CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Nuclear Sciences and Physical Engineering

Graded contraction of the Gell-Mann graded sl(3,C)

Stará Lesná, September 2007

P. Novotný, J. Hrivnák
Faculty of Nuclear Sciences and Physical Engineering
Czech Technical University in Prague
Břehová 7, CZ-115 19 Prague, Czech Republic

Group gradings of Lie algebras

- \mathcal{L}. . Lie algebra over \mathbb{C}, finite-dimensional, simple
- decomposition $\mathcal{L}=\bigoplus_{i \in G} \mathcal{L}_{i}$ is a group grading of \mathcal{L}, if $\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right] \subseteq \mathcal{L}_{i+j}$, where G is an Abelian group
- fine grading, if subspaces \mathcal{L}_{i} are minimal
- finest grading, if $\operatorname{dim}\left(\mathcal{L}_{i}\right)=1$
- symmetry of a grading: Aut $\Gamma: g \in$ Aut \mathcal{L}

$$
g \mathcal{L}_{i}=\mathcal{L}_{\pi_{g}(i)}
$$

where π_{g} is permutation on G

- $\operatorname{Stab} \Gamma=\left\{g \in \operatorname{Aut} \mathcal{L} \mid g \mathcal{L}_{i}=\mathcal{L}_{i} \forall i \in G\right\}$
- symmetry group $\boldsymbol{S} \boldsymbol{G}$ of the grading is Aut $\Gamma / \operatorname{Stab} \Gamma$

The hierarchy of 17 group gradings of $\operatorname{sl}(3, \mathbb{C})$

Fine gradings of $\operatorname{sl}(3, \mathbb{C})$

- Gell-Mann $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \quad|S G|=24 \quad \operatorname{sl}(3, \mathbb{C})=\mathcal{L}_{001} \oplus \mathcal{L}_{111} \oplus \mathcal{L}_{101} \oplus \mathcal{L}_{011} \oplus \mathcal{L}_{110} \oplus \mathcal{L}_{010} \oplus \mathcal{L}_{100}$

$$
=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & -a-b
\end{array}\right) \oplus\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \oplus\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \oplus\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \oplus\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \oplus\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \oplus\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- Cartan $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \quad|S G|=12 \quad s l(3, \mathbb{C})=\mathcal{L}_{00} \oplus \mathcal{L}_{10} \oplus \mathcal{L}_{01} \oplus \mathcal{L}_{11} \oplus \mathcal{L}_{-1-1} \oplus \mathcal{L}_{0-1} \oplus \mathcal{L}_{-10}$
$=\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & -a-b\end{array}\right) \oplus\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
- Pauli $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \quad|S G|=48 \quad \operatorname{sl}(3, \mathbb{C})=\mathcal{L}_{01} \oplus \mathcal{L}_{02} \oplus \mathcal{L}_{10} \oplus \mathcal{L}_{20} \oplus \mathcal{L}_{11} \oplus \mathcal{L}_{22} \oplus \mathcal{L}_{12} \oplus \mathcal{L}_{21}$
$=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^{2}\end{array}\right) \oplus\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \omega^{2} & 0 \\ 0 & 0 & \omega\end{array}\right) \oplus\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \oplus\left(\begin{array}{ccc}0 & \omega & 0 \\ 0 & 0 & \omega^{2} \\ 1 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{ccc}0 & 0 & \omega \\ 1 & 0 & 0 \\ 0 & \omega^{2} & 0\end{array}\right) \oplus\left(\begin{array}{ccc}0 & \omega^{2} & 0 \\ 0 & 0 & \omega \\ 1 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{ccc}0 & 0 & \omega^{2} \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ where $\omega=e^{\frac{2 \pi i}{3}}$
- \mathbb{Z}_{8} - grading $\Gamma_{d} \quad|S G|=4 \quad \operatorname{sl}(3, \mathbb{C})=\mathcal{L}_{0} \oplus \mathcal{L}_{1} \oplus \mathcal{L}_{2} \oplus \mathcal{L}_{3} \oplus \mathcal{L}_{4} \oplus \mathcal{L}_{5} \oplus \mathcal{L}_{6} \oplus \mathcal{L}_{7}$
$=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right) \oplus\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right) \oplus\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right) \oplus\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) \oplus\left(\begin{array}{cccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

Graded contractions of Lie algebras

- we define on graded \mathcal{L} a new product $[,]_{\varepsilon}$ by

$$
[x, y]_{\varepsilon}=\varepsilon_{i j}[x, y]
$$

for $x \in \mathcal{L}_{i}, y \in \mathcal{L}_{j}$ and $\varepsilon_{i, j} \in \mathbb{C}$

