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Problems and References

Exercise 1 Use the monotonicity of the relative entropy under CPTP
maps to show the following:

1. If σAB′ := (idA⊗Λ)ρAB, where Λ : D(HB)→ D(HB′) is a CPTP map,
then I(A : B′)σ = I(A;B)ρ.

2. S(A1A2|B1B2) ≤ S(A1|B1) + S(A2|B2)

Exercise 2 Use strong subadditivity of the von Neumann entropy to prove

(i) S(A|BC)ρ ≤ S(A|B)ρ (ii) I(A : B)ρ ≤ I(A : BC)ρ

Exercise 3 Use the Typical Subspace Theorem to establish that for any
δ > 0 and n large enough, the ensemble average fidelity satisfies the bound
F n ≥ 1− 2δ, for the encoding and decoding maps of the quantum data
compression scheme for a memoryless source discussed in Lecture 1.

Exercise 4 Prove that the Holevo capacity χ∗(N ) of a quantum channel
N is superadditive, i.e., χ∗(N1 ⊗N2) ≥ χ∗(N1) + χ∗(N2) for two quantum
channels N1 and N2.

Exercise 5 Prove that the coherent information Icoh(N , ρ) of a quantum
channel N for an input state ρ can be expressed in the form

Icoh(N , ρ) = S(N (ρ))− S(N c(ρ)),

where N c denotes the complementary channel.

Exercise 6 A quantum channel N is said to be degradable if there exists a
CPTP map T such that T ◦ N (ρ) = N c(ρ). Using Exercise 5 and Exercise
1(2.) prove that if N1 and N2 are degradable, then the coherent information
for the channel N1 ⊗N2 for any input state ρ12 satisfies the bound

Icoh(N1 ⊗N2, ρ12) ≤ Icoh(N1, ρ1) + Icoh(N2, ρ2),
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where ρ1 and ρ2 are the reduced states of ρ12. Use this result to establish
that the quantum capacity of a degradable channel N is given by the
following single-letter expression:

Q(N ) = max
ρ
Icoh(N ),

where the maximization is over all possible inputs to the channel.

Exercise 7 Prove that Hmax(A|B)Φ(m) = − logm for a maximally
entangled state of Schmidt rank m: |Φ(m)〉 = 1√

m

∑m
i=1 |iA〉|iB〉.

Exercise 8 Uhlmann’s theorem for the fidelity of two states can also be
expressed as follows: Given two states ρ and σ, for any fixed purification ψ
of ρ we have

F (ρ, σ) = max
|φ〉
|〈ψ|φ〉|, (1)

where the maximization is over all possible purifications |φ〉 of the state σ.
Using (1) prove the following: If U(ρAC) := (I ⊗ U)ρAC(IA ⊗ U †), where
U : HC → HC′ ⊗HE denotes the Stinespring isometry of a quantum
channel Λ : D(HC)→ D(HC′), and ΦAC′ is a maximally entangled state,
then there exists a state χE such that

F ((id⊗ Λ)ρAC ,ΦAC′) = F (U(ρAC),ΦAC′ ⊗ χE).

Use this to establish that

Hmin(A|C)ρ = − log dA max
C→C′E

max
ωE

logF 2(U(ρAC),ΦAC′ ⊗ ωE),

where the first maximization is over all possible isometries
U : HC → HC′ ⊗HE. [Hint: recall that in Lecture 2 we proved that

Hmin(A|C)ρ = − log dA max
Λ:D(HC)→D(HC′ )

CPTP

logF 2((idA ⊗ Λ)ρAC ,ΦAC′).]

Exercise 9 Use the above exercise to prove that if ρABC is a purification of
ρAB, then the following duality relation holds:

Hmax(A|B)ρ = −Hmin(A|C)ρ.

[Hint: Note that Hmax(A|B)ρ = maxσB logF 2(ρAB, IA ⊗ σB)]
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Remark: The duality relation has also been proved to be valid for smoothed
entropies, i.e. for a pure state ρABC,

Hε
max(A|B)ρ = −Hε

min(A|C)ρ.

The smooth entropies are defined as follows:

Hε
min(A|C)ρ := max

ρAC∈Bε∈ρAC

Hmin(A|C)ρ,

Hε
max(A|B)ρ := min

ρAB∈Bε∈ρAB

Hmax(A|B)ρ,

where
Bε(ρ) := {ρ ∈ B(H) : ρ ≥ 0,Tr ρ ≤ 1, F̃ (ρ, ρ) ≥ 1− ε},

with F̃ (ρ, ρ) := F (ρ, ρ+
√

(1− Tr ρ)(1− Tr ρ).
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