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“Quantum communication is the art of transferring a 
quantum state from one place to another.”

 quantum states encode information – classical or quantum;

 quantum communication allows transmission of information

The main hurdle in the path of quantum communication:

 Presence of noise in the quantum channel

 Disturbs the quantum state sent through the quantum channel

 Distorts the information encoded in the state

 
input output

Quantum channel

  (noisy)

[Gisin]



use quantum error-correcting codes

e.g. consider the case of classical information transmission;

To overcome the effects of noise

 Alice encodes her messages into suitable quantum states

 she sends these codewords through (multiple uses of)
the  channel

(codewords)

set of 
classical
messages

mM
classical
message

noisy
quantum channelM

Bob

N

Alice



( )nNmM
n

Alice’s
message

encoding decoding
input

n
output

mM

 If

nE nD

 Reliability: e.g. if Probability of error 0

 Rate of info

transmission

n 

Bob’s
inference

 Aim: achieve reliable transmission whilst maximizing the rate

m m  then an error occurs!

as

max. rate of reliable transmission 
of classical info through 

number of bits of message 
transmitted per use of the channel

=

 There is a fundamental limit on the 
rate of reliable info  transmission              

Nuses of n

N
Classical capacity of 

the quantum channel
: N

(a property of the channel)

(depends on the channel)



 An important class of problems in QIT concerning the 
transmission of information through quantum channels: 

evaluating the capacities of a quantum channel

Another essential task in QIT :
 Efficient storage of information emitted by a 

quantum info source:
This involves reliable compression of quantum info

i.e. Quantum Data Compression

It can also be viewed as a quantum communication task

 Why do we need to compress information?

 What is meant by “reliable”?

 What is a quantum info source?



i i i
i

p  

i j ij  In general

 Quantum info source: characterized by an ensemble

i H
& a priori probs

of pure states 

ip

:i signal emitted with prob. ip

source state

 ,i ip E 

 , H Equivalently the source is characterized by

source ensemble



Quantum Data Compression 

 Storage setting:

quantum 
info 
source

recovered

signalssignal

i

( );i i i   D H
compressed signal    

( )iE

encoding
E

decoding
D

( ) ( )i c D HE

dim dimc H H
Quantity 
of interest:

log(dim ) :cH number of qubits needed 
to compress the signals

minimum number of qubits needed to compress the signals

set of density matrices 
acting on H



An Equivalent Scenario for Quantum Data Compression

 Communication setting:                

Quantum Data Compression as quantum communication

 Storage setting:

quantum 
information 
source

recovered
signals

compressed 
signal

noiseless quantum 
channel

minimum number of qubits that Alice needs to 
send to Bob through the noiseless channel

signal encoding decoding

signal encoding decoding

compressed 
signal

recovered
signals

minimum number of qubits Alice 
needs to compress the signals



Quantum Data Compression as quantum communication

 Communication setting:                

noiseless quantum 
channel

minimum number at which Alice needs to 
send qubits to Bob through the noiseless channel

signal encoding decoding

compressed 
signal

recovered
signals

rate

Usually one uses the source a multiple number of times( )n



The fundamental operational quantities:
optimal rates of info-processing tasks

 Info transmission: maximum rate of reliable 
info transmission through a noisy quantum channel

 Storage of information (data compression) : 
minimum rate of reliable info transmission through a 

noiseless quantum channel

capacity

 Aim: to evaluate these optimal rates :

i.e. find mathematical expressions for them in terms of 

entropic quantities 

(of the channel)

data compression limit
(of the source)



These optimal rates were initially evaluated under the 

assumption of an:

 info sources & channels are assumed to be memoryless

 they are used an infinite number of times:

(asymptotic limit)

 one requires that the error incurred vanishes in this limit

n 

( ) nn N Nsuccessive uses :n

“asymptotic, memoryless setting”

 action of each use of the channel : identical & independent
for different uses

-- the noise affecting successive input states uncorrelated.

