. Role of Entropies in Quantum Communication LECTURE II

Nilanj ana Datta
University of Cambridge, U.K.

In Quantum information theory, initially one evaluated:

- optimal rates of info-processing tasks, e.g.,
- data compression,
- transmission of information through a channel, etc.
under the assumption of an "asymptotic, memoryless setting"

Assume:

- information sources \& channels are memoryless
- They are available for asymptotically many uses
- To evaluate $C(\mathcal{N})$:

- One requires: prob. of error $P_{e}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$ 7
$C(\mathcal{N})$: Optimal rate of reliable information transmission

Entropic Quantities

Optimal rates of information-processing tasks in the "asymptotic, memoryless setting"

- Compression of Information:

Memoryless quantum info. source $\{\rho, \mathcal{H}\} \quad$ [Schumacher]

- Data compression limit: $S(\rho)$ von Neumann entropy
- Info Transmission thro' a memoryless quantum channel \mathcal{N}
- Classical capacity $C(\mathcal{N})$ [Holevo, Schumacher, Westmoreland] --given in terms of the Holevo capacity ;
- Quantum capacity $Q(\mathcal{N}) \quad$ [Lloyd, Shor, Devetak]
--given in terms of the coherent information ;

These entropic quantities are all obtainable from a single parent quantity;
Quantum relative entropy: For $\rho, \sigma \geq 0 ; \operatorname{Tr} \rho=1$

$$
D(\rho \| \sigma):=\operatorname{Tr}(\rho \log \rho)-\operatorname{Tr}(\rho \log \sigma)
$$

e.g. Data compression limit:

$$
S(\rho):=-\operatorname{Tr}(\rho \log \rho)=-D(\rho \| I) \quad(\sigma=I)
$$

e. g. Holevo quantity:

$$
\not \mathcal{X}\left(\left\{p_{x}, \rho_{x}\right\}\right)=\sum_{x} p_{x} D\left(\rho_{x} \| \rho\right) ; \rho=\sum_{x} p_{x} \rho_{x} \quad \text { etc. }
$$

acts as a parent quantity for optimal rates in the "asymptotic, memoryless setting"

In real-world applications

"asymptotic memoryless setting" not necessarily valid

- In practice: information sources \& channels are used a finite number of times;
- there are unavoidable correlations between successive uses (memory effects)

Hence it is important to evaluate optimal rates for
finite number of uses (or even a single use)
of an arbitrary source or channel

- Evaluation of corresponding optin'al 'rates':

One-shot information theory

One-shot information theory

One-shot \mathcal{E}-error $:=\quad$ max. number of bits that can be classical capacity

$$
C_{-}^{(1)}(\mathcal{N}) \quad \begin{gathered}
\text { Prob. of } \\
\text { error: }
\end{gathered} p_{e} \leq \varepsilon \text { for some } \quad \varepsilon>0,
$$

In the one-shot setting too...

- Capacities, data compression limit etc. are
-- given in terms of entropic quantities
Min-/ O-/ max- entropies (R. Renner)
- Obtainable from certain (generalized) relative entropies

Parent quantities for optimal 'rates' in the one-shot setting
$D_{\text {max }}(\rho \| \sigma)$
$D_{0}(\rho \| \sigma)$
$D_{\text {min }}(\rho \| \sigma)$

Max-relative entropy
O-relative Renyi entropy
Min-relative entropy

- Rest of this lecture:

Part I

Entropies relevant in One-Shot Information Theory

Part II

These entropies as operational quantities in One-Shot Information Theory

Entropies relevant in One-Shot Information Theory Outline

- Notations \& Definitions
- Tool: Decoupling
- Definitions of generalized relative entropies:

$$
D_{\max }(\rho \| \sigma), D_{0}(\rho \| \sigma), D_{\min }(\rho \| \sigma)
$$

- Properties \& operational significances of them
- Their children: the min-, max- and 0-entropies
- Their "smoothed" versions
$\mathcal{L}(\mathcal{H})$: algebra of linear operators acting on \mathcal{H}
(finite-dimensional)
$\mathcal{P}(\mathcal{H})$: set of positive operators.....
$\mathcal{D}(\mathcal{H}) \subset \mathcal{P}(\mathcal{H}):$ set of density matrices (states)
- Linear maps: If $\Lambda: \mathcal{L}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{B}\right) \quad\left(\Lambda^{A \rightarrow B}\right)$
its adj oint map: $\quad \Lambda^{*}: B \rightarrow A$
defined through

$$
\operatorname{Tr}(X \Lambda(Y))=\operatorname{Tr}\left(\Lambda^{*}(X) Y\right)
$$

