, Role of Entropies in Quantum Communication LECTURE III

Nilanjana Datta
University of Cambridge, U. K.

- Consider transmission of information through quantum channels in the the one-shot setting:
- transmission of quantum information....

In the last lecture we saw that:

For transmission of quantum information through a noisy channel \mathcal{N} in the one-shot setting (up to an error \mathcal{E}), require:
ε
(state before $\omega_{R E} \approx \rho_{R} \otimes \sigma_{E}$ decoding)

i.e., the state of the reference system R is (approxly.) decoupled from the state of the environment E of \mathcal{N}.

- In this lecture: We shall make use of decoupling in evaluating the quantum capacity of a channel

Mathematical Tool

(1) Choi-J amilkowski (C-J) Isomorphism

Quantum

operations \longleftrightarrow| Positive |
| :--- |
| operators |

Let $\mathcal{H}_{R} \simeq \mathcal{H}_{A} \quad$ with orthonormal basis $\{|i\rangle\}_{i=1}^{d}$

$$
\begin{aligned}
& \Phi_{R A}:=\left|\Phi_{R A}\right\rangle\left\langle\Phi_{R A}\right| ; \quad\left|\Phi_{R A}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}|i\rangle|i\rangle \in \mathcal{H}_{R} \otimes \mathcal{H}_{A} \\
& \text { maximally entangled state (MES) }
\end{aligned}
$$

- Choi state of a quantum operation $\Lambda^{A \rightarrow B}$:

$$
\sigma_{R B}:=\left(\mathrm{id}_{R} \otimes \Lambda^{A \rightarrow B}\right) \Phi_{R A} \in \mathcal{P}\left(\mathcal{H}_{R} \otimes \mathcal{H}_{A}\right)
$$

History (decoupling)

First explicit use of decoupling in the Q.Info. Theory literature:

- M. Horodecki, J. Oppenheim \& A. Winter (state merging)
- A. Abeysinghe, I.Devetak, P.Hayden, A. Winter (coherent state merging - FQSW)
- P.Hayden, M. Horodecki, J.Yard \& A. Winter
(quantum info transmission)
"asymptotic memoryless setting"

Decoupling Theorem

gives conditions under which 2 subsystems of a bipartite system can become almost uncorrelated (decoupled)

Rough idea: Initially $\rho_{R A}:$ possibly correlated

- Consider a unitary evolution of system A alone:

$$
(I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right)
$$

- Then consider an arbitrary quantum operation on A
e.g. $\Lambda \equiv \Lambda^{A \rightarrow E}: \omega_{R E}:=(\operatorname{id} \otimes \Lambda)\left((I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right)\right)$
- Decoupling theorem provides a bound on the distance of a typical resulting state from a decoupled state:
i.e., bound on

$$
\left\|\omega_{R E}-\rho_{R} \otimes \sigma_{E}\right\|_{1}
$$

$$
\rho_{R A} \rightarrow(I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right) \rightarrow(\mathrm{id} \otimes \Lambda)\left((I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right)\right)
$$

- For quantum info transmission through a noisy channel:

$$
\rho_{R A} \rightarrow(I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right) \rightarrow(i d \otimes \Lambda)\left((I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right)\right)
$$

- For quantum info transmission through a noisy channel:

$$
\begin{aligned}
& \Lambda^{A \rightarrow E} \equiv \tilde{\mathcal{N}}^{A \rightarrow E}: \text { complementary channel }\left|\omega_{\text {RBE }}\right\rangle \\
& \omega_{R E}=(\mathrm{id} \otimes \tilde{\mathcal{N}})\left((I \otimes U) \rho_{\text {RA }}\left(I \otimes U^{\dagger}\right)\right)
\end{aligned}
$$

- Decoupling theorem provides a bound on

$$
\left\|\omega_{R E}-\rho_{R} \otimes \sigma_{E}\right\|_{1} \quad \omega_{R E} \equiv \omega_{R E}(U)
$$

One-shot setting : decoupling theorems in which the bound on
$\left\|\omega_{R E}-\rho_{R} \otimes \sigma_{E}\right\|_{1}$ is given in terms of min/max entropies:

- [Berta], [Buscemi \&ND], [Berta, Christandl, Renner], [ND,

Hsieh]