e.g. Memoryless channel



0 as n 
( )n
ep

“asymptotic, memoryless setting”

uses

classical 
info

nN
n

x ( )n
x nN

encoding measurement

( )( )n n
x

N

channel 
output

inputnE nD
decoding

'x

( ) :C NTo evaluate

 One requires :   prob. of error

classical capacity
of a noisy quantum channel

 e.g.
N



Outline of the rest of the lecture

 Recall some standard definitions

 Define the relevant entropic quantities

 Description of the info-processing tasks in more detail

 Statement of results expressing 

optimal rates in terms of entropic quantities

 Sketch of some proofs



 Standard Definitions



Notations & Definitions

quantum system

AHA
Hilbert space

algebra of linear operators acting on 

set of density matrices (states)

( ) :L H
set of positive operators……( ) :P H

H

1

;
d

i i i
i

   




 Spectral decomposition:

eigenvalues eigenvectors   1
:d

i i




probability 
distribution

1

1
d

i
i




0,i 

 ( ) ( ) :  0,  Tr  1     D H L H



 Any allowed physical process that a quantum system can undergo is 
described by a :

Quantum Operations or Quantum Channels

linear completely-positive, trace preserving (CPTP) map

 ( )   N
input output

:CPTP map

 Trace-preserving (TP):

 Positive:

 Completely positive (CP):

Tr Tr 1   

( ) 0   N

: ( ) ( )A BN D H D H

environment

system
A

E

AE

( )( )E AEid N = an allowed state of 
the composite system 

( )B E D H H
( )( ) 0E AEid  N

N



A quantum measurement is described by a POVM

If the system is in a state       before the measurement,

Then, probability of getting the       outcome is:

Tr( )i ip E 

 ;iE E 0,  i i
i

E E I (finite set)

thi



Generalized measurements – POVM: 

( | ) Tr( )y xp y x E 

x J
encoding

measurement

noiseless 
quantum
channel 

x x
quantum 

state
POVM

 x x J
E



 e.g.

outcome



Purification
Any mixed state

;  AR A R  H H A A H
A pure state

Tr ;  A R AR AR    purifying reference system

;  AR A R  H H
Schmidt decomposition: Any pure bipartite state 

1

;
d

AR i A B
i

i i 


 2

1

0, 1
d

i i
i

 


 
Consequences: Reduced states,

: Tr ,A R AR AR   : TrR A AR AR  

have identical non-zero eigenvalues



 Entropic Quantities



 : Tr(  log )S    

Von Neumann entropy

Spectral decomposition:

  iH  : Tr(   log )S    
Shannon entropy

1
log

d

i i
i
 



 
1

;
d

i i i
i

   




of a state :
2log log

( ) 0S   if and only if is a pure state:    

( ) 0;     ( ) log ;S S d   where dim d  H
1 2 1 2( ) ( ) ( )S S S     

If ,A B  are reduced states of a pure state               then,
( ) ( )A BS S 

AB



Other Entropies

 Conditional entropy:

 Quantum mutual information:

: ( )| () )( AB BSS A SB    

AB A B

: ( ) ( )( : ) ( );A B ABI S S SA B      

For a bipartite system in a state           :

 Joint entropy:

( ) Tr( log )AB AB ABS    

TrB A AB 

reduced state



 Quantum Relative Entropy

of        w.r.t.                        

 It acts as a parent quantity for the von Neumann entropy:

: Tr  lo( g Tr|  o  | ) l gD       

, 0,  Tr 1,  0:    

well-defined if supp supp  

: Tr  lo  ( ) ( || )gS D I     ( )I 



 It also acts as a parent quantity for other entropies:

e.g. for a bipartite state               : 

 Conditional entropy

 Mutual information

: ( )( : ) ( |( ) |) ( )AB AB AB BAS S SI A B D        

AB

: ( )( | ) ( || )( )AB AB A BBS SS A B D I      

A B

Tr  B A AB 



Some Properties of

i.e. monotonicity under a quantum operation (CPTP map)

( || ) 0
            if & only  i0  f 
D  

 

 

( || )D  
,  states

( ( ) || ( )) ( || )D D     

This is a fundamental property ;

Many properties of other entropies can be proved using (1) & (2)

……….(1)

……….(2)

“distance”

triangle inequality
symmetric

Data-processing inequality:

quantum operations never increase mutual information

( : ') ( : )I A B I A B ' '(id )AB A B B AB   e.g. If then



Further Properties of

† †( || ) ( || )D U U U U D   

( || )D  

 Joint convexity:

||( ) ( || )
k k k k

k k

k
k

k kp p pD D     
 Invariance under 

joint unitaries

1

n

i i
i

p 


For two mixtures of states 1

n

i i
i

p 


&

Invariance under unitaries: †( ) ( )S U U S 

Implications for the von Neumann entropy:

( ) ( || )S D I 
( )i i i i

i i

S p p S    
 
 Concavity:

….(a)

….(b)

(a)

(b)



Properties of quantum entropies contd.