- if $\mathcal{L}^{\varepsilon}=\left(\mathcal{L},[,]_{\varepsilon}\right)$ is a Lie algebra i.e. for all $i, j, k \in G$

$$
\begin{aligned}
& \circ \varepsilon_{i j}=\varepsilon_{j i} \\
& \circ\left[x,[y, z]_{\varepsilon}\right]_{\varepsilon}+\left[z,[x, y]_{\varepsilon}\right]_{\varepsilon}+\left[y,[z, x]_{\varepsilon}\right]_{\varepsilon}=0 \quad \forall x \in \mathcal{L}_{i}, \forall y \in \mathcal{L}_{j}, \forall z \in \mathcal{L}_{k}
\end{aligned}
$$

hold, then $\mathcal{L}^{\varepsilon}$ is a graded contraction of \mathcal{L}

- $\varepsilon=\left(\varepsilon_{i j}\right) \ldots$ contraction matrix, $\mathcal{S} \ldots$ system of contraction equations, $\mathcal{R}(\mathcal{S}) \ldots$ set of all solutions of \mathcal{S}
- normalization matrix $\alpha:=\left(\alpha_{i j}\right)$, where

$$
\alpha_{i j}=\frac{a_{i} a_{j}}{a_{i+j}} \quad \text { for } i, j \in G
$$

and $a_{i} \in \mathbb{C} \backslash\{0\}$ for $i \in G$

Symmetry of solutions

$S G$ of the grading $\cong S G$ of contraction equations $\mathcal{S} \cong S G$ of solutions $\mathcal{R}(\mathcal{S})$

- for symmetry $\pi \in S G$ and $\varepsilon=\left(\varepsilon_{i j}\right)$ an action π on a contraction matrix $\varepsilon \mapsto \varepsilon^{\pi}$ is defined

$$
\left(\varepsilon^{\pi}\right)_{i j}:=\varepsilon_{\pi(i) \pi(j)}
$$

- two solutions $\varepsilon_{1}, \varepsilon_{2} \in \mathcal{R}(\mathcal{S})$ are equivalent, $\varepsilon_{1} \sim \varepsilon_{2}$, if there exists normalization matrix α and $\pi \in S G$ that

$$
\varepsilon_{1}=\alpha \bullet \varepsilon_{2}^{\pi}
$$

where \bullet is componentwise matrix multiplication

- then holds

$$
\varepsilon_{1} \sim \varepsilon_{2} \Rightarrow \mathcal{L}^{\varepsilon_{1}} \simeq \mathcal{L}^{\varepsilon_{2}}
$$

- if contraction parameter $\varepsilon_{i j}$ appears in \mathcal{S}, then $(i j)$ is relevant $\ldots(i j) \in \mathcal{I}$

Process of solving

Theorem 1. Let $\mathcal{R}(\mathcal{S})$ be the set of solutions and \mathcal{I} the set of relevant pairs of unordered indices of the contraction system \mathcal{S} of a graded Lie algebra $\Gamma: \mathcal{L}=\bigoplus_{i \in G} \mathcal{L}_{i}$. For any $\mathcal{Q} \subset \mathcal{R}(\mathcal{S})$ and $\mathcal{P}=\left\{k_{1}, k_{2}, \ldots, k_{m}\right\} \subset \mathcal{I}$ we denote

$$
\begin{aligned}
& \mathcal{R}_{0}:=\left\{\varepsilon \in \mathcal{R}(\mathcal{S}) \mid\left(\forall \varepsilon_{1} \in \mathcal{Q}\right)\left(\varepsilon \nsim \varepsilon_{1}\right)\right\} \\
& \mathcal{R}_{1}:=\left\{\varepsilon \in \mathcal{R}_{0} \mid(\forall k \in \mathcal{P})\left(\varepsilon_{k} \neq 0\right)\right\} .
\end{aligned}
$$

Then the solution $\varepsilon \in \mathcal{R}_{0}$ is non-equivalent to all solutions in \mathcal{R}_{1} if and only if

$$
\begin{gathered}
\varepsilon_{\pi_{1}\left(k_{1}\right)} \varepsilon_{\pi_{1}\left(k_{2}\right)} \cdots \varepsilon_{\pi_{1}\left(k_{m}\right)}=0 \\
\vdots \\
\varepsilon_{\pi_{n}\left(k_{1}\right)} \varepsilon_{\pi_{n}\left(k_{2}\right)} \cdots \varepsilon_{\pi_{n}\left(k_{m}\right)}=0
\end{gathered}
$$

holds, where $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right\}=S G$ is the symmetry group of the grading Γ.

Overview of solutions

Grading	Equations	Solutions $\|\mathcal{R}(\mathcal{S})\|$							
	$\|\mathcal{S}\|$	All	0-p	1-p	2-p	3-p	4-p	5-p	
Gell-Mann	44	89	79	8	2				
Cartan	31	48	27	9	6	4	1	1	
Pauli	40	188	175	11	2				
Γ_{d}	37	978	480	288	152	49	8	1	

Identification of results

- Decomposition into a direct sum of indecomposable ideals

$$
\mathcal{L}=\mathcal{L}_{1} \oplus \mathcal{L}_{2}, \quad\left[\mathcal{L}_{1}, \mathcal{L}_{2}\right]=0, \quad\left[\mathcal{L}_{i}, \mathcal{L}_{i}\right] \subseteq \mathcal{L}_{i}, \quad i=1,2 .
$$

- Derived series $D^{0}(\mathcal{L}) \supseteq D^{1}(\mathcal{L}) \supseteq \ldots \supseteq D^{k}(\mathcal{L}) \supseteq \ldots$

$$
D^{0}(\mathcal{L})=\mathcal{L}, \quad D^{k+1}(\mathcal{L})=\left[D^{k}(\mathcal{L}), D^{k}(\mathcal{L})\right], \quad k=0,1,2, \ldots
$$

