN × ZN .

Proof: Consider two vectors (i, j) and (k, l) from ZN×ZN and the matrix

(
i j
k l

)
.

Since the action of A is given by (i′, j ′) = (i, j)A and (k′, l′) = (k, l)A, and because
detA = 1, one immediately gets the result

det

(
i′ j ′

k′ l′

)
= det

((
i j
k l

)
A

)
=

= det

(
i j
k l

)
detA = det

(
i j
k l

)
. 2 (33)

Remarks. For N prime the right action of SL(2,ZN) on the phase space ZN ×ZN

has exactly two orbits — the single point {(0, 0)} and ON = ZN ×ZN\{(0, 0)} consisting
of N2 − 1 points. The stationary subgroup of the point (1, 0) from ON is the Abelian

subgroup {
(

1 0
b 1

)
|b = 0, 1, . . . , N − 1} of order N . Hence the order of SL(2,ZN) is

N(N2 − 1). Further, according to Lemma 1, the determinant (33) is an invariant of the
right action of SL(2,ZN) on ΓN × ΓN . Let us note that SL(2,ZN) transformations of
the finite phase space were also studied in [24].

6. New construction of the maximal set of mutually unbiased bases for N
prime

In this section the finite phase space and its transformations of the form (20) will be
used to introduce an interesting algebraic structure that proves the existence of N + 1
mutually unbiased bases for prime N , thus providing an alternative approach to their
construction. We shall exploit the fact that, for prime N , ZN is a finite field, i.e., there
is also a multiplicative group structure modulo N in Z∗

N = ZN\{0}.
Our construction starts with the partition of the finite phase space ΓN = ZN ×ZN

into equivalence classes [(i, j)] defined by the equivalence relation (i, j) ∼ (i′, j ′), if
there exists r ∈ Z∗

N such that (i′, j ′) = (ri, rj), where the multiplication is understood
modulo N .

We exclude the trivial class [(0, 0)] containing only (0, 0). Then the orbit
ON = ZN × ZN\{(0, 0)} is decomposed into N + 1 classes [(1, 0)] and [(i, 1)] where
i = 0, 1, . . . , N − 1. The fact that ZN is a field for prime N is crucial in the proof
that every element of the orbit ON belongs to some class. Since each class has N − 1
elements, this decomposition contains N2 − 1 elements in total, with the only element
(0, 0) not included.

If an element is of the form (0, i) or (i, 0), then it is obvious that it belongs to classes
[(0, 1)] or [(1, 0)], respectively. An element of the form (i, j), i, j = 1, 2, . . . , N − 1,
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will belong to the class [(k, 1)] where k ∈ {1, 2, . . . , N − 1} is the solution of kj = i
(mod N). The existence and uniqueness of such k is guaranteed by the fact that ZN is
a field for N prime. The partition into classes can be visualized in the following table
of all elements in ZN × ZN\{(0, 0)}:

0 1 2 · · · N-1

0 (0,1) (0,2) · · · (0,N-1)

1 (1,0) (1,1) (1,2) · · · (1,N-1)

2 (2,0) (2,1) (2,2) · · · (2,N-1)

...
...

...
...

. . .
...

N-1 (N-1,0) (N-1,1) (N-1,2) · · · (N-1,N-1)

Here every element (i, j) corresponds to a coset QiP j. All operators in the same
coset differ just by a complex multiplier. Every multiple (ri, rj) of a vector (i, j) by
r ∈ {1, 2, . . . , N − 1} will therefore correspond to the coset QriP rj. Because of relation
(6) it is obvious that operators (QiP j)r and (QriP rj) belong to the same coset. An
important consequence is that elements (ri, rj), r = 1, 2, . . . , N − 1, correspond to
commuting operators, hence have the same eigenvectors. Thus we have proved

Lemma 2. If N is a prime, then there are exactly N + 1 classes of elements from
ON = ZN × ZN\{(0, 0)}, each class containing N − 1 elements. All elements of the
same class correspond to commuting operators with the same eigenvectors.

We will now demonstrate that the bases composed of the eigenvectors of two
different operators corresponding to elements from distinct classes in ON are mutually
unbiased.