( ) ( ) ( ) ( )ABC B AB BCS S S S     
ABC Strong subadditivity: tripartite state

Consequences of strong subadditivity:

 Conditioning reduces entropy

 Discarding quantum systems never increases mutual 
information

( | ) ( | )S A BC S A B 

( : ) ( : )I A B I A BC 

Lieb & Ruskai ‘73

C
B A



 Description of the info-processing tasks in more detail

-- in the “asymptotic, memoryless setting”



 ,   H
signals (pure states)

with probabilities

 Then source characterized by:

density matrix

1

r

i i i
i

p  




1 2, ...., r  

1 2, ,..., rp p p
 H

i j ij  

Quantum Data Compression

Quantum Info source signals

 Memoryless quantum information source

n
n State of      copies of the source:n

no correlation



n 

Quantum data compression

n 
 Evaluated in the asymptotic limit

number of copies/uses of the source

Compression-Decompression Scheme

 emits signals

 with probs.

( ) ( ) ( )
1 2, ....,n n n

m  
( ) ( ) ( )
1 2, ,...,n n n

mp p p
( ) ( )n n
i j ij  

in general

 Source State :
( ) ( ) ( )

1

m
n n n

n i i i
i

p  




nH

( ) ( ) ( )n n n
i i i   ( )n

cD H

( ) ( ) ( )n n n
i i   D H

compressed 
Hilbert space

recovered signal

 Encoding:

 Decoding:

signal
compressed 

state

:nE

:nD



Quantum Data Compression or
Fixed length quantum source coding

copies of 
a quantum 
information 
source

n

( )n
i

compressed
state in n

cH

recovered
state

nDnE
( )n
i

dim n H

signal

( ) ( )n n
i i 

( )nD H
( )nD H

n

with prob. ( )n
ip

 Ensemble average fidelity: figure of merit used for determining reliability

 ( ) ( ) ( ) ( ) ( )n n n n n
n i i n n i i iF p     D E

1nF  as n 

:=dim n
n cM H

 The compression-decompression 
scheme is reliable if



Quantum Data Compression 

copies of 
a quantum 
information 
source

n

( )n
i

compressed
state in n

cH

recovered
state

nDnE
( )n
i

dim n H

signal

( ) ( )n n
i i 

( )nB H
( )nB H

n

with prob. ( )n
ip :=dim n

n cM H

: ( , )n n n nMC E ,D defines a code

 Optimal rate of data compression: Data compression limit

of rate :
log nM

n
 is a compression-decompression scheme of rate

:=dim 2n nR
n cM H

R

  .    . . : inf | : ( , 2 ) 1  nR
opt n n n na seq of codes s t asR R nF   C E ,D

n nE ,D



Schumacher’s Theorem : Quantum Data Compression

Suppose                    is an memoryless, quantum information

 Suppose                  : then there exists a reliable compression 

scheme of rate for the source.

 If                  then any compression scheme of rate 

will not be reliable.

source

( )R S 
R

 ,   H
;n

n  von Neumann entropy( ) :S 

R( )R S 

Proof follows from the Typical Subspace theorem

( ) :optR S 



DIGRESSION

The notion of “typicality”

Typical sequences and Typical Subspace Theorem



Typical Sequences

 Defn: Consider a sequence of i.i.d. random variables: 

sequences 0, 
1 2, ,... ;   ( ) ;  nU U U p u u J

For any 1 2: ( , ,... ) n
nu u u u J  for which

( ( ) ) ( ( ) )
1 22 ( , ,... ) 2 ,n H U n H U

np u u u     

where

are called          typical sequences

( ) ( ) log ( );H U p u p u 
 

Shannon entropy 

( ) :nT  typical set = set of           typical sequences   

 Note: Typical sequences are almost equiprobable

( ) ,nu T  ( )( ) 2 nH Up u 



(Q) Does this agree with our intuitive notion of typical sequences?