- Quantum operations (quantum channels) : linear CPTP map
Λ is CPTP if and only if Λ^{*} is CPUM completely positive unital map: $\Lambda^{*}(I)=I$

Notations \& Definitions

- Quantum channel : $\mathcal{N}^{A \rightarrow B}$.
- Stinespring isometry of $\mathcal{N}: U_{\mathcal{N}}^{A \rightarrow B E}$

$$
\omega_{B}:=\mathcal{N}^{A \rightarrow B}\left(\rho_{A}\right)=\operatorname{Tr}_{E} U_{\mathcal{N}}^{A \rightarrow B E}\left(\rho_{A}\right)
$$

- Complementary channel: $\tilde{\mathcal{N}}^{A \rightarrow E}$,

$$
\omega_{E}:=\tilde{\mathcal{N}}^{A \rightarrow E}\left(\rho_{A}\right)=\operatorname{Tr}_{B} U_{\mathcal{N}}^{A \rightarrow B E}\left(\rho_{A}\right)
$$

Notations \& Definitions

- A figure of merit in quantum communication tasks:
- Fidelity: For $\rho, \sigma \in \mathcal{D}(\mathcal{H}), \quad F(\rho, \sigma):=\|\sqrt{\rho} \sqrt{\sigma}\|_{1}$

$$
F(\rho, \sigma)=F(\sigma, \rho) ; \quad 0 \leq F(\rho, \sigma) \leq 1
$$

For 2 pure states $\psi, \phi: \quad F(\psi, \phi)=|\langle\psi \mid \phi\rangle|$
$F(\psi, \rho)=\sqrt{\operatorname{Tr}(\rho \psi)} ; \quad \therefore F^{2}(\psi, \rho)=\operatorname{Tr}(\rho \psi)=\langle\psi| \rho|\psi\rangle$

- Uhlmann's Theorem:

$$
\begin{aligned}
& F(\rho, \sigma)=\max _{\psi_{\rho}, \psi_{\sigma}}\left|\left\langle\psi_{\rho} \mid \psi_{\sigma}\right\rangle\right|, \psi_{\rho}, \psi_{\sigma}: \text { purifications of } \rho, \sigma . \\
& F(\rho, \sigma) \leq F(\Lambda(\rho), \Lambda(\sigma)) \quad \forall \Lambda \quad \text { CPTP }
\end{aligned}
$$

Decouplingr -- a central concept in quantum info theory

- Has wide-ranging applications:
- transmission of quantum information
- other protocols, e.g. state merging, coherent state merging,

Decoupling:

- Consider a composite system $R E$ in a joint state $\omega_{R E}$
- The subsystem R is decoupled (or uncorrelated) from E
if:

$$
\omega_{R E}=\rho_{R} \otimes \sigma_{E}
$$

- The outcome of any measurement on R is statistically independent of any measurement on E
- The system R does not give any information about system E

$$
\omega_{R E}=\rho_{R} \otimes \sigma_{E}
$$

(decoupled)
for some state σ_{E}

$$
R \quad \text { purifying reference }\left(\rho_{\mathrm{R}}\right)
$$

$$
\omega_{R E}=\rho_{R} \otimes \sigma_{E}
$$

(decoupled)
\exists a partial isometry $V^{B \rightarrow A E^{\prime}}$ such that

$$
V^{B \rightarrow A E^{\prime}}\left|\omega_{R B E}\right\rangle=\left|\varphi_{R A}^{\rho}\right\rangle \otimes\left|\sigma_{E E^{\prime}}\right\rangle
$$

This acts as Bob's decoding!

- Final state in Bob's possession: $\operatorname{Tr}_{R E}\left(\varphi_{R A}^{\rho} \otimes \sigma_{E E^{\prime}}\right)=\rho_{A} \otimes \sigma_{E^{\prime}}$
- Bob traces out over the system E^{\prime} :

$$
\mathrm{Tr}_{E^{\prime}}\left(\rho_{A} \otimes \sigma_{E^{\prime}}\right)=\rho_{A} \quad \text { to recover Alice's message ! }
$$

Thus: If $U_{\text {enc }}$ be such that $\omega_{R E}$ is decoupled:

$$
\omega_{R E}=\rho_{R} \otimes \sigma_{E}
$$

then Bob can recover Alice's message!