Theorem 4. Let N be a prime and let (a, b) and (c, d) be two elements from
ON = ZN × ZN\{(0, 0)} which belong to distinct classes [(a, b)] 6= [(c, d)]. Then the
bases composed of eigenvectors of the operators from the corresponding cosets QaP b and
QcP d are mutually unbiased.

Proof: The first step is to show that the bases composed of eigenvectors of QN and
PN are mutually unbiased. This follows directly from equation (10). Namely,

PNSN |j 〉 = SNQN |j 〉 = ωj
NSN |j 〉, (34)

where |j 〉 is an eigenvector of QN , so SN |j 〉 is an eigenvector of PN . Further, because of
(9), the inner product of |j 〉 and SN |k〉 has absolute value

|(|j 〉, SN |k〉)| = |〈j |SN |k〉| =

∣∣∣∣∣
ωjk

N√
N

∣∣∣∣∣ =
1√
N
. (35)

Hence if we have two elements where one belongs to the class [(1, 0)] and the other
to the class [(0, 1)], then we already know that their corresponding bases are mutually
unbiased, because they are composed of eigenvectors of QN and PN , respectively.

Because of the partition of ON it is sufficient to consider now only the case of two
distinct elements (a, 1) and (b, 1), with a, b ∈ {1, 2, . . . , N − 1}, a 6= b. We are going to
show that the bases of eigenvectors of the corresponding operators Qa

NPN and Qb
NPN are

mutually unbiased (hence also the eigenvectors of powers of these operators). According
to Theorem 3, to unitary operators X that permute the cosets in the Heisenberg group

X−1QiP jX = Qi′P j′
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matrices from SL(2,ZN) are assigned. Conversely, to every matrix from SL(2,ZN) there
is an equivalence class of unitary operators which induce the same permutation of the
cosets. In this sense a special unitary representation of SL(2,ZN) was described in [17].

We will now show, if a 6= b, then there exists a matrix A from SL(2,ZN) such that

(a, 1)A = (ã, 0) and (b, 1)A = (0, b̃)

If we indeed can find such a matrix, then there exists a corresponding unitary operator
X such that

X−1QaPX = Qã, X−1QbPX = P b̃,

hence the eigenvectors of QaP and QbP can be expressed as X|j 〉 and XSN |k〉,
respectively. According to (35) modulus of their inner product is

|(X|j 〉, XSN |k〉)| = |(|j 〉, SN |k〉)| =
1√
N
,

proving that these bases are mutually unbiased, too.
To prove the existence of a unique matrix A ∈ SL(2,ZN) with the desired properties

we apply Lemma 1 implying

det

(
a 1
b 1

)
= a− b (mod N) = det

(
ã 0

0 b̃

)
= ãb̃ (mod N)

and we select ã, b̃ ∈ ZN such that ãb̃ = a − b (mod N). Equivalently we look for a
matrix C = A−1 ∈ SL(2,ZN) producing the inverse transformation

(ã, 0)C = (ã, 0)

(
α β
γ δ

)
= (a, 1),

(0, b̃)C = (0, b̃)

(
α β
γ δ

)
= (b, 1).

This gives us the following equations to compute the elements of C:

ãβ = 1 (mod N), (36)

ãα = a (mod N), (37)

b̃γ = b (mod N), (38)

b̃δ = 1 (mod N). (39)

The fact that N is a prime guarantees that each of these equations has unique solution

in ZN . Having the values of entries α, β, γ, δ, we still need to check that C =

(
α β
γ δ

)

belongs to SL(2,ZN). By multiplying equations (37) and (39) and subtracting the
product of (38) and (36) we obtain

ãb̃(αδ − βγ) = a− b (mod N).

Since ãb̃ = a− b (mod N) we have

det C = αδ − βγ = 1 (mod N),

verifying that C indeed belongs to SL(2,ZN). The inverse matrix A = C−1 =(
δ −β
−γ α

)
will then transform pairs (a, 1) and (b, 1) into (ã, 0) and (b̃, 0), respectively:

(a, 1)C−1 = (ã, 0), (b, 1)C−1 = (0, b̃).