(A) Yes! For an i.i.d. sequence : 

1 2, ,... ;  
 ( ) ;  

nU U U
p u u J

A typical sequence of length

is one which contains approx.            copies of              

 Probability of such a sequence is approximately  given by
( ) log ( )

( ) ( ) log ( ) ( ) =  2 2u J

p u p u
np u np u p u

u J u J
p u 

 


   

( )2 nH U

( ) np u  u J ,u
,n1 2: ( , ,... )nu u u u

( ) ,nu T  ( )( ) 2 nH Up u 

1 2, ,... ;   ( ) ;  n iU U U U p u u J



Properties of the Typical Set
( )nT

 Let               : number of typical sequences

: probability of the typical set ( )nP T

( )nT

 Typical Sequence Theorem: 

 ( ) 1nP T  

( ( ) ) ( ) ( ( ) )(1 )2 2n H U n n H UT 
    

Fix then0,  0, 

and        large enough,n

 sequences in the atypical set rarely occur

 typical sequences are almost equiprobable

( ) ( )n n nJ T A   

atypical set
 ( )nP A 

(disjoint union)



Memoryless quantum information source

n n
n    H

signal emitted with prob.( ) :n
i ( ) ;n

ip ( ) ( )n n
i j ij  

,dim d  H H
Spectral decompositions:

1
;

d

j j j
j

q  


 ( ) ( ) ( )n n n
n k k k

k
   

n
n    1 2

( ) ...
n

n
k k k k     

1 2

( ) ......
n

n
k k k kq q q 

Identification of the label as a sequence of classical indicesk
1 2( , ,....., )nk k k kk 

;nstate of        copies 
of the source

( ) ( ) ( )

1

m
n n n

n i i i
i

p  


n

eigenstates



( ) ( ) ( )n n n n
n k k k

k
     

1 2

( ) ......
n

n
k k k kq q q 

( ) ( ) ( )n
nS S nS   

1 2( , , ....., ) :nk k kk 

1 2

( ) ......
n

n
k k k kq q q 

1 2( , ,....., )nk k kk a sequence 0, 
( ({ }) ) ( ({ }) )2 ( ) 2 ,k kn H q n H qp k     

( )p k 

( ) :n
 T typical subspace 

 

von Neumann entropy

Probability:

is          typical if:

eigenvalues sequences
( )n
k k

eigenvectors ( )n
k

- sum over all possible sequences

 1, 2, .., ;ik d dimd  H

( ) :nT  typical set 

({ })knH q

( ( ) ) ( ( ) )2 ( ) 2 ,n S n Sp k       



typical subspace

Typical Sequence Theorem 

 ( )Tr 1n
nP   

( ({ }) ) ( )(1 )2 kn H q nT
  

Fix then and       large enough:0,  0,  n

( ) nn


T H 
 Subspace spanned by those eigenvectors

for which
( )nk T

1 2

( ) ...
n

n
k k k k     

 Let
( ) :nP orthogonal projection on to the typical subspace

Typical Subspace Theorem

 ( ) 1nP T  

( ( ) ) ( )(1 )2 dimn S n 
   T

( ({ }) )2 kn H q  ( ( ) )2n S  



Schumacher’s Theorem : Quantum Data Compression

 Suppose                  : then there exists a reliable compression 
scheme of rate for the source.

( )R S 
R

Compressed
Hilbert space ;   dim 2n n nR

c c H H ( )R S 

 Choose              such that ( )R S   
Fix

0, 
0,  choose        large enough such that:n

 ( )Tr 1 ;n
nP    ( )dim n

T ( ( ) )2n S   2 =dim nR n
c H

( ) nn
c T H

 Proof:



Idea behind the compression scheme

signal emitted with prob.( ) :n
i ( ) ;n

ip ( ) ( )n n
i j ij  

 ( ) ( ) ( ) ( ) ( )n n n n n
i i iP I P     

Compression
scheme

keep this part 
unchanged

map this onto 
a fixed pure state

( )n
T ( )n

T
( )
0

( )n n
  T

 ( ) ( ) ( )n n n
n i i i   E

( ) 2 ( ) ( ) 2 ( ) (
0

)( )
0 ( )nn n n n n

i i i i i            D T

Decompression
scheme

 ( ) ( ) 0n n
n i i   D

2 2( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( ); ; ( )n n n n n n n
i i i i i iP P I P          



