Quantum Walk Exercises

D.Nagaj, QESS Summer School, Smolenice 2014

August 26, 2014

1. Calculate the evolution of the state $|00 \cdots 0\rangle$ for a continuous-time quantum walk on a d-dimensional hypercube, with the adjacency matrix as the Hamiltonian.
2. Show that the position probability distribution of the coined quantum walk in 1 D with the "balanced" coin

$$
C=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right]
$$

is indeed balanced, when starting from the initial state $|x\rangle|+\rangle$. Can you find an initial state of a Hadamard walk that evolves in a balanced way?
3. Find the parameters of a unitary "Grover coin" in N dimensions.
4. Express the $R e f_{1}$ operator for a scattering quantum walk on a complete N-dimensional graph, using reflections about the states

$$
\left|\psi_{x}\right\rangle=\frac{1}{\sqrt{N-1}} \sum_{y \neq x}|x\rangle|y\rangle .
$$

5. Investigate unstructured quantum search via quantum walk - the evolution of the uniform superposition state

$$
|s\rangle=\frac{1}{\sqrt{N}} \sum_{x=1}^{N}|x\rangle
$$

under the Hamiltonian

$$
H=-|s\rangle\langle s|-|w\rangle\langle w|,
$$

where $|w\rangle$ is a marked state. How long does it take for $|s\rangle$ to evolve to something that is close to $|w\rangle$?
6. Find the eigenvectors/eigenvalues of a continuous-time quantum walk on a cycle of length L. What does the state $|0\rangle$ evolve to? Express the time-averaged limiting distribution

$$
\bar{p}(x)=\lim _{T \rightarrow \infty} \bar{p}(x, T)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} p(x, t) \mathrm{d} t .
$$

How large does T have to be so that $\bar{p}(x, T)$ is close to this limiting distribution?

[^0]
[^0]: *daniel.nagaj@savba.sk