- Lower central series $\mathcal{L}^{1} \supseteq \mathcal{L}^{2} \supseteq \ldots \supseteq \mathcal{L}^{k} \supseteq \ldots$

$$
\mathcal{L}^{1}=\mathcal{L}, \quad \mathcal{L}^{k+1}=\left[\mathcal{L}^{k}, \mathcal{L}\right], \quad k=0,1,2, \ldots
$$

- Upper central series $C^{0}(\mathcal{L}) \subseteq C^{1}(\mathcal{L}) \subseteq \ldots \subseteq C^{k}(\mathcal{L}) \subseteq \ldots$

$$
C^{0}(\mathcal{L})=0, \quad C^{k+1}(\mathcal{L}) / C^{k}(\mathcal{L})=C\left(\mathcal{L} / C^{k}(\mathcal{L})\right), \quad k=0,1,2, \ldots
$$

- Number of formal invariants (Casimir operators)

$$
\tau(\mathcal{L})=\operatorname{dim}(\mathcal{L})-\sup _{\left(x_{1}, \ldots, x_{n}\right)} \operatorname{rank}\left(M_{\mathcal{L}}\right), \quad\left(M_{\mathcal{L}}\right)_{i j}=\sum_{k} c_{i j}^{k} x_{k}, \quad c_{i j}^{k} \text { struc. const. of } \mathcal{L}
$$

- Levi decomposition, radical, nilradical
- Generalized derivations $\mathcal{D}_{(1,1,1)}, \mathcal{D}_{(0,1,1)}, \mathcal{D}_{(1,1,0)}, \mathcal{D}_{(1,1,1)} \cap \mathcal{D}_{(0,1,1)}, \mathcal{D}_{(1,1,-1)}, \mathcal{D}_{(0,1,-1)}$

$$
\mathcal{D}_{(\alpha, \beta, \gamma)}:=\{A \in \operatorname{End}(\mathcal{L}) \mid \alpha A[x, y]=\beta[A x, y]+\gamma[x, A y], \quad \forall x, y \in \mathcal{L}\}
$$

Overview of results

Grading	Algebras	Solvable	Nilpotent	Not solvable	Abelian
Pauli	148	21	125	1	1
Cartan	34	21	8	4	1
Gell-Mann	54	19	29	5	1

Pauli

Dimension of non-Abelian part	Solvable		Nilpotent		Total
	Indec.	Dec.	Indec.	Dec.	
3	1		1		1
4	1		1		2
5	1		9	1	5
6	4	1	28	1	34
7	11	2	77	3	93
8					

Cartan

Dimension of non-Abelian part	Solvable		Nilpotent		Not solvable		Total
	Indec.	Dec.	Indec.	Dec.	Indec.	Dec.	
2	1						1
3	1		1		1		3
4		1					1
5	2	1	1				4
6	2	1	1	1	1		6
7	3	2	1		1		6
8	5	2	3		1		11

Gell-Mann

Dimension of non-Abelian part	Solvable		Nilpotent		Not solvable		Total
	Indec.	Dec.	Indec.	Dec.	Indec.	Dec.	
3	1		1				2
4							2
5	2		2				4
6	2	2	3	1	1	1	10
7	6		10				16
8	6		12		2		20

