Role of Entropies in Quantum Communication

Nilanjana Datta University of Cambridge, U.K.

See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223

"Quantum communication is the art of transferring a quantum state from one place to another." [Gisin]

- quantum states encode information classical or quantum;
- quantum communication allows transmission of information

The main hurdle in the path of quantum communication:

- Presence of noise in the quantum channel
- Disturbs the quantum state sent through the quantum channel
- Distorts the information encoded in the state

UNIVERSITY OF CAMBRIDGE To overcome the effects of noise use quantum error-correcting codes

e.g. consider the case of classical information transmission;

- Alice encodes her messages into suitable quantum states (codewords)
- she sends these codewords through (multiple uses of) the channel

• If $m' \neq m$ then an error occurs!

• Reliability: e.g. if Probability of error $\rightarrow 0$ as $n \rightarrow \infty$

Rate of info _	number of bits of message
transmission	transmitted per use of the channel

- Aim: achieve reliable transmission whilst maximizing the rate
- There is a fundamental limit on the rate of reliable info transmission (depends on the channel)

(a property of the channel) Classical capacity of the quantum channel N

max. rate of reliable transmission of classical info through N

 An important class of problems in QIT concerning the transmission of information through quantum channels:

evaluating the capacities of a quantum channel

Another essential task in QIT :

 Efficient storage of information emitted by a quantum info source:

This involves reliable compression of quantum info

i.e. Quantum Data Compression

- Why do we need to compress information?
- What is meant by "reliable"?
- What is a quantum info source?

It can also be viewed as a quantum communication task

Quantum info source: characterized by an ensemble $\mathcal{E} = \left\{ p_i, |\psi_i\rangle \right\}$ of pure states $|\psi_i\rangle \in \mathcal{H}$

source ensemble

& a priori probs p_i

 $|\Psi_i\rangle$: signal emitted with prob. p_i

In general
$$\langle \Psi_i | \Psi_j \rangle \neq \delta_{ij}$$

source state

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle \psi_{i}|$$

• Equivalently the source is characterized by $\{\rho, \mathcal{H}\}$

Quantum Data Compression

of interest: minimum number of qubits needed to compress the signals

Quantum Data Compression as quantum communication

An Equivalent Scenario for Quantum Data Compression

• Communication setting: minimum number of qubits that Alice needs to send to Bob through the noiseless channel Image: Compressed signal s

Usually one uses the source a multiple number (n) of times

CAMBRIDGE The fundamental operational quantities:

optimal rates of info-processing tasks

- Info transmission: maximum rate of reliable info transmission through a noisy quantum channel capacity (of the channel)
- Storage of information (data compression) :

 minimum rate of reliable info transmission through a
 noiseless quantum channel
 (of the source)
 - Aim: to evaluate these optimal rates :
 - i.e. find mathematical expressions for them in terms of entropic quantities

UNIVERSITY OF CAMBRIDGE

These optimal rates were initially evaluated under the assumption of an:

"asymptotic, memoryless setting"

- info sources & channels are assumed to be memoryless
- they are used an infinite number of times:

(asymptotic limit) $n \rightarrow \infty$

one requires that the error incurred vanishes in this limit

e.g. Memoryless channel

n successive uses :

$$\boldsymbol{\mathcal{N}}^{(n)} = \boldsymbol{\mathcal{N}}^{\otimes n}$$

- action of each use of the channel : identical & independent for different uses
 - -- the noise affecting successive input states uncorrelated.

UNIVERSITY OF *"asymptotic, memoryless setting"* • e.g. To evaluate $C(\mathcal{N})$: classical capacity of a noisy quantum channel \mathcal{N}

Outline of the rest of the lecture

- Recall some standard definitions
- Define the relevant entropic quantities
- Description of the info-processing tasks in more detail
- Statement of results expressing

optimal rates in terms of entropic quantities

Sketch of some proofs

Standard Definitions

 $\mathcal{L}(\mathcal{H})$: algebra of linear operators acting on \mathcal{H}

 $\mathcal{P}(\mathcal{H})$: set of positive operators.....

set of density matrices (states)

$$\mathcal{D}(\mathcal{H}) = \left\{ \rho \in \mathcal{L}(\mathcal{H}) : \rho \ge 0, \text{ Tr } \rho = 1 \right\}$$

 $\lambda_i \ge 0, \sum_{i=1}^d \lambda_i = 1$

 $\{\lambda_i\}_{i=1}^d$ probability distribution

Spectral decomposition:

$$\rho = \sum_{i=1}^{d} \lambda_i |\varphi_i\rangle \langle \varphi_i |;$$

eigenvalues eigenvectors

CAMBRIDGE Quantum Operations or Quantum Channels

Any allowed physical process that a quantum system can undergo is described by a :

linear completely-positive, trace preserving (CPTP) map

Generalized measurements - POVM:

A quantum measurement is described by a POVM

$$\begin{split} E &= \left\{ E_i \right\}; \text{ (finite set)} \quad E_i \geq 0, \ \sum_i E_i = I \\ \text{If the system is in a state } \rho \quad \text{before the measurement,} \\ \text{Then, probability of getting the } i^{th} \quad \text{outcome is:} \\ p_i &= \text{Tr}(E_i \rho) \end{split}$$