- [Dupuis];
- [Dupuis, Berta, Wullschleger, Renner]
(decoupling condition expressed in terms of
Choi state of the quantum operation)
- One-shot decoupling theorem: [Dupuis et al]

$$
\text { Let } \varepsilon>0 ; \quad \Lambda^{A \rightarrow E}:
$$

(quantum operation)

$$
\sigma_{A^{\prime} E}=\left(\mathrm{id}_{A^{\prime}} \otimes \Lambda\right) \Phi_{A^{\prime} A} \quad \text { Chi state of } \Lambda
$$

Then for any state $\rho_{R A}$,

$\int \cdot d U$: integral over the Haar measure on the full unitary group over \mathcal{H}_{A}
$\sigma_{E}=\operatorname{Tr}_{A^{\prime}} \sigma_{A^{\prime} E}$

- One-shot decoupling theorem: [Dupuis et al]

$$
\begin{array}{ll}
\text { Let } \quad \varepsilon>0 ; \quad \Lambda^{A \rightarrow E}\left(\equiv \tilde{\mathcal{N}}^{A \rightarrow E}\right) ; & \text { (quantum operation) } \\
\sigma_{A^{\prime} E}=\left(\mathrm{id}_{A^{\prime}} \otimes \Lambda\right) \Phi_{A^{\prime} A} \quad \text { C-J state of } \Lambda
\end{array}
$$

Then for any state $\rho_{R A}$,

$$
\begin{array}{r}
\int\left\|(\mathrm{id} \otimes \Lambda)\left((I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right)\right)-\rho_{R} \otimes \sigma_{E}\right\|_{1} d U \\
\leq 2^{-\frac{1}{2} H_{\min }^{\varepsilon}(A \mid R)_{\rho}-\frac{1}{2} H_{\min }^{\varepsilon}\left(A^{\prime} \mid E\right)_{\sigma}}
\end{array}
$$

$\int \cdot d U$: integral over the Haar measure on the full unitary group over \mathcal{H}_{A}
$\sigma_{E}=\operatorname{Tr}_{A^{\prime}} \sigma_{A^{\prime} E}$

- One-shot decoupling theorem: [Dupuis et al]

$$
\text { Let } \quad \varepsilon>0 ; \quad \tilde{\mathcal{N}}^{A \rightarrow E} ; \quad \sigma_{A^{\prime} E}=\left(\mathrm{id}_{A^{\prime}} \otimes \tilde{\mathcal{N}}\right) \Phi_{A^{\prime} A}
$$

Then for any state $\rho_{R A}$,
Chi state of $\tilde{\mathcal{N}}$

$$
\int\left\|\omega_{R E}(U)-\rho_{R} \otimes \sigma_{E}\right\|_{1} d U
$$

$$
\leq 2^{-\frac{1}{2} H_{\min }^{\varepsilon}(A \mid R)_{\rho}-\frac{1}{2} H_{\min }^{\varepsilon}\left(A^{\prime} \mid E\right)_{\sigma}}
$$

$$
\omega_{R E}(U)=\omega_{R E}=(\operatorname{id} \otimes \tilde{\mathcal{N}})\left((I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right)\right)
$$

$\int \cdot d U$: integral over the Haar measure on the full unitary group over \mathcal{H}_{A}

$$
\sigma_{E}=\operatorname{Tr}_{A^{\prime}} \sigma_{A^{\prime} E}
$$

- One-shot decoupling theorem: [Dupuis et al] implies that: $\exists U$:

$$
\left\|\omega_{R E}(U)-\rho_{R} \otimes \sigma_{E}\right\|_{1} \leq 2^{-\frac{1}{2} H_{\min }^{\varepsilon}(A \mid R)_{\rho}-\frac{1}{2} H_{\min }^{\varepsilon}\left(A^{\prime} \mid E\right)_{\sigma}}
$$

$$
\omega_{R E}(U)=\omega_{R E}=(\operatorname{id} \otimes \tilde{\mathcal{N}})\left((I \otimes U) \rho_{R A}\left(I \otimes U^{\dagger}\right)\right)
$$

$$
\sigma_{A^{\prime} E}=\left(\mathrm{id}_{A^{\prime}} \otimes \tilde{\mathcal{N}}\right) \Phi_{A^{\prime} A} \text { Choi state of } \tilde{\mathcal{N}}
$$

- Alice locally prepares a maximally entangled state;
- A, R are both in her possession

UTMIVERSTY OF Application: one-shot entanglement transmission

$$
\left|\Phi_{R A}^{m}\right\rangle \in \mathcal{H}_{M}, \otimes \mathcal{H}_{M} \subseteq \mathcal{H}_{R} \otimes \mathcal{H}_{A}
$$