Contracted Lie algebras

Not solvable Lie algebras Gell-Mann graded $s l(3, \mathbb{C})$

Series	Algebra	Commutation relations	τ	T	Nilradical	$\operatorname{dim}(\mathcal{D}(\alpha, \beta, \gamma))$	Name
(3)(3)(0)	$\mathcal{L}_{2,1}^{\prime}$	$\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{2},\left[e_{2}, e_{3}\right]=e_{1}$	1		\emptyset	$[3,0,1,0,0,1]$	$A_{3,8}$
(6)(6)(0)	$\mathcal{L}_{4,2}^{\prime}$	$\begin{aligned} & {\left[e_{1}, e_{5}\right]=e_{3},\left[e_{1}, e_{6}\right]=-e_{2},\left[e_{2}, e_{4}\right]=-e_{3},\left[e_{2}, e_{6}\right]=e_{1},} \\ & {\left[e_{3}, e_{4}\right]=e_{2},\left[e_{3}, e_{5}\right]=-e_{1},\left[e_{4}, e_{5}\right]=e_{6},\left[e_{4}, e_{6}\right]=-e_{5},\left[e_{5}, e_{6}\right]=e_{4}} \end{aligned}$	2		$3 A_{1}$	$[7,0,2,0,0,2]$	$3 A_{1} \triangleleft A_{3,8}$
(8)(8)(0)	$\mathcal{L}_{1,2}$	$\begin{aligned} & {\left[e_{1}, e_{6}\right]=-e_{4},\left[e_{1}, e_{7}\right]=-2 e_{2},\left[e_{1}, e_{8}\right]=e_{3},\left[e_{2}, e_{6}\right]=-e_{3}} \\ & {\left[e_{2}, e_{7}\right]=-2 e_{1},\left[e_{2}, e_{8}\right]=e_{4},\left[e_{3}, e_{6}\right]=-e_{2},\left[e_{3}, e_{7}\right]=-e_{4}} \\ & {\left[e_{3}, e_{8}\right]=2 e_{5},\left[e_{4}, e_{6}\right]=-2 e_{1}-2 e_{5},\left[e_{4}, e_{7}\right]=-e_{3},\left[e_{4}, e_{8}\right]=-e_{2},} \\ & {\left[e_{5}, e_{6}\right]=-e_{4},\left[e_{5}, e 7\right]=e_{2},\left[e_{5}, e_{8}\right]=-2 e_{3},\left[e_{6}, e_{7}\right]=-e_{8}} \\ & {\left[e_{6}, e_{8}\right]=-e_{7},\left[e_{7}, e_{8}\right]=e_{6}} \end{aligned}$	2		$5 A_{1}$	$[9,0,1,0,0,1]$	$5 A_{1} \triangleleft A_{3,8}$
(87)(87)(0)	$\mathcal{L}_{1,1}$	$\begin{aligned} & {\left[e_{1}, e_{2}\right]=-3 e_{3},\left[e_{1}, e_{3}\right]=-3 e_{2},\left[e_{1}, e_{4}\right]=-3 e_{5},\left[e_{1}, e_{5}\right]=-3 e_{4},} \\ & {\left[e_{2}, e_{6}\right]=-e_{5},\left[e_{2}, e_{7}\right]=e_{4},\left[e_{2}, e_{8}\right]=e_{3},\left[e_{3}, e_{6}\right]=-e_{4}} \\ & {\left[e_{3}, e_{7}\right]=e_{5},\left[e_{3}, e_{8}\right]=e_{2},\left[e_{4}, e_{6}\right]=e_{3},\left[e_{4}, e_{7}\right]=e_{2}} \\ & {\left[e_{4}, e_{8}\right]=-e_{5},\left[e_{5}, e_{6}\right]=e_{2},\left[e_{5}, e_{7}\right]=e_{3},\left[e_{5}, e_{8}\right]=-e_{4}} \\ & {\left[e_{6}, e_{7}\right]=-2 e_{8},\left[e_{6}, e_{8}\right]=2 e_{7},\left[e_{7}, e_{8}\right]=2 e_{6}} \end{aligned}$	2		$4 A_{1}$	$[9,0,1,0,0,1]$	$A_{5,7}(1,-1,-1) \triangleleft A_{3,8}$

