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LECTURE II 



In Quantum information theory, initially one evaluated:
 optimal rates of info-processing tasks, e.g.,

 data compression, 
 transmission of information through a channel, etc.

under the assumption of an “asymptotic, memoryless setting”

Assume:

 information sources & channels are memoryless

 They are available for asymptotically many uses 

In the last lecture we saw that:
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Optimal rates of information-processing tasks in the

“asymptotic, memoryless setting”

Memoryless quantum info. source 

Data compression limit: 

Classical capacity
--given in terms of the Holevo capacity ;

 , H

( )S 

( )C N
N

 Compression of Information:

Quantum capacity

--given in terms of the coherent information ;

( )Q N

 Info Transmission thro' a memoryless quantum channel 

Entropic Quantities

von Neumann entropy

[Schumacher]

[Holevo, Schumacher, Westmoreland]

[Lloyd, Shor, Devetak]



These entropic quantities are all obtainable from a single 

parent quantity; 

“asymptotic, memoryless setting”

Quantum relative entropy:

e.g. Data compression limit: 

acts as a parent quantity for optimal rates in the
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“asymptotic memoryless setting”

 In practice: information sources & channels are used a 

finite number of times; 

 there are unavoidable correlations between successive 

uses (memory effects)

not necessarily valid

Hence it is important to evaluate optimal rates for 

finite number of uses

of an  arbitrary source or channel

One-shot information theory

 Evaluation of corresponding optimal ‘rates’: 

In real-world applications

(or even a single use)
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In the one-shot setting too…

 Capacities, data compression limit etc. are

-- given in terms of entropic quantities

Min-/0-/max- entropies (R.Renner)

 Obtainable from certain (generalized) relative entropies

max ( || )D   min ( || )D  
0 ( || )D  

Max-relative entropy 0-relative Renyi entropy Min-relative entropy

Parent quantities for optimal ‘rates’ in the one-shot setting



Part II 
These entropies as operational quantities in 

One-Shot Information Theory

Part I

Entropies relevant in One-Shot Information Theory

 Rest of this lecture:



Outline

 Definitions of generalized relative entropies:

 Properties & operational significances of them

max 0 min( || ), ( || ), ( || )D D D     

 Their children:

 Their “smoothed” versions

the min-, max- and 0-entropies

 Notations & Definitions

 Tool:  Decoupling

Part I

Entropies relevant in One-Shot Information Theory



Notations & Definitions

 Linear maps: If 

its adjoint map:

: ( ) ( )A B L H L H
* :
   *Tr ( ) Tr ( )X Y X Y  defined through

 Quantum operations (quantum channels) : linear CPTP map

 A B

B A

algebra of linear operators acting on 

set of density matrices (states)

( ) :L H

( ) ( ) :D H P H
set of positive operators……( ) :P H

H
(finite-dimensional)

 is CPTP if and only if * is CPUM

completely positive unital map:
* ( )I I 



Notations & Definitions

 Quantum channel : .A BN

 Stinespring isometry of :N A BEU 
N

 Complementary channel: ,A EN
( ) Tr ( )A E A BE

A B AU  
NN

( ) Tr ( )A B A BE
A E AU   NN

A
NA BEU 
N

Stinespring
isometry

B

E
environment

A
B

E

:E 

:B 



 A figure of merit in quantum communication tasks:

Notations & Definitions

 Fidelity: 1( , ) : || ||F    

 Uhlmann’s Theorem:
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Decoupling:

Mathematical Tool

-- a central concept in quantum info theory

 Has wide-ranging applications:

 transmission of quantum information 

 other protocols, e.g. state merging, coherent state 
merging, …..



