Canonical decomposition of the harmonic polynomials and Fourier transforms of SO(d)-finite measures

Agata Bezubik ${ }^{1} \quad$ Aleksander Strasburger ${ }^{2}$

Stara Lésna, 22-27 September 2007

[^0]
A. Bezubik, A. Strasburger

Canonical decomposition of the harmonic polynomials and Fourier transforms of $\mathbf{S O}(d)$-finite measures

Preliminaries on spherical harmonics

We adopt the following notations and definitions.
S^{d-1} - the unit sphere in the euclidean space of dimension $d \geqslant 3$; α is a constant defined by $d=2 \alpha+2$
$(x \mid y)$ is the scalar product of $x, y \in \mathbb{R}^{d}, r^{2}=(x \mid x)$ - the length ${ }^{2}$; $\Delta f=\sum_{j=1}^{d} \frac{\partial^{2} f}{\partial x_{j}^{2}}$ - the Laplacian in \mathbb{R}^{d}.
$\mathcal{P}^{\prime}=\mathcal{P}^{\prime}\left(\mathbb{R}^{d}\right)$ - the space of homogeneous polynomials of degree I, $\mathcal{H}^{\prime} \subset \mathcal{P}^{\prime}\left(\mathbb{R}^{d}\right)$ - the kernel of Δ in \mathcal{P}^{\prime}, i.e. the space of harmonic and homogeneous polynomials of degree I, with

$$
\operatorname{dim} \mathcal{H}^{\prime}=\frac{2(I+\alpha) \Gamma(2 \alpha+I)}{\Gamma(I+1) \Gamma(2 \alpha+1)}
$$

The surface spherical harmonics of order I are defined as restrictions of elements from \mathcal{H}^{\prime} to the unit sphere S^{d-1}.

A. Bezubik, A. Strasburger

Canonical decomposition of the harmonic polynomials and Fourier transforms of $\mathrm{SO}(d)$-finite measures

Theorem : The canonical decomposition

The space \mathcal{P}^{\prime} decomposes orthogonally $\mathcal{P}^{\prime}=\oplus_{k=0}^{[I / 2]} r^{2 k} \mathcal{H}^{I-2 k}$ and the decomposition is invariant with respect to the action of $K=\mathbf{S O}(d)$. Thus any polynomial $P \in \mathcal{P}^{\prime}$ may be written as

$$
\begin{equation*}
P=\sum_{k=0}^{[I / 2]} r^{2 k} h_{l-2 k}(P), \quad \text { with } \quad h_{l-2 k}(P) \in \mathcal{H}^{I-2 k} \tag{1}
\end{equation*}
$$

and the harmonic components of P in the formula (1) are given

$$
\begin{equation*}
h_{I-2 k}(P)=\sum_{j=0}^{[I / 2]-k} e_{j}^{\prime}(k) r^{2 j} \Delta^{k+j} P \tag{2}
\end{equation*}
$$

where

$$
e_{j}^{\prime}(k)=(-1)^{j} \frac{(\alpha+I-2 k) \Gamma(\alpha+I-2 k-j)}{4^{k+j} k!j!\Gamma(\alpha+I+1-k)} .
$$

A. Bezubik, A. Strasburger

Canonical decomposition of the harmonic polynomials and Fourier transforms of $\mathbf{S O}(d)$-finite measures

The canonical decomposition, Theorem c.d.

In particular, set $x=|x| \xi$, take an arbitrary $\eta \in S^{d-1}$ and let I be a nonnegative integer, then

$$
\begin{equation*}
(x \mid \eta)^{\prime}=2^{-l} \Gamma(\alpha) \Gamma(I+1)|x|^{\prime} \sum_{k=0}^{[I / 2]} \frac{(\alpha+I-2 k)}{k!\Gamma(\alpha+I+1-k)} C_{l-2 k}^{\alpha}((\xi \mid \eta)) \tag{3}
\end{equation*}
$$

Here $C_{l}^{\alpha}(t)$ is the so called Gegenbauer polynomial defined by

$$
\begin{equation*}
C_{I}^{\alpha}(t)=\sum_{j=0}^{[I / 2]}(-1)^{j} \frac{\Gamma(\alpha+I-j)}{\Gamma(\alpha) \Gamma(j+1) \Gamma(I+1-2 j)}(2 t)^{I-2 j} \tag{4}
\end{equation*}
$$