Solvable Lie algebras Gell-Mann graded $s l(3, \mathbb{C})$

Series	Algebra	Commutation relations	τ	Nilradical	$\operatorname{dim}(\mathcal{D}(\alpha, \beta, \gamma))$
(320)(32)(0)	$\mathcal{L}_{11,2}^{\prime}$	$\left[e_{1}, e_{2}\right]=e_{3},\left[e_{1}, e_{3}\right]=e_{2}$	1	$2 A_{1}$	[4, 3, 1, 2, 0, 1]
(530)(532)(12)	$\mathcal{L}_{10,9}^{\prime}$	$\left[e_{1}, e_{4}\right]=e_{3},\left[e_{3}, e_{4}\right]=e_{1},\left[e_{4}, e_{5}\right]=e_{2}$	3	$4 A_{1}$	[8, 9, 3, 5, 2, 6]
(540)(54)(0)	$\mathcal{L}_{9,8}^{\prime}(a)$	$\left[e_{1}, e_{5}\right]=a e_{3},\left[e_{2}, e_{5}\right]=e_{4},\left[e_{3}, e_{5}\right]=e_{1},\left[e_{4}, e_{5}\right]=e_{2}$	3	$4 A_{1}$	[8, 5, 1, 4, 0, 1]
(640)(64)(0)	$\mathcal{L}_{7,7}^{\prime}$	$\begin{aligned} & {\left[e_{1}, e_{5}\right]=e_{2}, \quad\left[e_{1}, e_{6}\right]=e_{4}, \quad\left[e_{2}, e_{5}\right]=e_{1},} \\ & {\left[e_{2}, e_{6}\right]=e_{3},\left[e_{3}, e_{5}\right]=e_{4},\left[e_{4}, e_{5}\right]=e_{3}} \end{aligned}$	2	$A_{5,1}$	$[9,6,2,4,0,2]$
(6510)(65)(1)	$\mathcal{L}_{7,8}^{\prime}$	$\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{5},\left[e_{1}, e_{6}\right]=e_{4},\left[e_{2}, e_{6}\right]=e_{3},} \\ & {\left[e_{3}, e_{4}\right]=e_{5},\left[e_{3}, e_{6}\right]=e_{2},\left[e_{4}, e_{6}\right]=e_{1}} \end{aligned}$	2	$A_{5,4}$	$[10,6,2,1,1,7]$
$(740)(742)(24)$	$\mathcal{L}_{9,6}^{\prime}$	$\left[e_{1}, e_{5}\right]=e_{4},\left[e_{4}, e_{5}\right]=e_{1},\left[e_{5}, e_{6}\right]=e_{2},\left[e_{5}, e_{7}\right]=e_{3}$	5	$6 A_{1}$	[16, 19, 7, 10, 6, 15]
(750)(754)(1)	$\mathcal{L}_{4,1}^{\prime}$	$\begin{aligned} & {\left[e_{2}, e_{6}\right]=e_{4},\left[e_{2}, e_{7}\right]=e_{3},\left[e_{3}, e_{6}\right]=e_{5}, \quad\left[e_{3}, e_{7}\right]=e_{2}, \quad\left[e_{4}, e_{6}\right]=e_{2},} \\ & {\left[e_{4}, e_{7}\right]=e_{5},\left[e_{5}, e_{6}\right]=e_{3},\left[e_{5}, e_{7}\right]=e_{4},\left[e_{6}, e_{7}\right]=e_{1}} \end{aligned}$	3	$5 A_{1}$	[10, 12, 3, 6, 2, 8]
(750)(754)(1)	$\mathcal{L}_{6,1}^{\prime}$	$\begin{aligned} & {\left[e_{1}, e_{6}\right]=e_{4}, \quad\left[e_{1}, e_{7}\right]=e_{2}, \quad\left[e_{2}, e_{6}\right]=e_{5}, \quad\left[e_{4}, e_{6}\right]=e_{1},} \\ & {\left[e_{4}, e_{7}\right]=e_{5},\left[e_{5}, e_{6}\right]=e_{2},\left[e_{6}, e_{7}\right]=e_{3}} \end{aligned}$	3	$A_{1} \oplus A_{5,1}$	$[11,12,3,6,2,8]$
(750)(754)(12)	$\mathcal{L}_{8,3}^{\prime}(a)$	$\begin{aligned} & {\left[e_{1}, e_{6}\right]=a e_{4},\left[e_{2}, e_{6}\right]=e_{5},\left[e_{4}, e_{6}\right]=e_{1},\left[e_{5}, e_{6}\right]=e_{2}} \\ & {\left[e_{6}, e_{7}\right]=e_{3}} \end{aligned}$	5	$6 A_{1}$	$[12,13,3,7,2,8]$
(7510)(75)(12)	$\mathcal{L}_{6,2}^{\prime}$	$\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{5}, \quad\left[e_{1}, e_{7}\right]=e_{4}, \quad\left[e_{2}, e_{7}\right]=e_{3}, \quad\left[e_{3}, e_{4}\right]=e_{5},} \\ & {\left[e_{3}, e_{7}\right]=e_{2}, \quad\left[e_{4}, e_{7}\right]=e_{1}, \quad\left[e_{6}, e_{7}\right]=e_{5}} \end{aligned}$	1	$A_{1} \oplus A_{5,4}$	$[12,12,3,3,2,8]$
(760)(76)(0)	$\mathcal{L}_{7,2}^{\prime}(a, b)$	$\begin{aligned} & {\left[e_{1}, e_{7}\right]=a e_{4},\left[e_{2}, e_{7}\right]=b e_{5},\left[e_{3}, e_{7}\right]=e_{6},\left[e_{4}, e_{7}\right]=e_{1},} \\ & {\left[e_{5}, e_{7}\right]=e_{2},\left[e_{6}, e_{7}\right]=e_{3}} \end{aligned}$	5	$6 A_{1}$	$[12,7,1,6,0,1]$
(840)(842)(25)	$\mathcal{L}_{9,1}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{1}, e_{5}\right]=-e_{7},\left[e_{1}, e_{6}\right]=2 e_{3},} \\ & {\left[e_{2}, e_{3}\right]=e_{6},\left[e_{2}, e_{4}\right]=-e_{8},\left[e_{2}, e_{5}\right]=-2 e_{7},\left[e_{2}, e_{6}\right]=e_{3}} \end{aligned}$	4	$A_{5,1}$	$[16,21,9,12,8,17]$
$(850)(854)(12)$	$\mathcal{L}_{8,1}(a)$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=-2 a e_{6},\left[e_{1}, e_{4}\right]=-e_{8},\left[e_{1}, e_{5}\right]=e_{7},\left[e_{1}, e_{6}\right]=-2 e_{3},\left[e_{1}, e_{7}\right]=e_{5},} \\ & \left.\left[e_{2}, e_{3}\right]=a e_{6},\left[e_{2}, e_{4}\right]=-e_{8},\left[e_{2}, e_{5}\right]=-2 e_{7},\left[e_{2}, e_{6}\right]=e_{3},\left[e_{2}, e_{7}\right]=-2 e_{5}\right] \end{aligned}$	4	$6 A_{1}$	[13, 14, 4, 8, 3, 9]
(860)(86)(0)	$\mathcal{L}_{7,1}(a, b)$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=-2 a e_{6},\left[e_{1}, e_{4}\right]=-b e_{8},\left[e_{1}, e_{5}\right]=e_{7},\left[e_{1}, e_{6}\right]=-2 e_{3},\left[e_{1}, e_{7}\right]=e_{5}} \\ & {\left[e_{1}, e_{8}\right]=-e_{4},\left[e_{2}, e_{3}\right]=a e_{6},\left[e_{2}, e_{4}\right]=-b e_{8},\left[e_{2}, e_{5}\right]=-2 e_{7}} \\ & {\left[e_{2}, e_{6}\right]=e_{3},\left[e_{2}, e_{7}\right]=-2 e_{5},\left[e_{2}, e_{8}\right]=-e_{4}} \end{aligned}$	4	$6 A_{1}$	$[12,7,1,6,0,1]$
(8620)(86)(0)	$\mathcal{L}_{3,2}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{1}, e_{5}\right]=-e_{7},\left[e_{1}, e_{6}\right]=2 e_{3},} \\ & {\left[e_{1}, e_{7}\right]=-e_{5},\left[e_{1}, e_{8}\right]=e_{4},\left[e_{2}, e_{3}\right]=-e_{6},\left[e_{2}, e_{4}\right]=e_{8},} \\ & {\left[e_{2}, e_{5}\right]=2 e_{7},\left[e_{2}, e_{6}\right]=-e_{3},\left[e_{2}, e_{7}\right]=2 e_{5},\left[e_{2}, e_{8}\right]=e_{4},} \\ & {\left[e_{3}, e_{5}\right]=e_{8},\left[e_{3}, e_{7}\right]=e_{4},\left[e_{5}, e_{6}\right]=-e_{4},\left[e_{6}, e_{7}\right]=e_{8}} \end{aligned}$	2	$A_{3,1} \oplus A_{3,1}$	$[10,2,1,2,0,1]$
	$\mathcal{L}_{3,1}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{1}, e_{7}\right]=-e_{5},\left[e_{2}, e_{3}\right]=-e_{6},} \\ & {\left[e_{2}, e_{4}\right]=e_{8},\left[e_{2}, e_{7}\right]=2 e_{5},\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{5}\right]=e_{8}} \\ & {\left[e_{3}, e_{6}\right]=-2 e_{1},\left[e_{3}, e_{7}\right]=e_{4},\left[e_{3}, e_{8}\right]=e_{5},\left[e_{4}, e_{6}\right]=e_{5}} \\ & {\left[e_{6}, e_{7}\right]=e_{8}} \end{aligned}$	2		$[11,7,2,2,0,2]$
(8730)(87)(1)	$\mathcal{L}_{3,3}$	$\begin{aligned} & {\left[e_{1}, e_{4}\right]=-e_{8},\left[e_{2}, e_{4}\right]=-e_{8},\left[e_{3}, e_{4}\right]=-e_{7},\left[e_{3}, e_{5}\right]=-e_{8}} \\ & {\left[e_{3}, e_{6}\right]=2 e_{1},\left[e_{4}, e_{5}\right]=-e_{6},\left[e_{4}, e_{6}\right]=-e_{5},\left[e_{4}, e_{7}\right]=e_{3}} \\ & {\left[e_{4}, e_{8}\right]=2 e_{1}+2 e_{2},\left[e_{5}, e_{7}\right]=2 e_{2},\left[e_{6}, e_{7}\right]=-e_{8}} \end{aligned}$	2		$[12,10,2,3,1,9]$