Decoupling:

 Consider a composite system          in a joint state

 The subsystem        is decoupled (or uncorrelated) from

if:

 The outcome of any measurement on        is 
statistically independent of any measurement on

RE

RE R E   

RE
R E

R E

R
E

 The system        does not give any information about 
system

R
E

Mathematical Tool



(I) Transmission of quantum information

Noisy quantum
channelquantum

info
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This acts as Bob’s 
decoding!
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 Final state in Bob’s possession:  'TrRE RA EE
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(approximately decoupled)

for some 0 : 

then      a decoder

 This follows from Uhlmann’s theorem:

such that after decoding Bob has
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The optimizing partial isometry 'B AEV  acts as Bob’s decoding

Bob ends up with a state  'TrRE R EA E



  

And after doing a partial trace over

'A E


  

',E he ends up with

A


a state

i.e., Bob ends up with a state which is       close

to the quantum state that Alice sent
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 In a nutshell:
For transmission of quantum information thro’ a noisy 
channel in the one-shot setting (up to an error       ),
require:   

i.e., the state of the reference system      is (approxly.) 

decoupled from the state of the environment      of

RRE E


  

N

R
E N.



(state before 
decoding)



Outline

 Definitions of generalized relative entropies:

max 0 min( || ), ( || ), ( || )D D D     



Definitions of generalized relative entropies

 max ( || ) : inf : 2D      

( ); P H supp supp ; 

 Min-relative entropy [Dupuis et al 2012]

 1/2 1/2
maxlog ( )   

min 1( || ) : 2 log || ||D     

 Max-relative entropy [ND 2008]

( ), D H

1/2 1/2 2 I   

( , )F  2log  fidelity



Definitions of generalized relative entropies

 0 ( || ) : log Tr ( )  D     
 0-relative Renyi entropy

 supp where            denotes the projector onto

11( || ) : log  Tr ( )
1

D  
    






0
lim ( || )D


  
 0= ( || )D  

( 1)  -relative Renyi entropy

( ); P H supp supp ; ( ), D H contd.



max 0( || ) ( || )D D   

 max ( || ) : inf : 2D       0

0 ,2  0 )2( 0,    0 

0Tr [ ( )2 ] 0
    , 0  Tr ( ) 0A B AB  

0 log  [Tr ) 0( ]   



0 log  [Tr( )]   

0 ( || )D  max ( || )D  

1

 Proof:

Also

0 Tr [ ] Tr [2 ] 
    



* *( ( ) || ( )) ( || )D D      for any CPTP map          

*( || ) 0D   



( || )D  

0 min max( || ) ( || ) ( || ) ( || )D D D D         

†
* *

†( || ) ( || )D U U U U D   
for any unitary

operator U

 Data-processing inequality:

 Invariance under joint unitaries:

 Positivity: , ( ),  D H
Properties of generalized relative entropies

for           * max,  0, min

 Interestingly,

If

just as



Operational interpretation of

Tr(( ) )I A  

 He does a measurement to infer which state it is 

POVM

Tr( )A 

A

 Quantum binary 
hypothesis testing:

Bob receives a state 

or
 

( )I A[ ] [ ]&

 Possible errors

Type I

actual stateinference


 

Type II

 Error

probabilities

Type I

Type II

 0 ( || ) : log Tr ( )  D     

(null hypothesis) (alternative 
hypothesis)



Tr(( ) )I A  

 Suppose
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Prob(Type I error) Prob(Type II error)      

0 Tr( ) 

(POVM element)       

Bob never infers the state 

to be        when it is

0 ( || )2 D   



BUT

Hence

= Prob(Type II error |Type I error = zero)

when 0 
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Prob(Type I error) Prob(Type II error)      
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BUT

In fact, min Prob(Type II error |Type I error = zero)

0 ( || )2 D  



i.e., let for some  0. 
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Smoothed relative entropies

Hypothesis testing relative entropy 
[Wang & Renner]

 What if Bob has a single copy of the state but one allows 

non-zero but small value of the Prob(Type I error) ?
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Compare operational significances of                   & ( || )D  
arises in asymptotic binary hypothesis testing

 Suppose Bob is given many identical copies of the state

 He receives 

( )n
n

n 

[Quantum Stein’s Lemma]

( || )HD  

( || )D  

Bob’s POVM

 , ( )n nA I A

*( ) ( || )
( )| 2n nD
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type I error 

[0,1) : 