The zonal polynomial

The group $\mathbf{S O}(d)$ acts irreducibly in \mathcal{H}^{\prime} for each I, and there exists a unique, up to a scalar multiple, polynomial in \mathcal{H}^{\prime} which is invariant under the action of the isotropy subgroup $K_{\eta} \simeq \mathbf{S O}(d-1)$ of a point $\eta \in S^{d-1}$. This polynomial is called the zonal polynomial of degree $/$ with pole at η and is given by

$$
\begin{equation*}
Z_{\eta}^{\prime}(x)=|x|^{\prime}\left[C_{l}^{\alpha}(1)\right]^{-1} C_{l}^{\alpha}((\xi \mid \eta)), \quad x=|x| \xi \tag{5}
\end{equation*}
$$

The general form of an expansion

The profile function

We call a function f defined on the unit sphere S^{d-1} a zonal function (relative to a point $\eta \in S^{d-1}$) if it is invariant with respect to the isotropy group K_{η} of η. Any such function is in fact a function of one variable, namely the scalar product $(\xi \mid \eta)$ and as such can be written in the form

$$
f(\xi)=\phi((\xi \mid \eta)), \quad \xi \in S^{d-1}
$$

where the function ϕ defined on the unit interval $[-1,1] \subset \mathbb{R}$ will be called the profile function of f.

The general form of an expansion

The Fourier-Laplace expansion

Every square integrable function on the sphere can be written as a series of spherical harmonics (the Fourier-Laplace expansion), which for zonal functions reduces to

$$
\begin{equation*}
f(\xi)=\sum_{m=0}^{\infty} f_{m} Z_{\eta}^{m}(\xi), \text { where } f_{m}=\operatorname{dim} \mathcal{H}^{m} \int_{S^{d-1}} f(\xi) Z_{\eta}^{m}(\xi) d \sigma(\xi) \tag{6}
\end{equation*}
$$

The following result shows how the coefficients f_{k} of the expansion can be expressed in terms of the coefficients of the Taylor expansion of the profile function ϕ.

The general form of an expansion

Theorem

Assume $\phi:[-1,1] \rightarrow \mathbb{C}$ has the Taylor expansion
$\phi(t)=\sum_{m=0}^{\infty} \frac{\phi^{(m)}(0)}{m!} t^{m}$ absolutely convergent on the interval $[-1,1]$ and let $f(\xi)=\phi((\xi \mid \eta))$ be the zonal function on the sphere S^{d-1} corresponding to ϕ. Then the spherical Fourier expansion of $f(\xi)$ is given by

$$
\begin{equation*}
f(\xi)=\Gamma(\alpha+1) \sum_{m=0}^{\infty} f_{m} \operatorname{dim} \mathcal{H}^{m} Z_{\eta}^{m}(\xi) \tag{7}
\end{equation*}
$$

where the coefficients of the expansion can be expressed by

$$
\begin{equation*}
f_{m}=\sum_{k=0}^{\infty} \frac{\phi^{(m+2 k)}(0)}{2^{m+2 k} k!\Gamma(\alpha+m+k+1)} . \tag{8}
\end{equation*}
$$

The Bessel function

The Bessel function of the first kind are defined by the power series convergent in the whole complex plane \mathbb{C}

$$
J_{\nu}(t)=\left(\frac{t}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma(k+1) \Gamma(k+\nu+1)}\left(\frac{t}{2}\right)^{2 k}
$$

where ν is a complex number satisfying $\operatorname{Re} \nu>-1$. The so called spherical Bessel functions are given by

$$
j_{\nu}(t)=\Gamma(\nu+1)\left(\frac{t}{2}\right)^{-\nu} J_{\nu}(t) .
$$

Applications : 1) The plane wave expansion

As an immediate application of the Theorem 1 we get

Corollary

For arbitrary unit vectors $\xi, \eta \in S^{d-1} \subset \mathbb{R}^{d}$ and $u \in \mathbb{R}_{+}$the plane wave $e^{i u(\xi \mid \eta)}$ admits the following expansion

$$
e^{i u(\xi \mid \eta)}=\sum_{m=0}^{\infty} i^{m} \operatorname{dim} \mathcal{H}^{m} \frac{\Gamma(\alpha+1)}{\Gamma(\alpha+m+1)}\left(\frac{u}{2}\right)^{m} j_{\alpha+m}(u) Z_{\eta}^{m}(\xi) .
$$

The series converges absolutely for each fixed value of $u \in \mathbb{R}_{+}$and uniformly with respect to $\xi, \eta \in S^{d-1}$.