Nilpotent Lie algebras Gell-Mann graded $s l(3, \mathbb{C})$

Series	Algebra	Commutation relations	τ	$\operatorname{dim}(\mathcal{D}(\alpha, \beta, \gamma))$
(310)(310)(13)	$\mathcal{L}_{12,3}^{\prime}$	$\left[e_{2}, e_{3}\right]=e_{1}$	1	[6,6, 3, 5, 3, 4]
(510)(510)(15)	$\mathcal{L}_{11,4}^{\prime}$	$\left[e_{2}, e_{5}\right]=e_{1},\left[e_{3}, e_{4}\right]=e_{1}$	1	[15, 15, 5, 14, 10, 11]
(520)(520)(25)	$\mathcal{L}_{11,3}^{\prime}$	$\left[e_{3}, e_{4}\right]=e_{1},\left[e_{4}, e_{5}\right]=e_{2}$	3	[13, 13, 7, 9, 7, 11]
(620)(620)(26)	$\mathcal{L}_{10,7}^{\prime}$	$\left[e_{3}, e_{5}\right]=e_{1},\left[e_{4}, e_{5}\right]=e_{2},\left[e_{4}, e_{6}\right]=e_{1}$	2	[17, 18, 10, 14, 10, 14]
(630)(630)(36)	$\mathcal{L}_{10,16}^{\prime}$	$\left[e_{4}, e_{5}\right]=e_{1},\left[e_{4}, e_{6}\right]=e_{2},\left[e_{5}, e_{6}\right]=e_{3}$	4	[18, 18, 10, 9, 10, 19]
(630)(6310)(136)	$\mathcal{L}_{9,13}^{\prime}$	$\left[e_{2}, e_{5}\right]=e_{1},\left[e_{3}, e_{4}\right]=e_{1},\left[e_{4}, e_{6}\right]=e_{2},\left[e_{5}, e_{6}\right]=e_{3}$	2	[11, 10, 4, 6, 4, 8]
(710)(710)(17)	$\mathcal{L}_{10,18}^{\prime}$	$\left[e_{2}, e_{6}\right]=e_{1},\left[e_{3}, e_{7}\right]=e_{1},\left[e_{4}, e_{5}\right]=e_{1}$	1	[28, 28, 7, 27, 21, 22]
(720)(720)(27)	$\mathcal{L}_{9,5}^{\prime}$	$\begin{aligned} & {\left[e_{3}, e_{6}\right]=e_{1},\left[e_{3}, e_{7}\right]=e_{2},\left[e_{4}, e_{6}\right]=e_{1},} \\ & {\left[e_{4}, e_{7}\right]=-2 e_{2},\left[e_{5}, e_{6}\right]=-e_{2},\left[e_{5}, e_{7}\right]=e_{1}} \end{aligned}$	3	[19, 19, 11, 15, 11, 15]
	$\mathcal{L}_{10,5}^{\prime}$	$\left[e_{3}, e_{5}\right]=2 e_{2},\left[e_{3}, e_{7}\right]=-e_{1},\left[e_{4}, e_{5}\right]=-e_{2},\left[e_{4}, e_{7}\right]=2 e_{1},\left[e_{5}, e_{6}\right]=e_{1}$	3	[21, 22, 11, 18, 14, 18]
(730)(730)(37)	$\mathcal{L}_{9,16}^{\prime}$	$\left[e_{4}, e_{6}\right]=e_{1},\left[e_{4}, e_{7}\right]=e_{2},\left[e_{5}, e_{6}\right]=e_{2},\left[e_{5}, e_{7}\right]=e_{3}$	3	[19, 24, 13, 15, 13, 22]
	\mathcal{L}^{\prime}, ${ }^{\text {,12 }}$	$\left[e_{4}, e_{5}\right]=e_{1},\left[e_{4}, e_{6}\right]=e_{2},\left[e_{4}, e_{7}\right]=e_{3},\left[e_{5}, e_{6}\right]=e_{3},\left[e_{6}, e_{7}\right]=e_{1}$	3	[20, 24, 13, 15, 13, 22]
	$\mathcal{L}_{9,12}^{\prime}$	$\left[e_{4}, e_{5}\right]=e_{3},\left[e_{5}, e_{6}\right]=e_{1},\left[e_{5}, e_{7}\right]=e_{2},\left[e_{6}, e_{7}\right]=e_{3}$	3	[22, 24, 13, 15, 13, 22]
	$\mathcal{L}_{10,6}^{\prime}$	$\left[e_{4}, e_{5}\right]=e_{1},\left[e_{5}, e_{6}\right]=e_{2},\left[e_{5}, e_{7}\right]=e_{3}$	5	[25, 25, 13, 16, 13, 22]
$(730)(7310)(147)$	$\mathcal{L}_{8,8}^{\prime}$	$\left[e_{2}, e_{6}\right]=e_{1},\left[e_{3}, e_{5}\right]=e_{1},\left[e_{4}, e_{5}\right]=e_{2},\left[e_{4}, e_{6}\right]=e_{3},\left[e_{4}, e_{7}\right]=e_{1}$	1	[15, 16, 7, 10, 7, 11]
(740)(7410)(147)	$\mathcal{L}_{7,6}^{\prime}(a)$	$\begin{aligned} & {\left[e_{1}, e_{7}\right]=a e_{2},\left[e_{3}, e_{6}\right]=(a+1) e_{2},\left[e_{4}, e_{5}\right]=e_{2},} \\ & {\left[e_{5}, e_{6}\right]=e_{1},\left[e_{5}, e_{7}\right]=e_{3},\left[e_{6}, e_{7}\right]=e_{4} \quad a \neq-1} \end{aligned}$	1	[15, 13, 7, 9, 6, 11]
(740)(7410)(247)	$\mathcal{L}_{8,7}^{\prime}$	$\left[e_{3}, e_{6}\right]=e_{1},\left[e_{4}, e_{5}\right]=e_{1},\left[e_{5}, e_{6}\right]=e_{2},\left[e_{5}, e_{7}\right]=e_{3},\left[e_{6}, e_{7}\right]=e_{4}$	3	[15, 17, 8, 9, 7, 16]