- Alice prepares a MES $\left|\Phi_{R A}^{m}\right\rangle$; both systems $R \& \begin{gathered}A \text { are } \\ \text { with her }\end{gathered}$
- Aim: to transmit the system A to Bob
- such that - after decoding, the state that Bob shares with Alice is \mathcal{E} - close to $\left|\Phi_{R A}^{m}\right\rangle$

Role of the encoding map: $U_{\text {enc }}$
To select a suitable coding subspace which is almost error-free

$$
\left|\Phi_{R A}^{m}\right\rangle=\text { MES of Schmidt rank } m
$$

$$
\text { number of ebits transmitted (up to error } \mathcal{E} \text {) }=\log m
$$

- Capacity:= maximum number of ebits transmitted

One-shot ε - error entanglement-transmission capacity:

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}):=\sup \left\{\log m: \text { final state } \stackrel{\varepsilon}{\approx} \Phi_{R A}^{m}\right\}
$$

- Theorem x [ND, M-H.Hsieh; F.Buscemi \& ND]

One-shot \mathcal{E} - error entanglement-transmission capacity, $\forall \varepsilon \in(0,1)$:

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \approx \max _{\mathcal{H}_{M} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}\left(R \mid B \sigma_{\sigma}\right\}\right.
$$

$$
\sigma_{R B}=\left(\mathrm{id}_{R} \otimes \mathcal{N}^{A \rightarrow B}\right) \Phi_{R A}^{m} ;
$$

Since $\left|\Phi_{R A}^{m}\right\rangle \in \mathcal{H}_{M}, \otimes \mathcal{H}_{M}$, action of \mathcal{N} restricted to \mathcal{H}_{M}

- Theorem x [ND, M-H.Hsieh; F.Buscemi \& ND]

One-shot ε - error entanglement-transmission capacity, $\forall \varepsilon \in(0,1)$:

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \approx \max _{\mathcal{H}_{\mathcal{M}} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}
$$

- Proof:

Step I (Achievability) ;

lower bound
upper bound

- Proof: Step I (Direct) lower bound

- Such a decoding \mathfrak{D} exists if

$$
\omega_{R E} \stackrel{\varepsilon}{\approx} \rho_{R} \otimes \sigma_{E} ; \quad \rho_{R}=\frac{I}{m} \quad \begin{gathered}
\text { (completely mixed } \\
\text { state) }
\end{gathered}
$$

- Use one-shot decoupling theorem

UNIVERSITY OF

 CAMBRIDGE- One-shot decoupling theorem: [Dupuis et al] implies that: $\exists U$:

$$
\left\|\omega_{R E}(U)-\rho_{R} \otimes \sigma_{E}\right\|_{1} \leq 2^{-\frac{1}{2} H_{\min }^{\varepsilon}(A \mid R)_{\Phi^{m}}-\frac{1}{2} H_{\min }^{\varepsilon}(R \mid E)_{\sigma}}
$$

$$
\omega_{R E}(U)=\omega_{R E}=(\operatorname{id} \otimes \tilde{\mathcal{N}})\left((I \otimes U) \Phi_{R A}^{m}\left(I \otimes U^{\dagger}\right)\right)
$$

$\sigma_{R E}=\left(\operatorname{id}_{R} \otimes \tilde{\mathcal{N}}\right) \Phi_{R A}^{m} ;$ Chi state of $\tilde{\mathcal{N}}$
$\because \rho_{R A}=\Phi_{R A}^{m}$

- since action of $\mathcal{N}(\& \therefore \tilde{\mathcal{N}})$ restricted to $\mathcal{H}_{M} \subseteq \mathcal{H}_{A}$
- and $\Phi_{R A}^{m}$ is a MES in $\mathcal{H}_{M}, \otimes \mathcal{H}_{M}$
- One-shot decoupling theorem: [Dupuis et al] implies that: $\exists U$:

$$
\begin{equation*}
\left\|\omega_{R E}(U)-\rho_{R} \otimes \sigma_{E}\right\|_{1}^{\varepsilon} \leq 2^{-\frac{1}{2} H_{\min }^{\varepsilon}(A \mid R)_{\Phi^{m}}-\frac{1}{2} H_{\min }^{\varepsilon}(R \mid E)_{\sigma}} \ldots \tag{a}
\end{equation*}
$$