( ) ( ) ( ) ( ) ( ) 22 1n n
i i

i

n n n
n i i i i

i
F p p       Ensemble average 

fidelity

1 2 

1nF  as n 

( ) 2 ( ) ( ) 2 ( ) (
0

)( )
0 ( )nn n n n n

i i i i i            D T

(by the Typical Subspace Theorem)

22 ( ) ( ) ( ) ( ) ( )n n n n n
i i i iP P     

( ) 2 ( ) ( ) ( ) ( )n n n n
i i i

i

n
i i

i
p Pp    
 ( )Tr 1 ;n

nP    



Schumacher’s Theorem : Quantum Data Compression

Suppose                    is an memoryless, quantum information

 Suppose                  : then there exists a reliable compression 

scheme of rate for the source.

 If                  then any compression scheme of rate 

will not be reliable.

source

( )R S 
R

 ,   H
;n

n  von Neumann entropy( ) :S 

R( )R S 

(See Cambridge lecture notes)



Schumacher proved (1995): for a memoryless source 

Data compression limit = ( ) :S 
von Neumann entropy

of the source

 ,   H



Transmission of classical info through a noiseless quantum 
channel

classical
info

source

x
( );X p x

classical
message

x J noiseless
quantum channel

Transmission of information



Accessible Information

classical
info

source

( );X p x
x J

encoding

measurement

Bob’s
inference

noiseless
quantum
channel 

M Yx x x

quantum 
state

 Bob receives the ensemble:  ( ), xp x E 
The maximum amount of info Bob can extract by doing any measurement

( ) max ( : )accI I X YE MAccessible Information:

(classical) 
mutual info



Holevo Bound

 { ( ), }xp x ( )accI E
 ( ), xp x E 

The maximum amount of info Alice can send to Bob 

using the ensemble

 { ( ), } : ( ) ( )( ) ( )x x x
x x

p x S p x p x S     

 Holevo quantity of an ensemble of states   ,i ip 

: ( ) x
x

p x where

If the are pure :x
 { ( ), } ( );xp x S  



Holevo Bound:   sketch of proof

Idea: Use strong subadditivity: need a tripartite system

Embed the classical r.v.        in a dummy quantum systemX ;A AH

 a quantum register; keeps a record of the classical symbol      which 

Alice wants to send to Bob

:A x

 the quantum system in whose states        Alice encodes her messages:Q x

 a quantum system representing Bob’s measuring device;

originally in some pure state

:B
0 0

B

( ) 0 0( )AQB xA B
x

p x x x    Initial state:

 :x x J : orthonormal basis in AH



Holevo Bound:   sketch of proof

( ) 0 0( )AQB xA B
x

p x x x   

' ' ' ' '
,

( )A Q B y x yA B
x y

p x x x E E y y   

 Initial state:

 State after
measurement

 Bob’s measurement         :  POVM

( : ) ( : )I A Q I A QB
( : ) ( ' : ' ')I A QB I A Q B

( ' : ' ') ( ' : ')I A Q B I A B

( ' : ') ( : )I A B I A Q

Holevo Bound

 ( : ) { ( ), }xI X Y p x 

 { ( ), }xp x ( ) max ( : )accI I X YE M

M

M   ;x x J
E E






N
 ( )N

input output

Transmission of classical info through 
noisy quantum channels

Linear, CPTP map

 Bob receives the ensemble:  ( ), ( )xp x E  N

 ( ) { ( ), ( )}acc xI p x E N

classical
info

source

( );X p x
x J

encoding

measurement

Bob’s
inference

M Yx x ( )xN

quantum 
state

N
noisy

channel



(Q) Is the Holevo bound achievable?