- In fact, if $\omega_{R E} \approx \rho_{R} \otimes \sigma_{E} \quad$ (approximately decoupled)
that is, $F\left(\omega_{R E}, \rho_{R} \otimes \sigma_{E}\right) \geq 1-\varepsilon \quad$ for some $\varepsilon \geq 0$: then \exists a decoder such that after decoding Bob has

$$
\text { a state } \stackrel{\varepsilon}{\approx} \rho_{A} \quad \text { (Alice's message) }
$$

- This follows from Ul mann's theorem:

Let $\rho, \sigma \in \mathcal{D}\left(\mathcal{H}_{A}\right)$, purification $\left|\varphi_{A R}^{\rho}\right\rangle,\left|\psi_{A R^{\prime}}^{\sigma}\right\rangle$

$$
\left.F(\rho, \sigma)=\max _{V^{R \rightarrow R^{\prime}}}\left|\left\langle\psi_{A R^{\prime}}^{\sigma}\right| V^{R \rightarrow R^{\prime}}\right| \varphi_{A R}^{\rho}\right\rangle \mid
$$

$$
\left.1-\varepsilon \leq F\left(\omega_{R E}, \rho_{R} \otimes \sigma_{E}\right)=\max _{V^{B \rightarrow A E^{\prime}}}\left|\left\langle\varphi_{R A}^{\rho} \otimes \sigma_{E E^{\prime}}\right| V^{B \rightarrow A E^{\prime}}\right| \omega_{R B E}\right\rangle \mid
$$

$$
\left.1-\varepsilon \leq F\left(\omega_{R E}, \rho_{R} \otimes \sigma_{E}\right)=\max _{V^{B} \rightarrow A E^{E}}\left|\left\langle\varphi_{R A}^{\rho} \otimes \sigma_{E E}\right| V^{B \rightarrow A E^{\prime}}\right| \omega_{R B E}\right\rangle \mid
$$

The optimizing partial isometry $V^{B \rightarrow A E}$ acts as Bob's decoding Bob ends up with a state $\stackrel{\varepsilon}{\approx} \operatorname{Tr}_{R E}\left(\varphi_{R A}^{\rho} \otimes \sigma_{E E^{\prime}}\right) \stackrel{\varepsilon}{\approx} \rho_{A} \otimes \omega_{E^{\prime}}$

And after doing a partial trace over E ', he ends up with
i.e., Bob ends up with a state which is \mathcal{E} - close to the quantum state that Alice sent

- In a nutshell:

For transmission of quantum information thro' a noisy channel \mathcal{N} in the one-shot setting (up to an error \mathcal{E}), require:

$$
\omega_{R E} \approx \rho_{R} \otimes \sigma_{E}
$$

(state before decoding)
i.e., the state of the reference system R is (approxly.) decoupled from the state of the environment E of \mathcal{N}.

Outline

- Definitions of generalized relative entropies:

$$
D_{\max }(\rho \| \sigma), D_{0}(\rho \| \sigma), D_{\min }(\rho \| \sigma)
$$

Definitions of generalized relative entropies

$$
\rho \in \mathcal{D}(\mathcal{H}), \sigma \in \mathcal{P}(\mathcal{H}) ; \text { supp } \rho \subseteq \operatorname{supp} \sigma \text {; }
$$

- Max-relative entropy [ND 2008]

$$
\left.\left.\begin{array}{rl}
D_{\max }(\rho \| \sigma) & :=\inf \left\{\gamma \leq \gamma^{\gamma} \sigma\right\} ; \\
& =\log \left(\lambda _ { \operatorname { m a x } } \left(\sigma^{-1 / 2} \rho \sigma^{-1 / 2} \leq 2^{\gamma} I\right.\right.
\end{array}\right)\right)
$$

- Min-relative entropy [Dupuis et al 2012]

$$
\begin{aligned}
D_{\min }(\rho \| \sigma) & =-2 \log \|\left[\sqrt{\rho} \sqrt{\sigma} \|_{1} ;\right. \\
& =-2 \log F(\rho, \sigma)_{\text {fidelity }}
\end{aligned}
$$

UNIVERSITYOF Definitions of generalized relative entropies $\rho \in \mathcal{D}(\mathcal{H}), \sigma \in \mathcal{P}(\mathcal{H}) ; \operatorname{supp} \rho \subseteq \operatorname{supp} \sigma ; \quad$ contd.

- O-relative Renyi entropy

$$
D_{0}(\rho \| \sigma):=-\log \left(\operatorname{Tr}\left(\pi_{\rho} \sigma\right)\right)
$$

where $\pi \rho$ denotes the projector onto Supp ρ

- α-relative Renyi entropy $\quad(\alpha \neq 1)$

$$
D_{\alpha}(\rho \| \sigma):=\frac{1}{\alpha-1} \log \operatorname{Tr}\left(\rho^{\alpha} \sigma^{1-\alpha}\right)
$$

$$
\lim _{\alpha \rightarrow 0^{+}} D_{\alpha}(\rho \| \sigma)=D_{0}(\rho \| \sigma)
$$

$$
D_{\max }(\rho \| \sigma) \geq D_{0}(\rho \| \sigma)
$$

- Proof:

$$
D_{\max }(\rho \| \sigma): \text { € -inf }\left\{\gamma: \rho \leq 2^{\gamma} \sigma\right\}=\gamma_{0}
$$

$$
\rho \leq 2^{\gamma_{0}} \sigma, \quad\left(2^{\gamma_{0}} \sigma-\rho\right) \geq 0, \quad \text { Also } \quad \pi_{\rho} \geq 0
$$

$$
\operatorname{Tr}\left[\pi_{\rho}\left(2^{\gamma_{0}} \sigma-\rho\right)\right] \geq 0 \quad \because A, B \geq 0 \Rightarrow \operatorname{Tr}(A B) \geq 0
$$

$$
2^{\gamma_{0}} \operatorname{Tr}\left[\pi_{\rho} \sigma\right] \geq \operatorname{Tr}\left[\pi_{\rho} \rho\right]=1
$$

$$
\gamma_{0}+\log \left[\operatorname{Tr}\left(\pi_{\rho} \sigma\right)\right] \geq 0
$$

$$
\gamma_{D_{\max }(\rho \| \sigma) \geq-\log \left[\operatorname{Tr}\left(\pi_{\rho} \sigma\right)\right]}^{\gamma_{0}(\rho \| \sigma)}
$$

 CAMBRIDGE

Properties of generalized relative entropies

- Positivity: If $\rho, \sigma \in \mathcal{D}(\mathcal{H})$, for $*=\max , 0$, min

$$
D_{*}(\rho \| \sigma) \geq 0
$$

just as $D(\rho \| \sigma)$

- Data-processing inequality:

$$
D_{*}(\Lambda(\rho) \| \Lambda(\sigma)) \leq D_{*}(\rho \| \sigma) \quad \text { for any CPTP map } \Lambda
$$

- Invariance under joint unitaries:

$$
D_{*}\left(U \rho U^{\dagger} \| U \sigma U^{\dagger}\right)=D_{*}(\rho \| \sigma)
$$

for any unitary operator U

- Interestingly,

Operational interpretation of $D_{0}(\rho \| \sigma):=-\log \left(\operatorname{Tr}\left(\pi_{\rho} \sigma\right)\right)$

- Quantum binary Bob receives a state hypothesis testing:

- He does a measurement to infer which state it is

POVM $A[\rho] \quad \& \quad(I-A)[\sigma]$

Possible errors	inference	actual state
Type I	σ	ρ
Type II	ρ	σ

- Error
probabilities

$$
\begin{array}{ll}
\alpha=\operatorname{Tr}((I-A) \rho) & \text { Type I } \\
\beta=\operatorname{Tr}(A \sigma) & \text { Type II }
\end{array}
$$

- Suppose (POVM element) $A=\pi_{\rho}$

Prob(Type I error)

$$
\begin{aligned}
\alpha & =\operatorname{Tr}((I-A) \rho) \\
& =0
\end{aligned}
$$

Bob never infers the state to be σ when it is ρ

BUT

$$
D_{0}(\rho \| \sigma):=-\log \operatorname{Tr} \pi_{\rho} \sigma
$$

Hence

$$
\beta=2^{-D_{0}(\rho \| \sigma)}
$$

$$
\text { when } \alpha=0
$$

= Prob(Type II error | Type I error = zero)

- Suppose (POVM element) $A=\pi_{\rho}$

Prob(Type I error)

$$
\begin{aligned}
\alpha & =\operatorname{Tr}((I-A) \rho) \\
& =0
\end{aligned}
$$

Prob(Type II error)

$$
\begin{aligned}
\beta & =\operatorname{Tr}(A \sigma) \\
& =\operatorname{Tr}\left(\pi_{\rho} \sigma\right)
\end{aligned}
$$

Bob never infers the state to be σ when it is ρ вит $\quad D_{0}(\rho \| \sigma):=-\log \operatorname{Tr} \pi_{\rho} \sigma$

In fact, min Prob(Type II error | Type I error = zero)

$$
\left.\beta^{*}\right|_{\alpha=0}=2^{-D_{0}(\rho \| \sigma)}
$$

- What if Bob has a single copy of the state but one allows non-zero but small value of the Prob(Type I error) α ?
i.e., let $\alpha \leq \varepsilon$ for some $\varepsilon \geq 0$.

$$
\begin{aligned}
D_{0}(\rho \| \sigma)= & -\left.\log \beta^{*}\right|_{\alpha=0}=-\log \operatorname{Tr} \pi_{\rho} \sigma \\
& -\left.\log \beta^{*}\right|_{\alpha \leq \varepsilon}=?
\end{aligned}
$$

$$
\alpha=\operatorname{Tr}((I-A) \rho) ; \quad \alpha=0 \quad \text { for } A=\pi_{\rho} \therefore \operatorname{Tr}(A \rho)=1
$$