( || )D  

Operational interpretations in binary hypothesis testing

( || )HD  

[0,1) : 

One-shot setting;

Single copy of the state:

Asymptotic memoryless setting;

Multiple copies of the state:

*( )
( )

1lim log |n
nn n   

   
 

log * |   

(Bob receives identical copies of the state:           or       )n n 



Operational interpretation of the max-relative entropy

Multiple state discrimination problem: 

 He does measurements to infer the state: POVM 

 His optimal average success probability:
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The optimal average success probability in this multiple 
state discrimination problem is given by:

Theorem 3 [M.Mosonyi & ND]:
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Smooth max-relative entropy
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Outline

 Mathematical Tool: Decoupling

 Definitions of generalized relative entropies:

 Properties & operational significances of them

max 0 min( || ), ( || ), ( || )D D D     

 Their children: the min-, max- and 0-entropies



( ) ( || )S D I  

as parent quantities for other entropies
Just as:

von Neumann 
entropy

( )I 

max 0 min( || ), ( || ) & ( || )D D D     

mmin ax( ) : ( || )DH I  

 maxlog  

00 ( ) : ( || )DH I  
log  rank( ) 

[Renner]
mmax in( ): ( || )DH I 

2
1log ||  ||



 max ( || )
B

AB A BD I


   

For a bipartite state :AB A
B

Other min- & max- entropies

Conditional entropy

 mmin ax( | ) : max ( || )
B

AB A BA B IH D 
   

Conditional min-entropy

 mmax in( | ) : max ( || )
B

AB A BA B IH D 
   

Max-conditional entropy

 00 ( | ) : max ( || )
B

AB A BA B IH D 
   

0-conditional entropy

( | ) ( ) ( )AB BS A B S S  



 They have interesting mathematical properties:

-- and -- interesting operational interpretations:

 e.g. Duality relation: [Koenig, Renner, Schaffner]:

For any purification  of a bipartite state

max min( | ) ( | )H A B H A C  

ABC :AB

(just as for the 
von Neumann entropy):

( | ) ( | )S A B S A C  



Operational interpretations

 Conditional min-entropy

maximum achievable singlet fraction  

 Conditional max-entropy




decoupling accuracy  

 Conditional 0-entropy 
one-shot entanglement cost under LOCC  

[Koenig, Renner, Schaffner]

[F.Buscemi, ND]



Operational interpretation

 Conditional min-entropy Max. achievable singlet fraction 

1

1 :
d

AB A B A B
i

i i
d 

    H H
AB AB AB   

 min ( | ) 2

:
2 max (id ) ,( )

B

H A B
A B AB ABCPTP

d F 


  

fidelity

Given the bipartite state             it is the maximum overlap 

with the singlet state that can be achieved by local 

quantum operations on the subsystem 

,AB
,AB

B .B

max. entangled 
state

[Koenig, Renner, Schaffner]

(MES)



Operational interpretations contd.

 Conditional max-entropy Decoupling accuracy 

 max ( | ) 22 max ,
B

H A B
A AB A Bd F


   

fidelity

How random        appears from the point of view of an 

adversary who has access to 

A
.B

,ABDistance of               from a product state A B 
no correlations; decoupled

From the cryptographic point of view:

A
A

I
d

  completely mixed state on AH
[Koenig, Renner, Schaffner]



Operational interpretations contd.

One-shot entanglement cost

One-shot Entanglement Dilution

ABAlice Bob

: LOCC

  m
Bell 

Bell states

min m(1) ( ) :C ABE  

AB
= minimum number of Bell states needed to 

prepare a single copy of         via LOCC

 Conditional 0-entropy one-shot entanglement cost



 Theorem [F.Buscemi & ND]: 

(1) ( )C ABE  0min ( | )H A R  EE

 , ;i
i AB i

p E
i i

AB i AB AB
i

p  
i i

RAB i R R AB AB
i

p i i   E

Tr ,RA B RAB E E

Pure-state ensembles:

and

classical-quantum state

One-shot perfect entanglement   

cost of a bipartite state            under LOCC:AB

Operational interpretations contd.

conditional 0-entropy



 just as:

( : ) ( || ) max ( || )
B

AB A B AB A BI A B D D


        

For a bipartite state :AB A
B

Other min- & max- entropies contd.