Holevo bound
Yes, in the asymptotic, memoryless

setting



“asymptotic, memoryless setting”

uses
classical 

info

nN
n

( ) ( )( )n
x

n n
x N

classical info transmission through a noisy quantum channel N

 Probability (Bob infers     correctly)=  ( ) ( )Tr n n
x xE x

 Measurement: POVM  ( )n
xE

 Average probability

of error:
 ( ) ( )( ) 1 1 Tr

n

n n
x x

n

n
av

x
p E 



   
MM

nM ( )n
x nN

encoding measurement

channel 
output

inputnE nD
decoding

'x
( )n
x

:n nM  M

x



lim inf
log n

n

M
n

R




( ) supC RN

--the supremum taken over all achievable rates

log 2nR
nM 

If number of bits 
of message sent:

& (1) holds, then

n ( ) 0n
avp  : information transmission is

reliable
If                        as

……(1) 

:R an achievable rate

Classical capacity of the quantum channel



 The different capacities depend on:
 the nature of the transmitted information

(classical or quantum)
 the nature of the input states

(entangled or product states)

 the nature of the measurements done on the outputs
(collective or individual)

 the presence or absence of any additional resource
(e.g. prior shared entanglement between Alice & Bob)

 whether Alice & Bob are allowed to communicate 
classically with each other

 Capacities evaluated in the “asymptotic memoryless setting”

( ) ;n n   n 

A quantum channel has many capacities



 If Alice restricts the inputs to product states, i.e., if

 And Bob does a collective measurement (POVM) on 

21
......

( )
nx x x

n
xx       

: product state capacity ( )pC N

 ( ) ( ):n n n
x x N : the output of        uses of the channeln

21
......) ) )( ( (

nx x x    N N N

 Holevo-Schumacher-Westmoreland (HSW) Theorem

 
,

,{ }
( ) max { ( )}

i i
p i ip

C p

 N N *( ) N

Capacity

Holevo
Capacity

 Can be expressed as a relative entropy



Classical info transmission through 
noisy quantum channels

 Bob receives the ensemble:  ( ), ( )xp x E  N

 ( ) { ( ), ( )}acc xI p x E N

classical
info

source

( );X p x
x J

encoding

measurement

Bob’s
inference

M Yx ( )n
x ( )xN

quantum 
state

N
noisy

channel



Holevo bound can be achieved in the “asymptotic memoryless setting”

IF Alice uses product state inputs & Bob does a collective measurement

HSW Theorem

 
,

,{ }
( ) max { ( )}

i i
p i ip

C p

 N N *( ) N

Holevo
Capacity

*( ) N

( ) 0n
avp  ( ) 0n

avp 

as n  (rate)Ras n 



*( )n N Holevo Capacity of the block           of       channels 

 Classical capacity of  a memoryless channel :

regularised Holevo
capacity *1( ) lim n

n
C

n
 


  N

(without the restriction of inputs being product states):

nN

N

(This generalization is obtained by considering inputs which are 

product states over blocks of n channels but which may be entangled

within each block)

n

(Q) Can the classical capacity of a memoryless quantum channel  

be increased by using entangled states as inputs ?



 This is related to the additivity conjecture of the Holevo capacity :

1 2 1 2
* * *) (( ) ( )   N N N N ** )( ) (n n  N N

 *im( ) 1l n

n n
C  


  N  *1lim  

n
n

n



 N  * N

 *1( ) lim n

n
C

n
 


  N

(Q) Can the classical capacity of a memoryless quantum channel  

be increased by using entangled states as inputs ?

 IF the Holevo capacity is additive then using entangled inputs would

not increase its classical capacity!

( )pC N



 Additivity conjecture disproved by Matt Hastings 2008

Using entangled inputs might help in transmitting 

classical information through a quantum channel



Transmission of Quantum Information

quantum
info

noisy
quantum channel

 Quantum capacity : max. rate at which qubits can be 

transmitted reliably( )Q N

N

 Evaluated in the “asymptotic memoryless setting”

 ( )

( )1( ) lim max ,
n

n n

n cohQ I
n 

 


N N

coherent information

(LSD theorem)



(id )RRB    N

 , ( ) ( )RB BcohI S S    N

purification 
of 

coherent information

N
. B

. RR .

A . RB

( | )S R B  

Quantum Capacity

 Given in terms of the coherent information:  ,cohI  N



Regularised

Coherent information

 For a memoryless channel

Quantum Capacity

 ( )

( )1( ) lim max ,
n

n

n

n
cohQ I

n 




N N

(LSD theorem)

In next lecture and example session:

 Discussion of degradable channels

 Proof of the fact that the coherent info is additive 
for degradable channels