\therefore For $\alpha \leq \varepsilon$ choose A such that $\operatorname{Tr}(A \rho) \geq 1-\varepsilon$

$$
D_{0}^{\varepsilon}(\rho \| \sigma)=-\left.\log \beta^{*}\right|_{\alpha \leq \varepsilon}=\max _{0 \leq A \leq I}(-\log (\operatorname{Tr}(A \rho)))
$$

Hypothesis testing relative entropy [Wang \& Renner]

$$
\equiv D_{H}^{\varepsilon}(\rho \| \sigma)
$$

$$
\begin{aligned}
& D_{0}(\rho \| \sigma)=-\left.\log \beta^{*}\right|_{\alpha=0}=-\log \operatorname{Tr} \pi_{\rho} \sigma \\
& \begin{aligned}
&\left.\beta^{*}\right|_{\alpha=0}=\operatorname{Tr} \pi_{\rho} \sigma \\
&=\min _{\substack{0 \leq A \leq I \\
\operatorname{Tr}(A \rho)=1}} \operatorname{Tr}(A \sigma)=2^{-D_{0}(\rho\| \|)} \\
&\left.\beta^{*}\right|_{\alpha \leq \varepsilon}=\min _{\substack{0 \leq A \leq I \\
\operatorname{Tr}(A \rho) \geq 1-\varepsilon}} \operatorname{Tr}(A \sigma)=2^{-D_{H}^{\varepsilon}(\rho \mid \sigma)}
\end{aligned}
\end{aligned}
$$

Compare operational significances of $D_{H}^{\varepsilon}(\rho \| \sigma) \& D(\rho \| \sigma)$
$D(\rho \| \sigma) \quad$ arises in asymptotic binary hypothesis testing

- Suppose Bob is given many (n) identical copies of the state
- He receives $\rho^{\otimes n}$

Bob's POVM

$$
\left\{A_{n},\left(I-A_{n}\right)\right\}
$$

$$
\left.\beta^{*(n)}\right|_{\alpha(n) \leq \varepsilon}:=\begin{aligned}
& \text { Minimum type II error when } \\
& \text { type I error } \leq \varepsilon
\end{aligned}
$$

$$
\forall \varepsilon \in[0,1):
$$

$$
\left.\beta^{*(n)}\right|_{\alpha(n) \leq \varepsilon} \approx 2^{-n D(\rho \| \sigma)}
$$

[Quantum Stein's Lemma]

Operational interpretations in binary hypothesis testing

$$
D_{H}^{\varepsilon}(\rho \| \sigma)
$$

One-shot setting;
Single copy of the state:

$$
=-\left.\log \beta^{*}\right|_{\alpha \leq \varepsilon}
$$

$$
D(\rho \| \sigma)
$$

Asymptotic memoryless setting; Multiple copies of the state:

(Bob receives identical copies of the state: $\rho^{\otimes n}$ or $\sigma^{\otimes n}$)

Operational interpretation of the max-relative entropy

- Multiple state discrimination problem
its state with prob.

a quantum system

ρ_{1}
$\stackrel{\rho_{2}}{\rho_{m}}$
- He does measurements to infer the state: POVM

$$
\left\{E_{1}, . ., E_{m}\right\}: 0 \leq E_{i} \leq I ; \quad \sum_{i=1}^{m} E_{i}=I
$$

- His optimal average success probability:

$$
p_{\text {succ }}^{*}:=\max _{\left\{E_{1}, \ldots, E_{m}\right\}} \frac{1}{m} \sum_{i=1}^{m} \operatorname{Tr}\left(E_{i} \rho_{i}\right)
$$

- Theorem 3 [M. Mosonyi \& ND]:

The optimal average success probability in this multiple state discrimination problem is given by:

$$
p_{\text {succ }}^{*}=\frac{1}{m} \min _{\sigma} \max _{1 \leq i \leq m} 2^{D_{\max }\left(\rho_{i} \| \sigma\right)}
$$

$$
\begin{aligned}
& \forall \varepsilon \geq 0 . \quad D_{\max }^{\varepsilon}(\rho \| \sigma):=\min _{\bar{\rho} \in B^{\varepsilon}(\rho)} D_{\max }(\bar{\rho} \| \sigma) \\
& \quad B^{\varepsilon}(\rho):=\{\bar{\rho} \geq 0, \operatorname{Tr} \bar{\rho}=1: \sqrt{1-F(\rho, \bar{\rho})} \leq \varepsilon\}
\end{aligned}
$$

fidelity

Outline

- Mathematical Tool: Decoupling
- Definitions of generalized relative entropies:

$$
D_{\max }(\rho \| \sigma), D_{0}(\rho \| \sigma), D_{\min }(\rho \| \sigma)
$$