10



To complete the proof, it is easy to see that for pairs (b, 1), (1, 0) and (b, 1), (0, 1),
b = 1, 2, . . . , N − 1, there exist unique transformation matrices from SL(2,ZN) such
that

(b, 1)A1(b) = (0, 1), (1, 0)A1(b) = (1, 0) =⇒ A1(b) =

(
1 0
−b 1

)

and

(b, 1)A2(b) = (b, 0), (0, 1)A2(b) = (0, 1) =⇒ A2(b) =

(
1 b−1

0 1

)
.

Hence pairs of bases composed of eigenvectors of pairs of operators QbP , Q and QbP , P
are mutually unbiased. Thus we have shown that there exist N + 1 mutually unbiased
bases in a Hilbert space of prime dimension N . We have therefore reached the same
conclusion as [19]. In our case the mutually unbiased bases are composed of eigenvectors
of operators

QN , PN , QNPN , Q
2
NPN , . . . , Q

N−1
N PN , (40)

while the operators in Theorem 2 are only modified using (6).
Note that one could make a different choice of representatives of the classes forming

the partition: we could have alternatively used e.g. the pairs (1, a), a = 1, 2, . . . , N − 1,
instead of (a, 1), and the mutually unbiased bases would be given by bases composed of
eigenvectors of operators

QN , PN , QNPN , QNP
2
N , . . . , QNP

N−1
N .

To provide a constructive proof we should give an explicit way to construct the
bases out of the canonical basis B. Let us denote the bases composed of eigenvectors of
(40) by

B = B(1,0), B(0,1), B(1,1), B(2,1), . . . , B(N−1,1).

We know that the map B(1,0) → B(0,1) is implemented by the unitary operator SN .
The next step B(0,1) → B(1,1), leaving B(1,0) intact, clearly corresponds to the above
transformation matrix A1(−1) from SL(2,ZN). Its iterations will generate further steps.
A unitary transformation DN which implements A1(−1),

D−1
N QNDN = QN , D−1

N PNDN = ε−1
N QNPN ,

can be taken from [22]; it is diagonal,

DN = diag (d0, d1, . . . , dN−1), dj = ε−j
N ω

(j
2)

N ,

where εN = 1 if N is odd, εN =
√
ωN if N is even. In this way we arrive at a sequence

of unitary maps

B(1,0)
SN→ B(0,1)

DN→ B(1,1)
DN→ B(2,1)

DN→ . . .
DN→ B(N−1,1),

and the composite unitary operators Db
NSN , b = 0, 1, . . . , N − 1 will produce all the

bases starting from the canonical one. 2

Example N = 2. The phase space Γ2 consists of 4 elements (0, 0), (1, 0), (0, 1),
(1, 1). The group SL(2,Z2) with 6 elements

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
,
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acts transitively on the orbit {(1, 0), (0, 1), (1, 1)}. Unitary operators transforming the
bases (15)

B(1,0)
S2→ B(0,1)

D2→ B(1,1)

are

S2 =
1√
2

(
1 1
1 −1

)
, D2 =

(
1 0
0 −i

)
.

7. Concluding remarks

The question whether the maximal number N + 1 can be attained for a composite
dimension N , where N is not prime nor a power of a prime, still remains an open
problem. The answer is not known even for the simplest case N = 6 where N + 1 = 7.
A simple argument [19] leads to 3 such bases. Some numerical attempts to find further
mutually unbiased bases were not successful. So it remains unclear whether it is indeed
possible to reach the maximal number N +1 of them for the Hilbert space of dimension
6 and in other composite dimensions as well.

Although the relation between the eigenvectors of Qi
NP

j
N and mutually unbiased

bases was observed e.g. in [19], the relation between the decomposition of the phase space
ZN × ZN whose elements correspond to cosets in the finite Heisenberg group and the
existence of mutually unbiased bases has been left unnoticed so far. We were thus able
to give an independent constructive proof of Theorem 2 using group theory. However,
the proof heavily depends on properties that are a consequence of N being a prime. It
might be interesting to investigate whether our procedure could be applied in arbitrary
dimensions and whether it would give us some hints as to the existence or non-existence
of the maximal number of mutually unbiased bases in composite dimensions.
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[22] Havĺıček M, Patera J, Pelantová E and Tolar J 2002 Automorphisms of the fine
grading of sl(n,C) associated with the generalized Pauli matrices J. Math. Phys.
43 1083-1094; preprint math-ph/0311015
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