Applications : 2) The expansion of the Poisson kernel

The Poisson kernel for the unit ball in \mathbb{R}^{d} is given by

$$
P(r \eta ; \xi)=\frac{1-r^{2}}{\left(1-2 r(\xi \mid \eta)+r^{2}\right)^{d / 2}}, \quad \text { where } 0 \leqslant r<1 .
$$

For fixed r it is a zonal function with a pole η and from the Theorem 1 one can obtain a new proof of the following classical expansio

$$
P(r \eta ; \xi)=\sum_{m=0}^{\infty} \operatorname{dim} \mathcal{H}^{m} r^{m} Z_{\eta}^{m}(\xi) .
$$

Corollary

Let a function f on the sphere S^{d-1} be a finite sum of surface spherical harmonics of different degrees, $f=\sum_{k=1}^{p} Y_{k}$, where Y_{k} are restrictions to the sphere of elements in $\mathcal{H}^{n_{k}}$. Then the Fourier transform of the measure $f(\eta) d \sigma(\eta)$ is given by the formula

$$
\int_{S^{d-1}} e^{i(x \mid \eta)} f(\eta) d \sigma(\eta)=\sum_{k=1}^{p}\left(\frac{i}{2}\right)^{n_{k}} \frac{\Gamma(\alpha+1)}{\Gamma\left(\alpha+n_{k}+1\right)} j_{\alpha+n_{k}}(|x|) Y_{k}(x)
$$

In the terminology adopted in harmonic analysis functions satisfying the conditions of the Corollary are called $\mathbf{S O}(d)$-finite, since their $\mathbf{S O}(d)$-translates span a finite dimensional subspace.

Theorem (F. J. Gonzalez Vieli, 2000; A.Bezubik, A.Strasburger, 2005)

If $P \in \mathcal{P}^{\prime}$, then the Fourier transform of the measure $P(\xi) d \sigma(\xi)$ with support on the unit sphere S^{d-1} is given by the following equivalent formulae

$$
\begin{equation*}
\int_{S^{d-1}} e^{i(x \mid \eta)} P(\eta) d \sigma(\eta)= \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& \left(\frac{i}{2}\right)^{I[I / 2]} \sum_{k=0}^{(-1)^{k} 2^{2 k} \Gamma(\alpha+1)} \frac{\Gamma(\alpha+I+1-2 k)}{} j_{\alpha+I-2 k}(|x|) h_{I-2 k}(P)(x)= \tag{10}\\
& =\left(\frac{i}{2}\right)^{I} \sum_{k=0}^{I / 2]} \frac{(-1)^{k} \Gamma(\alpha+1)}{k!\Gamma(\alpha+I+1-k)} j_{\alpha+I-k}(|x|)\left(\Delta^{k} P\right)(x) \tag{11}
\end{align*}
$$

with $h_{l-2 k}(P)$ denoting the harmonic components of P as in the Eqn. (1).

Preliminaries on spherical harmonics in complex space

We identify n-dimentional complex vector space with the even dimensional Euclidean space $\mathbb{R}^{2 n}, \mathbb{C}^{n} \simeq \mathbb{R}^{2 n}$, setting $z_{j}=x_{j}+i y_{j}$, for $j=1, \ldots, n$, and $\left(z_{1}, \ldots, z_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. Hermitian inner product in the space \mathbb{C}^{n} is given by

$$
(z \mid \xi)=\sum_{i=1}^{n} z_{i} \overline{\xi_{i}}, \quad z=\left(z_{1}, \ldots, z_{n}\right), \xi=\left(\xi_{1}, \ldots, \xi_{n}\right)
$$

and the corresponding norm

$$
|\xi|^{2}=(\xi \mid \xi)=\sum_{i=1}^{n}\left|\xi_{i}\right|^{2}
$$

G - special unitary group of degree n of matrices which satisfy

$$
G=\mathbf{S U}(n)=\left\{A: A \bar{A}^{T}=I, A \in M_{n}(\mathbb{C}), \operatorname{det} A=1\right\}
$$

where $\bar{A}^{T}=A^{*}$ is the Hermitian conjugation.