- Properties \& operational significances of them
- Their children: the min-, max- and 0-entropies

$$
D_{\max }(\rho \| \sigma), D_{0}(\rho \| \sigma) \& D_{\min }(\rho \| \sigma)
$$

as parent quantities for other entropies

J ust as:
von Neumann

$$
S(\rho)=-D(\rho \| I)
$$

$$
(\sigma=I)
$$

$$
\begin{aligned}
H_{\min }(\rho) & :=-D_{\max }(\rho \| I) \\
& =-\log \lambda_{\max }(\rho)
\end{aligned}
$$

$$
\begin{aligned}
H_{0}(\rho) & :=-D_{0}(\rho \| I) \\
& =\log \operatorname{rank}(\rho)
\end{aligned}
$$

$$
\begin{aligned}
H_{\max }(\rho) & :=-D_{\min }(\rho \| I) \\
& =\log \|\sqrt{\rho}\|_{1}^{2}
\end{aligned}
$$

[Renner]

Other min- \& max- entropies

 For a bipartite state $\rho_{A B}$:
Conditional entropy

$$
S(A \mid B)=S\left(\rho_{A B}\right)-S\left(\rho_{B}\right)=\max _{\sigma_{B}}\left\{-D\left(\rho_{A B} \| I_{A} \otimes \sigma_{B}\right)\right\}
$$

Conditional min-entropy

$$
H_{\min }(A \mid B)_{\rho}:=\max _{\sigma_{B}}\left\{-D_{\max }\left(\rho_{A B} \| I_{A} \otimes \sigma_{B}\right)\right\}
$$

Max-conditional entropy

$$
H_{\max }(A \mid B)_{\rho}:=\max _{\sigma_{B}}\left\{-D_{\min }\left(\rho_{A B} \| I_{A} \otimes \sigma_{B}\right)\right\}
$$

O-conditional entropy

$$
H_{0}(A \mid B)_{\rho}:=\max _{\sigma_{B}}\left\{-D_{0}\left(\rho_{A B} \| I_{A} \otimes \sigma_{B}\right)\right\}
$$

- e.g. Duality relation: [Koenig, Renner, Schaffner]:

For any purification $\rho_{A B C}$ of a bipartite state $\rho_{A B}:$

$$
H_{\max }(A \mid B)_{\rho}=-H_{\min }(A \mid C)_{\rho}
$$

(just as for the von Neumann entropy):

$$
S(A \mid B)_{\rho}=-S(A \mid C)_{\rho}
$$

-- and -- interesting operational interpretations:

Operational interpretations

- Conditional min-entropy ~

maximum achievable singlet fraction

- Conditional max-entropy~
decoupling accuracy
- Conditional O-entropy ~
one-shot entanglement cost under LOCC
[F.Buscemi, ND]

Operational interpretation

- Conditional min-entropy \sim Max. achievable singlet fraction

$$
\begin{gathered}
\left|\Phi_{A B}\right\rangle=\frac{1}{\sqrt{d}} \sum_{i=1}^{d}\left|i_{A}\right\rangle\left|i_{B}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}: \quad \begin{array}{c}
\text { max. entangled } \\
\text { state (MES) }
\end{array} \\
\Phi_{A B}=\left|\Phi_{A B}\right\rangle\left\langle\Phi_{A B}\right| \quad \text { [Koenig, Renner, Schaffner] } \\
2^{-H_{\min }(A \mid B)_{\rho}}=d \max _{\Lambda_{B}: C P T P} F^{2}\left(\left(\left(\mathrm{id}_{A} \otimes \Lambda_{B}\right) \rho_{A B}\right), \Phi_{A B}\right) \\
\text { fidelity }
\end{gathered}
$$

Given the bipartite state $\rho_{A B}$, it is the maximum overlap with the singlet state $\Phi_{A B}$, that can be achieved by local quantum operations Λ_{B} on the subsystem B.

- Conditional max-entropy \sim Decoupling accuracy

Distance of $\quad \rho_{A B}$, from a product state $\tau_{A} \otimes \sigma_{B}$
no correlations; decoupled

$$
\begin{aligned}
\tau_{A}= & \frac{I}{d_{A}} \text { completely mixed state on } \mathcal{H}_{A} \\
& 2^{H_{\max }(A \mid B)_{\rho}}=d_{A} \max _{\sigma_{B}} F^{2}\left(\rho_{A B}, \tau_{A} \otimes \sigma_{B}\right)
\end{aligned}
$$

From the cryptographic point of view:
How random A appears from the point of view of an adversary who has access to B.