(820)(820)(28)	$\mathcal{L}_{10,23}$	$\left[e_{3}, e_{6}\right]=e_{1},\left[e_{4}, e_{8}\right]=e_{1}+e_{2},\left[e_{5}, e_{7}\right]=e_{2}$	2	[22, 25, 13, 21, 15, 19]
(830)(830)(38)	$\mathcal{L}_{7,3}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{1}, e_{5}\right]=-e_{7},\left[e_{2}, e_{3}\right]=-e_{6},} \\ & {\left[e_{2}, e_{4}\right]=e_{8},\left[e_{2}, e_{5}\right]=2 e_{7},\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{5}\right]=e_{8},\left[e_{4}, e_{5}\right]=e_{6}} \end{aligned}$	4	[19, 24, 16, 15, 16, 25]
	$\mathcal{L}_{8,2}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{1}, e_{5}\right]=-e_{7},\left[e_{2}, e_{3}\right]=-e_{6},\left[e_{2}, e_{4}\right]=e_{8}} \\ & {\left[e_{2}, e_{5}\right]=2 e_{7},\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{5}\right]=e_{8}} \end{aligned}$	4	[20, 24, 16, 15, 16, 25]
	$\mathcal{L}_{9,3}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{1}, e_{5}\right]=-e_{7},\left[e_{2}, e_{3}\right]=-e_{6}} \\ & {\left[e_{2}, e_{4}\right]=e_{8},\left[e_{2}, e_{5}\right]=2 e_{7},\left[e_{3}, e_{4}\right]=e_{7}} \end{aligned}$	4	[21, 25, 16, 16, 16, 25]
	$\mathcal{L}_{10,1}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{1}, e_{5}\right]=-e_{7},\left[e_{2}, e_{3}\right]=-e_{6},} \\ & {\left[e_{2}, e_{4}\right]=e_{8},\left[e_{2}, e_{5}\right]=2 e_{7}} \end{aligned}$	4	[22, 28, 16, 19, 16, 25]
	$\mathcal{L}_{8,6}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{2}, e_{3}\right]=-e_{6},\left[e_{2}, e_{4}\right]=e_{8},} \\ & {\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{5}\right]=e_{8},\left[e_{4}, e_{5}\right]=e_{6}} \end{aligned}$	4	$[26,28,16,19,16,25]$
	$\mathcal{L}_{9,4}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{2}, e_{3}\right]=-e_{6},\left[e_{2}, e_{4}\right]=e_{8}} \\ & {\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{5}\right]=e_{8}} \end{aligned}$	4	[27, 30, 17, 21, 17, 26]
(840)(840)(48)	$\mathcal{L}_{\text {7,9 }}$	$\left[e_{3}, e_{5}\right]=e_{8},\left[e_{3}, e_{6}\right]=e_{1},\left[e_{3}, e_{7}\right]=e_{4},\left[e_{5}, e_{6}\right]=e_{4},\left[e_{5}, e_{7}\right]=e_{2},\left[e_{6}, e_{7}\right]=e_{8}$	4	[24, 33, 17, 17, 17, 33]
	$\mathcal{L}_{\text {8,9 }}$	$\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{6}\right]=e_{1},\left[e_{3}, e_{8}\right]=e_{5},\left[e_{4}, e_{6}\right]=e_{5},\left[e_{4}, e_{8}\right]=e_{1}+e_{2}$	4	[25, 33, 17, 17, 17, 33]
	$\mathcal{L}_{\text {g,15 }}$	$\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{6}\right]=e_{1},\left[e_{3}, e_{8}\right]=e_{5},\left[e_{4}, e_{8}\right]=e_{1}+e_{2}$	4	[27, 33, 17, 17, 17, 33]
(840)(8410)(148)	$\mathcal{L}_{7,4}$	$\begin{aligned} & {\left[e_{1}, e_{3}\right]=2 e_{6},\left[e_{1}, e_{4}\right]=e_{8},\left[e_{1}, e_{7}\right]=-e_{5},\left[e_{2}, e_{3}\right]=-e_{6},\left[e_{2}, e_{4}\right]=e_{8},} \\ & {\left[e_{2}, e_{7}\right]=2 e_{5},\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{8}\right]=e_{5},\left[e_{4}, e_{6}\right]=e_{5}} \end{aligned}$	2	[18, 16, 6, 10, 7, 12]
(850)(8520)(258)	$\mathcal{L}_{7,5}$	$\begin{aligned} & {\left[e_{3}, e_{4}\right]=e_{7},\left[e_{3}, e_{5}\right]=e_{8},\left[e_{3}, e_{6}\right]=e_{1},\left[e_{4}, e ⿻\right] 3=e_{6},} \\ & {\left[e_{4}, e_{8}\right]=e_{1}+e_{2},\left[e_{5}, e_{7}\right]=e_{2}} \end{aligned}$	2	[18, 19, 7, 9, 6, 17]