A. Bezubik, A. Strasburger

Canonical decomposition of the harmonic polynomials and Fourier transforms of $\mathbf{S O}(d)$-finite measures

The unit sphere and the isotropy group

The unit sphere $S=\left\{\left.z \in \mathbb{C}^{n}| | z\right|^{2}=1\right\}$ in \mathbb{C}^{n} can be identified with the unit sphere $S^{2 n-1} \subset \mathbb{R}^{2 n}$ in the real Euclidean space $\mathbb{R}^{2 n}$:

$$
S \ni\left(z_{1}, \ldots, z_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \in S^{2 n-1}
$$

The sphere S can be realized as a coset space (a homogeneous space) of the group G in the following way. Let K denote the isotropy group of $e_{n} \in \mathbb{C}^{n}$ in G, i.e.

$$
K=\left\{A \in G \mid A e_{n}=e_{n}\right\} .
$$

A. Bezubik, A. Strasburger

Canonical decomposition of the harmonic polynomials and Fourier transforms of $\mathbf{S O}(d)$-finite measures

It is easy to see that if $A \in \mathbf{S U}(n)$ then $A e_{n}=e_{n}$ if and only if A splits into the following block form

$$
A=\left(\begin{array}{ll}
R & 0 \\
0 & 1
\end{array}\right)
$$

where $R \in \mathbf{S U}(n-1), 1 \in \mathbb{C}$, and 0 stands for a ($n-1$)-column (resp. row) zero vector. This implies

$$
S^{2 n-1} \simeq S=G / K=\mathbf{S U}(n) / \mathbf{S U}(n-1)
$$

Identifying \mathbb{C}^{n} with $\mathbb{R}^{2 n}$ leads to an embedding of $\mathbf{S U}(n)$ in SO(2n):

$$
\mathbf{S U}(n) \ni A=\left[a_{i j}\right]=\left[\alpha_{i j}+i \beta_{i j}\right] \mapsto\left(\begin{array}{cc}
\left(\alpha_{i j}\right) & \left(\beta_{i j}\right) \\
-\left(\beta_{i j}\right) & \left(\alpha_{i j}\right)
\end{array}\right) \in \mathbf{S O}(2 n)
$$

Polynomial in \mathbb{C}^{n}

Every complex valued polynomial on $\mathbb{R}^{2 n}$ homogeneous of degree m can be written using the multi-index notation in the following form

$$
P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\sum p_{k \mid} x^{k} y^{\prime}
$$

where $p_{k l} \in \mathbb{C}^{n}, x^{k}=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}, y^{\prime}=x_{1}^{l_{1}} \ldots y_{n}^{l_{n}}$ with multi-indices $k=\left(k_{1}, \ldots, k_{n}\right), I=\left(I_{1}, \ldots, I_{n}\right) \in \mathbb{Z}_{+}^{n},|k|+|I|=\sum k_{i}+\sum l_{i}=m$. Since $x_{j}=\frac{1}{2}\left(z_{j}+\bar{z}_{j}\right), y_{j}=\frac{1}{2 i}\left(z_{j}-\bar{z}_{j}\right)$ we may write it in the complex multi-index notation

$$
P(z, \bar{z})=\sum q_{\alpha \beta} z^{\alpha} \bar{z}^{\beta}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}_{+}^{n}$, $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}+\beta_{1}+\ldots+\beta_{n}=m$ and $q_{\alpha \beta} \in \mathbb{C}$.

We shall denote by $\mathcal{P}^{m}=\mathcal{P}^{m}\left(\mathbb{C}^{n}\right)$ the complex vector space consisting of polynomial functions defined on \mathbb{C}^{n}, which are homogeneous of degree m. There are certain distinguished subspaces of \mathcal{P}^{m} consisting of the so called bi-homogeneous polynomials which are defined as follows.

Definition

A polynomial $P(z, \bar{z})$ is called bi-homogeneous of degree (p, q), if

$$
P(u z, \overline{u z})=u^{p} \bar{u}^{q} P(z, \bar{z}), \quad \text { for each } u \in \mathbb{C} .
$$

We have the following formula

$$
\langle P \mid Q\rangle:=\int_{S^{2 n-1}} P(\xi) \overline{Q(\xi)} d \sigma(\xi)
$$

for the inner product in $\mathcal{P}^{m}\left(\mathbb{C}^{n}\right)$.