- Conditional O-entropy ~ one-shot entanglement cost

One-shot Entanglement Dilution

One-shot entanglement cost
$E_{C}^{(1)}\left(\rho_{A B}\right):=\min m$
$=$ minimum number of Bell states needed to prepare a single copy of $\rho_{A B}$ via LOCC

- Theorem [F.Buscemi \& ND]: One-shot perfect entanglement cost of a bipartite state $\rho_{A B}$ under LOCC:

$$
E_{C}^{(1)}\left(\rho_{A B}\right)=\min _{E} H_{0}(A \mid \underset{\substack{R \\ \text { conditional o-entiópy }}}{R}
$$

Pure-state ensembles:

$$
\begin{aligned}
& E=\left\{p_{i},\left|\psi_{A B}^{i}\right\rangle\right\}_{i} ; \rho_{A B}=\sum_{i} p_{i}\left|\psi_{A B}^{i}\right\rangle\left\langle\psi_{A B}^{i}\right| \\
& \text { and } \quad \rho_{R A B}^{E}=\sum_{i} p_{i}\left|i_{R}\right\rangle\left\langle i_{R}\right| \otimes\left|\psi_{A B}^{i}\right\rangle\left\langle\psi_{A B}^{i}\right| \\
& \cdots
\end{aligned}
$$

For a bipartite state $\rho_{A B}$:

- just as: Mutual information

$$
I(A: B)=D\left(\rho_{A B} \| \rho_{A} \otimes \rho_{B}\right)=\max _{\sigma_{B}} D\left(\rho_{A B} \| \rho_{A} \otimes \sigma_{B}\right)
$$

Max-mutual entropy

$$
I_{\max }(A: B)_{\rho}:=\max _{\sigma_{B}} D_{\max }\left(\rho_{A B} \| \rho_{A} \otimes \sigma_{B}\right) \quad \text { etc. }
$$

Smoothed entropies $\forall \varepsilon \geq 0$.

$$
H_{\min }^{\varepsilon}(A \mid B)_{\rho}, H_{\max }^{\varepsilon}(A \mid B)_{\rho}, H_{0}^{\varepsilon}(A \mid B)_{\rho}, I_{\max }^{\varepsilon}(A: B)_{\rho}
$$

PROOF OF:

$2^{-H_{\min }(A \mid B)_{\rho}}=d \max _{\Lambda_{B}: C P T P} F^{2}\left(\left(\left(\mathrm{id}_{A} \otimes \Lambda_{B}\right) \rho_{A B}\right), \Phi_{A B}\right)$

Equivalently,

$$
-H_{\min }(A \mid B)_{\rho}=\log \left(d \max _{\Lambda_{B}: C P T P} \operatorname{Tr}\left(\left(\left(\mathrm{id}_{A} \otimes \Lambda_{B}\right) \rho_{A B}\right) \Phi_{A B}\right)\right) \quad \ldots(\mathbf{a})
$$

Proof via SDP (=semidefinite programming)

Mathematical Tool

Semi-definite programming (SDP)

- A well-established form of convex optimization
- The objective function is linear in an input constrained to a semi-definite cone
- Efficient algorithms have been devised for its solution
(2) Semi-definite programming (SDP)
$(\Lambda, A, B) ; A, B \in \mathcal{P}(\mathcal{H})$, $\Lambda: \mathcal{P}\left(\mathcal{H}_{A}\right) \rightarrow \mathcal{P}\left(\mathcal{H}_{B}\right) \quad$ positivity-preserving map
- Primal problem
minimize $\operatorname{Tr}(A X)$
subject to $\Lambda(X) \geq B$;

$$
X \geq 0
$$

Optimal solutions: $\quad \alpha$

- Dual problem
maximize $\operatorname{Tr}(B Y)$ subject to $\Lambda^{*}(Y) \leq A$; $Y \geq 0 ;$

Saters duality condition holds.

PROOF OF:

$$
\begin{equation*}
-H_{\min }(A \mid B)_{\rho}=\log \left(d \max _{\Lambda_{B}: C P T P} \operatorname{Tr}\left(\left(\left(\operatorname{id}_{A} \otimes \Lambda_{B}\right) \rho_{A B}\right) \Phi_{A B}\right)\right) \tag{a}
\end{equation*}
$$

Proof via SDP

- LHS of (a) $=\log \left(\min \operatorname{Tr} \tilde{\sigma}_{B} ;\left(\mathrm{id}_{A} \otimes \tilde{\sigma}_{B}\right) \geq \rho_{A B} ; \tilde{\sigma}_{B} \geq 0\right)$..(i)
- RHS of (a) $=\log \left(\min \operatorname{Tr}\left(\rho_{A B} Y_{A B}\right) ; \operatorname{Tr}_{A} Y_{A B} \leq I_{B} ; Y_{A B} \geq 0\right)$
(i) $=$ (ii) \quad (details given in the lecture)

Part II

Smooth entropies as operational quantities in One-Shot Information Theory

- Consider quantum communication tasks in the the one-shot setting
- See how.....
- some of the smooth entropies that we discussed arise as operational quantities for these tasks.
- the known results for the asymptotic memoryless setting can be obtained from these one-shot results.