Mutual information

mmax ax( : ) : max ( || )
B

AB A BI A B D 
    etc.

Max-mutual entropy

min max 0 max( | ) , ( | ) , ( | ) , ( : )H A B H A B H A B I A B   
   

Smoothed entropies 0. 



  min :
( | ) log max Tr (id )( )

B
A B AB ABCPTP

H A B d 


   

Proof via SDP (=semidefinite programming)

PROOF OF:

….(a)

 min ( | ) 2

:
2 max (id ) ,( )

B

H A B
A B AB ABCPTP

d F 


  

Equivalently,



Mathematical Tool

Semi-definite programming (SDP) 

 A well-established form of convex optimization

 The objective function is linear in an input 
constrained to a semi-definite cone

 Efficient algorithms have been devised for its 
solution



Mathematical Tool
(2) Semi-definite programming (SDP) 

 Primal problem

: ( ) ( )A B P H P H positivity-preserving map

, ( ),A BP H
(formulation:Watrous)

( , , );A B

 Dual problem

minimize maximize

subject to subject to

Optimal solutions:

Tr( )AX Tr( )BY

( ) ;X B  *( ) ;Y A 
0;X  0;Y 

  IF Slater’s duality 
condition holds.



  min :
( | ) log max Tr (id )( )

B
A B AB ABCPTP

H A B d 


   

Proof via SDP

PROOF OF:

….(a)

 LHS of (a)

 RHS of (a)

 log min Tr ;(id ) ; 0B A B AB B         …(i)

 log min Tr( );Tr ; 0AB AB A AB B ABY Y I Y   …(ii)

(i)=(ii) (details given in the lecture)



 Consider quantum communication tasks in the the

one-shot setting

 See how……

 some of the smooth entropies that we discussed 
arise as operational quantities for these tasks.

 the known results for the asymptotic memoryless
setting can be obtained from these one-shot results.

Part II 
Smooth entropies as operational quantities in 

One-Shot Information Theory



Smooth entropies

 Relative entropies                             

max ( || ), ( || ).....HD D    

max 0 min( || ), ( || ), ( || )D D D     

-- their smoothed versions

 Min-/max- entropies                             min 0 max( | ) , ( ), ( | )H A B H H A B 

-- their smoothed versions min max( | ) , ( | ) ,....H A B H A B 
 

etc
.



(Smooth) Entropies: properties

 min max( | ) : max ( || )
B

AB A BH A B D I 
   

1

1
i

m
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m

i i
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  ;m
RA RA  If MES

min ( | ) logH R mA  min ( | )H A R
 

 max min( | ) : max ( || )
B

AB A BH A B D I 
   

max ( | )H A R 

min min
( )

( | ) : max ( | ) ;
B

H A B H A B



 

 


max max
( )

( | ) : min ( | ) ;
B

H A B H A B



 

 




Duality of smoothed min- and max- entropies:

min max( | ) ( | )H A B H A C 
  

For any purification  of a bipartite stateABC AB

[Colbeck, Renner
Tomamichel]

Data-processing inequality:

 e.g.   If
(quantum operation)

max ( | )H R A
 max ( | )H R B



(id )B A
RA R RB  

(Smooth) Entropies: properties



One-shot to asymptotics

 Relation between smooth entropies & quantum entropies

[Audenaert, Mosonyi, Verstraete ; Tomamichel; ND &Renner]

max
1lim ( || )n n

n
D

n
   


( || )D  0 : 

[Colbeck, Renner, Tomamichel; Tomamichel]

min
10 :  lim ( | ) ( | )n

ABn
H A B H A B

n



 


  

max
10 :  lim ( | ) ( | )n

ABn
H A B H A B

n



 


  

These results allow us to recover the results of the
“asymptotic memoryless setting”

from those of the “one-shot setting”

QAEP