$$
\omega_{R E}(U)=\omega_{R E}==(\operatorname{id} \otimes \tilde{\mathcal{N}})\left((I \otimes U) \Phi_{R A}^{m}\left(I \otimes U^{\dagger}\right)\right)
$$

$$
\sigma_{R E}=\left(\mathrm{id}_{R} \otimes \tilde{\mathcal{N}}\right) \Phi_{R A}^{m}
$$

$$
\because \rho_{R A}=\Phi_{R A}^{m}
$$

- Require : RHS of (a) to be small

$$
\Rightarrow\left\|\omega_{R E}-\rho_{R} \otimes \sigma_{E}\right\|_{1} \stackrel{\varepsilon}{\approx} 0 \Rightarrow \omega_{R E} \stackrel{\varepsilon}{\approx} \rho_{R} \otimes \sigma_{E}
$$

(approx.) decoupling!

- One-shot decoupling theorem: [Dupuis et al]
implies that: $\exists U$:
$\left\|\omega_{R E}(U)-\rho_{R} \otimes \sigma_{E}\right\|_{1}^{\varepsilon} \leq 2^{-\frac{1}{2} H_{\text {min }}^{\varepsilon}(A \mid R)^{m}-\frac{1}{2} H_{\text {min }}^{\varepsilon}(R \mid E)_{\sigma}^{\sigma}}$
Note: $\quad H_{\text {min }}^{\varepsilon}(A \mid R)_{\Phi^{m}} \geq H_{\text {min }}(A \mid R)_{\Phi^{m}}=-\log m$
$\sigma_{R E}=\left(\mathrm{id}_{R} \otimes \tilde{\mathcal{N}}\right) \Phi_{R A}^{m} ;$
Purification: $\quad\left|\sigma_{R B E}\right\rangle=\left(\mathrm{id}_{R} \otimes U_{\mathcal{N}}^{A \rightarrow B E}\right) \Phi_{R A}^{m}$
Duality of smoothed min- and max- entropies:

$$
H_{\min }^{\varepsilon}(R \mid E)_{\sigma}=-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}
$$

$$
\begin{gather*}
\left\|\omega_{R E}-\rho_{R} \otimes \sigma_{E}\right\|_{1} \leq 2^{-\frac{1}{2} H_{\min }^{\varepsilon}(A \mid R)_{\Phi^{m}}-\frac{1}{2} H_{\min }^{\varepsilon}(R \mid E)_{\sigma}} \\
\left\|\omega_{R E}-\rho_{R} \otimes \sigma_{E}\right\|_{1} \leq 2^{\frac{1}{2} \log m+\frac{1}{2} H_{\max }^{\varepsilon}(R \mid B)_{\sigma}} \tag{a}
\end{gather*}
$$

- Decouplingoccurs if: RHS of (a) is small :

$$
\log m=-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}+\log \varepsilon
$$

- One-shot entanglement transmission capacity:

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \geq \max _{\mathcal{H}_{\mathcal{M}} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}+\log \varepsilon
$$

In summary

- We established the Iower bound:

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \geq \max _{\mathcal{H}_{M} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}+f(\varepsilon)
$$

- Used the fact: decoupling $\Rightarrow \exists$ a decoder
- Condition for decoupling \longrightarrow lower bound

CAMBRIDGE Converse: $Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \leq \max _{\mathcal{H}_{M} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}$

- Proof:
- Assume that \exists an encoding $\mathcal{E} \&$ a decoding \mathscr{D} such that

FWAMBRIDGE Converse: $Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \leq \max _{\mathcal{H}_{\mathcal{M}} \leq \mathcal{H}_{A}}\left\{-H_{\text {max }}^{\varepsilon}(R \mid B)_{\sigma}\right\}$

$$
\begin{aligned}
\log m & =-H_{\max }(R \mid A)_{\Phi_{R A}^{m}} \text { State afte } \\
& \leq \max _{\zeta_{R A} \in B^{\varepsilon}\left(\tilde{\tilde{R}}_{R A}\right)}\left\{-H_{\max }(R \mid A)_{\zeta}\right\} \\
= & -\min _{\sin _{R \in \in} \in B^{\varepsilon}\left(\tilde{\omega}_{R A}\right)}\left\{H_{\max }(R \mid A)_{\zeta}\right\}
\end{aligned}
$$