A. Bezubik, A. Strasburger

Canonical decomposition of the harmonic polynomials and Fourier transforms of $\mathbf{S O}(d)$-finite measures

The Laplacian

A polynomial $P \in \mathcal{P}^{m}\left(\mathbb{C}^{n}\right)$ is harmonic if $\Delta P=0$, where of course

$$
\Delta=\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}+\sum_{j=1}^{n} \frac{\partial^{2}}{\partial y_{j}^{2}}
$$

is the Laplacian. We recall that Δ can be written in the complex form by using complex derivatives

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right) ; \quad \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right)
$$

as

$$
\Delta=4 \sum_{j=1}^{n} \frac{\partial^{2}}{\partial z_{j} \partial \bar{z}_{j}} .
$$

A. Bezubik, A. Strasburger

Canonical decomposition of the harmonic polynomials and Fourier transforms of $\mathbf{S O}(d)$-finite measures

The space $\mathcal{H}^{m}=\mathcal{P}^{m} \cap$ ker Δ consists of harmonic and homogeneous of degree m polynomials, while $\mathcal{H}^{(p, q)}=\mathcal{P}^{(p, q)} \cap \operatorname{ker} \Delta$ is the space of harmonic and bi-homogeneous of degree (p, q) polynomials. The restrictions of harmonic polynomials to the unit sphere are called spherical (surface) harmonics.
Since the action of $\mathbf{S U}(n)$ on \mathcal{P}^{m} commutes with the Laplacian. It leaves \mathcal{H}^{m} invariant. Moreover, each $\mathcal{P}^{(p, q)}$ is also invariant under this action.

Theorem (The complex case)

The space \mathcal{P}^{m} decomposes orthogonaly as

$$
\mathcal{P}^{m}\left(\mathbb{R}^{2 n}\right)=\bigoplus_{p, q \geqslant 0, p+q=m} \mathcal{P}^{(p, q)}\left(\mathbb{C}^{n}\right)
$$

and further

$$
\begin{array}{rlrl}
\mathcal{P}^{(p, q)}\left(\mathbb{C}^{n}\right)=\mathcal{H}^{(p, q)} & +r^{2} \mathcal{H}^{(p-1, q-1)}+\ldots & & \\
& +r^{2 p} \mathcal{H}^{(0, q-p)} & & \\
& +r^{2 q} \mathcal{H}^{(p-q, 0)} & & p<q \\
& , \quad p>q
\end{array}
$$

Thus from the group theoretic point of view the above given decomposition is the decomposition into irreducible representations of the group $\mathbf{S U}(n)$. It can be shown [5] that each of the space $\mathcal{H}^{(p, q)}$ is irreducible under the action of $\mathbf{S U}(n)$ and for different bi-degree the actions are inequivalent.

A. Bezubik, A. Strasburger

Canonical decomposition of the harmonic polynomials and Fourier transforms of $\mathbf{S O}(d)$-finite measures

References

目 G．E．Andrews，R．Askey，and R．Roy，Special Functions， Encyclopedia of mathematics and its applications，Cambridge University Press，Cambridge 1999.

R A．Bezubik，A．Dabbrowska，and A．Strasburger，On the Fourier transform of $\mathbf{S O}(d)$－finite measures on the unit sphere，Arch． Math．（2005）．
䍰 J．Faraut，Analyse harmonique et fonctions spéciales，in：
J．Faraut，K．Harzallah，Deux Cours d＇Analyse Harmonique，Ecole d＇Été d＇Analyse Harmonique de Tunis 1984，Birkhäuser Verlag，Basel， 1987.

國 F．J．Gonzalez Vieli，Inversion de Fourier ponctuelle des distributions à support compact，Arch．Math． 75 （2000）， 290－298．

囯 Koornwinder T. H., The addition formula for Jacobi polynomials, II The Laplace type integral representation and the product formula, Department of Applied Mathematics (1976), TW 133/76

- Magnus W., Oberhettinger F., Soni R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, $3^{\text {rd }}$ Ed., Springer-Verlag, Berlin 1966
© C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces, Springer Verlag, New York 1998

囲 E. M. Stein, G. Weiss, Introduction to Harmonic Analysis on Euclidean Spaces, Princeton University Press, Princeton 1971.

[^0]: ${ }^{1}$ Institute of Mathematics University of Białystok
 ${ }^{2}$ Dep. of Econometrics and Informatics Warsaw Agricultural University