Smooth entropies

- Relative entropies $D_{\max }(\rho \| \sigma), D_{0}(\rho \| \sigma), D_{\text {min }}(\rho \| \sigma)$
-- their smoothed versions $D_{\max }^{\varepsilon}(\rho \| \sigma), D_{H}^{\varepsilon}(\rho \| \sigma) \ldots$.
- Min-/max- entropies $H_{\text {min }}(A \mid B)_{\rho}, H_{0}(\rho), H_{\max }(A \mid B)_{\rho}$ etc .
-- their smoothed versions $H_{\min }^{\varepsilon}(A \mid B)_{\rho}, H_{\max }^{\varepsilon}(A \mid B)_{\rho}, \ldots$.

(Smooth) Entropies: properties

$$
H_{\min }(A \mid B)_{\rho}:=\max _{\sigma_{B}}\left\{-D_{\max }\left(\rho_{A B} \| I_{A} \otimes \sigma_{B}\right)\right\}
$$

$$
H_{\max }(A \mid B)_{\rho}:=\max _{\sigma_{B}}\left\{-D_{\min }\left(\rho_{A B} \| I_{A} \otimes \sigma_{B}\right)\right\}
$$

$$
\begin{aligned}
& H_{\text {min }}^{\varepsilon}(A \mid B)_{\rho}:=\max _{\left(\underset{\rho}{\rho} \in B^{\delta}(\rho)\right.} H_{\text {min }}(A \mid B)_{\bar{\rho}} ; \\
& H_{\text {max }}^{\varepsilon}(A \mid B)_{\rho}:=\min _{\bar{\rho} \in B^{B}(\rho)} H_{\text {max }}(A \mid B)_{\bar{p}} ;
\end{aligned}
$$

$$
\begin{array}{ll}
\text { If } \rho_{R A}=\Phi_{R A}^{m} ; & \text { MES }\left|\Phi_{R A}^{m}\right\rangle=\frac{1}{\sqrt{m}} \sum_{i=1}^{m}|i\rangle|i\rangle \\
H_{\min }^{\varepsilon}(A \mid R)_{\rho} \geq & H_{\min }(A \mid R)_{\rho}=-\log m=H_{\max }(A \mid R)_{\rho}
\end{array}
$$

[Colbeck, Renner Tomami chel]

For any purification $\rho_{A B C}$ of a bipartite state $\rho_{A B}$

$$
H_{\min }^{\varepsilon}(A \mid B)_{\rho}=-H_{\max }^{\varepsilon}(A \mid C)_{\rho}
$$

Data-processing inequality:

- e.g. If $\quad \tilde{\omega}_{R A}=\left(\operatorname{id}_{R} \otimes \Lambda^{B \rightarrow A}\right) \omega_{R B}$
(quantum operation)

$$
H_{\max }^{\varepsilon}(R \mid B)_{\omega} \leq H_{\max }^{\varepsilon}(R \mid A)_{\tilde{\omega}}
$$

One-shot to asymptotics

- Relation between smooth entropies \& quantum entropies

$$
\forall \varepsilon>0: \quad \lim _{n \rightarrow \infty} \frac{1}{n} D_{\max }^{\varepsilon}\left(\rho^{\otimes n} \| \sigma^{\otimes n}\right) \quad=D(\rho \| \sigma)
$$

[Audenaert, Mosonyi, Verstraete ; Tomami chel; ND \&Renner]

$$
\begin{aligned}
& \forall \varepsilon>0: \lim _{n \rightarrow \infty} \frac{1}{n} H_{\min }^{\varepsilon}(A \mid B)_{\rho_{A B}^{\otimes n}}=H(A \mid B)_{\rho} \\
& \text { QAEP } \quad \forall \varepsilon>0: \lim _{n \rightarrow \infty} \frac{1}{n} H_{\max }^{\varepsilon}(A \mid B)_{\rho_{A B}^{\otimes n}}=H(A \mid B)_{\rho}
\end{aligned}
$$

[Colbeck, Renner, Tomamichel; Tomami chel]
These results allow us to recover the results of the "asymptotic memoryless setting"
from those of the "one-shot setting"