State after decoding :

$$
\tilde{\omega}_{R A} \stackrel{\varepsilon}{\approx} \Phi_{R A}^{m}
$$

$$
\Phi_{R A}^{m} \underbrace{\varepsilon}_{\boldsymbol{B}^{\varepsilon}\left(\tilde{\omega}_{R A}\right)}
$$

$$
=-H_{\max }^{\varepsilon}(R \mid A)_{\tilde{\omega}} \leq-H_{\max }^{\varepsilon}(R \mid B)_{\omega}
$$

$$
\because \mathfrak{D}^{B \rightarrow A}
$$

- Converse:

Thus:

$$
\begin{array}{cc}
\log m \leq-H_{\max }^{\varepsilon}(R \mid B)_{\omega} & \text { where } \\
* & \omega_{R B}=\left(\mathrm{id}_{R} \otimes \mathcal{N}^{A \rightarrow B} \circ \mathcal{E}\right) \Phi_{R A}^{m} ; \\
\leq-H_{\max }^{\varepsilon}(R \mid B)_{\sigma} & \text { where } \\
\text { Main ingredients of } *: & \sigma_{R B}=\left(\mathrm{id}_{R} \otimes \mathcal{N}^{A \rightarrow B}\right) \Phi_{R A}^{m} ;
\end{array}
$$

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \leq \max _{\mathcal{H}_{M} \leq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}
$$

- Ricochet: $(I \otimes A)|\Phi\rangle=\left(A^{T} \otimes I\right)|\Phi\rangle$
- Invariance of smooth conditional max-entropy under local

$$
H_{\max }^{\varepsilon}(R \mid B)_{\omega}=H_{\max }^{\varepsilon}(R \mid B)_{\sigma} \quad \text { if } \quad \omega_{R B} \leftrightarrow \sigma_{R B} \quad \text { unitaries }
$$

$$
\Rightarrow \log m \leq-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}
$$

WAMBRIDGE $_{\text {UNIVERSITY }}^{\text {CAF }}$. Converse: $Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \leq \max _{\mathcal{H}_{M} \subseteq \mathcal{H}_{A}}\left\{-H_{\text {max }}^{\varepsilon}(R \mid B)_{\sigma}\right\}$

$$
\begin{aligned}
& \log m \leq-H_{\max }^{\varepsilon}(R \mid B)_{\omega} \\
& \omega_{R B}=\left(\mathrm{id}_{R} \otimes \mathcal{N}^{A \rightarrow B} \circ \mathcal{E}\right) \Phi_{R A}^{m} ; \\
&=\left(\mathrm{id}_{R} \otimes \mathcal{N}^{A \rightarrow B}\right)\left(\mathrm{id}_{R} \otimes \mathcal{E}\right) \Phi_{R A}^{m} ; \\
&=\left(\mathrm{id}_{R} \otimes \mathcal{N}^{A \rightarrow B}\right)\left(\mathcal{E}^{T} \otimes \mathrm{id}_{A}\right) \Phi_{R A}^{m} ; \\
&=\left(\mathcal{E}^{T} \otimes \mathrm{id}_{A}\right)\left(\mathrm{id}_{R} \otimes \mathcal{N}^{A \rightarrow B}\right) \Phi_{R A}^{m} ; \\
& \omega_{R B}=\left(\mathcal{E}^{T} \otimes \mathrm{id}_{A}\right) \sigma_{R B}^{m} ; \\
& \quad H_{R A}^{\varepsilon} ; \\
& \log m \leq-H_{\max }^{\varepsilon}(R \mid B)_{\omega} \leq-H_{\max }^{\varepsilon}(R \mid B)_{\omega}
\end{aligned}
$$

$$
\Rightarrow \log m \leq-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}
$$

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \leq \max _{\mathcal{H}_{\mathcal{M}} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}
$$

In summary

- We established the upper bound (converse) by starting with the assumption that :

$$
\begin{gathered}
\exists \text { an encoding } \mathcal{E} \quad \& \text { a decoding } \mathscr{D} \text { such that } \\
\stackrel{\mathcal{E}}{\approx} \quad \Phi_{R A}^{m}
\end{gathered}
$$

- Going from $\log m=-H_{\max }(R \mid A)_{\Phi_{R A}^{m}} \longrightarrow \quad \begin{aligned} & \text { smooth condit } \\ & \text { max-entropy }\end{aligned}$
- Using data-processing inequality
- \& invariance of smooth conditional max-entropy under unitaries

One-shot \mathcal{E} - error entanglement-transmission capacity:

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \approx \max _{\mathcal{H}_{\mathcal{M}} \subseteq \mathcal{H}_{\mathcal{A}}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}
$$

嵫图 UNIVERSITY OF CAMBRDCE

One-shot setting
 Asymptotic memoryless setting

$\begin{aligned} & \text { Asymptotic } \\ & \text { capacity }\end{aligned} Q_{e t}(\mathcal{N})=\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{1}{n} Q_{e t}^{(1), \varepsilon}\left(\mathcal{N}^{\otimes n}\right)$
One-shot result: $\quad Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \approx \max _{\mathcal{H}_{\mathcal{M}} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}$

$$
\ldots \leq Q_{e t}^{(1), \varepsilon}\left(\mathcal{N}^{\otimes n}\right) \leq \ldots
$$

One-shot setting Asymptotic memoryless setting

One-shot result: $\quad Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \approx \max _{\mathcal{H}_{M} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}$

$$
\sigma_{n}=\sigma_{R_{n} B_{n}}=\left(\operatorname{id}_{R_{n}} \otimes \mathcal{N}^{\otimes n}\right) \Phi_{R_{n} A_{n}}^{m_{n}}
$$

One-shot setting \longrightarrow Asymptotic memoryless setting

$$
\begin{gathered}
Q_{e t}(\mathcal{N})=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\mathcal{H}_{M_{n}} \subset \mathcal{H}_{A}^{\otimes n}}\left\{-S(R \mid B)_{\sigma_{n}}\right\} \\
I_{\sigma_{n}}^{R>B}=-S\left(\sigma_{R B}\right)+S\left(\sigma_{B}\right)=-S(R \mid B)_{\sigma_{n}}
\end{gathered}
$$

coherent information
Entanglement transmission capacity (in asymptotic, memoryless setting)

$$
Q_{e t}(\mathcal{N})=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\mathcal{H}_{M_{n}} \subset \mathcal{H}_{A}^{\otimes n}} I_{\sigma_{n}}^{R_{n}>B_{n}} \text { [Lloyd, Shor, Devetak] }
$$

regularized coherent information

$$
\sigma_{n} \equiv \sigma_{R_{n} B_{n}}=\left(\operatorname{id}_{R_{n}} \otimes \mathcal{N}^{\otimes n}\right) \Phi_{R_{n} A_{n}}^{m_{n}}
$$

Summary

- Quantum information transmission through a noisy quantum channel \mathcal{N} in the one-shot setting
- Decoupling \longrightarrow existence of a decoder:
such that Bob can recover the quantum state sent by Alice up to an error \mathcal{E}
- One-shot entanglement transmission through a quantum channel : bounds on the capacity
-- given in terms of the smooth conditional max-entropy

Summary contd.

- One-shot entanglement transmission capacity

$$
Q_{e t}^{(1), \varepsilon}(\mathcal{N}) \approx \max _{\mathcal{H}_{\mathcal{M}} \subseteq \mathcal{H}_{A}}\left\{-H_{\max }^{\varepsilon}(R \mid B)_{\sigma}\right\}
$$

- This yields bounds on the one-shot quantum capacity of \mathcal{N} since

$$
Q_{\text {et }}^{(1), \frac{\varepsilon}{2}}(\mathcal{N}) \leq \underbrace{Q^{(1), \varepsilon}(\mathcal{N}) \leq Q_{e t}^{(1), \varepsilon}(\mathcal{N})}_{\substack{\text { one-shot quantum } \\ \text { capacity }}}
$$

- Retrieve known asymptotic result of Lloyd, Shor \& Devetak:
-- given in terms of the regularized coherent information

Optimal rates of Info-processing tasks
One-shot setting

$$
(n<\infty)
$$

given in terms of
smoothed entropies
obtained from:
$D_{\text {min }}(\rho \| \sigma), D_{\max }(\rho \| \sigma), D_{0}(\rho \| \sigma)$

Asymp. memoryless settng

$$
(n \rightarrow \infty)
$$

given in terms of entropies
obtained from:

$$
D(\rho \| \sigma)
$$

Quantum Asymptotic Equi partition Property

- e.g
$\forall \varepsilon^{-}>0, \quad \limsup _{n \rightarrow \infty} \frac{1}{n} D_{\max }^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \equiv D(\rho \| \sigma)$
One-shot bounds asymptotic, i.i.d. result

$$
n \rightarrow \infty
$$