References

1. J. Patera, H. Zassenhaus, The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type A_{n-1}, J. Math. Phys. 29 (1988), 665-673.
2. M. Havlícek, J. Patera, E. Pelantová, J. Tolar: The fine gradings of $s l(3, \mathbb{C})$ and their symmetries, Proceedings of XXIII International Colloquium on Group Theoretical Methods in Physics, ed. Y. Pogosyan et al., JINR, Dubna, 2001.
3. M. de Montigny and J. Patera: Discrete and continuous graded contractions of Lie algebras and superalgebras, J. Phys. A: Math. Gen. 24, 525-549, (1991).
4. M. Couture, J. Patera, R. T. Sharp, P. Winternitz: Graded contractions of $\operatorname{sl}(3, \mathbb{C})$, J. Math. Phys. 32(9), 2310-2318, (1991).
5. M. A. Abdelmalek, X. Leng J. Patera, P. Winternitz: Grading refinements in the contraction of Lie algebras and their invariants, J. Phys. A: Math. Gen., 29, 7519-7543, (1996).
6. D. Rand, P. Winternitz, H. Zassenhaus, On the identification of Lie algebra given by its structure constants I. Direct decompositions, Levi decompositions, and nilradicals, Linear Algebra \& Appl. 109 (1988), 197-246.
7. J. Patera, R. T. Sharp, P. Winternitz,H. Zassenhaus, Invariants of real low dimensional Lie algebras, J. Math. Phys. 17 (1976), 986-994.