Purification

Any mixed state

A pure state

$$\rho_A \in \mathcal{H}_A$$

$$\mathcal{H}_{A} \qquad | \psi_{AR} \rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{R};$$

$$\rho_{A} = \operatorname{Tr}_{R} | \Psi_{AR} \rangle \langle \Psi_{AR} |;$$
purifying reference sy

purifying reference system

Schmidt decomposition: Any pure bipartite state

$$|\psi_{AR}\rangle \in \mathcal{H}_A \otimes \mathcal{H}_R;$$

$$|\psi_{AR}\rangle = \sum_{i=1}^{d} \lambda_i |i_A\rangle |i_B\rangle; \qquad \lambda_i \ge 0, \sum_{i=1}^{d} \lambda_i^2 = 1$$

Consequences: Reduced states,

$$\rho_{A} \coloneqq \operatorname{Tr}_{R} |\psi_{AR}\rangle \langle \psi_{AR} |, \quad \rho_{R} \coloneqq \operatorname{Tr}_{A} |\psi_{AR}\rangle \langle \psi_{AR} |$$

have identical non-zero eigenvalues

Entropic Quantities

 $S(\rho_A) = S(\rho_B)$

Other Entropies

For a bipartite system in a state ρ_{AB} :

Joint entropy:

 $S(\rho_{AB}) = -\mathrm{Tr}(\rho_{AB}\log\rho_{AB})$

Conditional entropy:

$$\frac{S(A \mid B)_{\rho}}{=} S(\rho_{AB}) - S(\rho_B)$$

$$\rho_{B} = \mathrm{Tr}_{A} \rho_{AB}$$

reduced state

Quantum mutual information:

$$I(A:B)_{\rho} \coloneqq S(\rho_A) + S(\rho_B) - S(\rho_{AB});$$

- Quantum Relative Entropy
 - of ρ w.r.t. σ , $\rho \ge 0$, $\operatorname{Tr} \rho = 1$, $\sigma \ge 0$:

$$\mathbf{D}(\rho \| \sigma) \coloneqq \operatorname{Tr} \rho \log \rho - \operatorname{Tr} \rho \log \sigma$$

well-defined if $\operatorname{supp} \rho \subseteq \operatorname{supp} \sigma$

It acts as a parent quantity for the von Neumann entropy:

$$S(\rho) \coloneqq -\operatorname{Tr} \rho \log \rho = -D(\rho \| I)$$

 $(\sigma = I)$

• It also acts as a parent quantity for other entropies:

e.g. for a bipartite state ρ_{AB}

Conditional entropy

$$S(A \mid B) \coloneqq S(\rho_{AB}) - S(\rho_B) = -D(\rho_{AB} \mid |I_A \otimes \rho_B)$$

Mutual information

$$\rho_{B} = \mathrm{Tr}_{A} \ \rho_{AB}$$

$$I(A:B) \coloneqq S(\rho_A) + S(\rho_B) - S(\rho_{AB}) = D(\rho_{AB} \parallel \rho_A \otimes \rho_B)$$

UNIVERSITY OF CAMBRIDGE

symmetric

"distance"

triangle inequality

Some Properties of $D(\rho \| \sigma)$

$$D(\rho \| \sigma) \ge 0 \qquad \rho, \sigma \text{ states}$$

= 0 if & only if $\rho = \sigma$ (1)

Data-processing inequality:

i.e. monotonicity under a quantum operation (CPTP map) $D(\Lambda(\rho) || \Lambda(\sigma)) \le D(\rho || \sigma) \qquad \dots \dots \dots (2)$

This is a fundamental property ;

quantum operations never increase mutual information

Many properties of other entropies can be proved using (1) & (2)

• e.g. If $\sigma_{AB'} = (\mathrm{id}_A \otimes \Lambda_{B \to B'}) \rho_{AB}$ then $I(A:B')_{\sigma} \leq I(A:B)_{\rho}$

UNIVERSITY OF Further Properties of $D(\rho \| \sigma)$

Joint convexity:

For two mixtures of states
$$\rho = \sum_{i=1}^{n} p_i \rho_i$$
 & $\sigma = \sum_{i=1}^{n} p_i \sigma_i$

$$D(\sum_{k} p_{k} \rho_{k} \parallel \sum_{k} p_{k} \sigma_{k}) \leq \sum_{k} p_{k} D(\rho_{k} \parallel \sigma_{k})....(a)$$

 Invariance under joint unitaries

(a) ⇒

$$D(U\rho U^{\dagger} \parallel U\sigma U^{\dagger}) = D(\rho \parallel \sigma)....$$
(b)

Implications for the von Neumann entropy:

$$\because S(\rho) = -D(\rho \parallel I)$$

Concavity:

$$S\left(\sum_{i} p_{i} \rho_{i}\right) \geq \sum_{i} p_{i} S(\rho_{i})$$

(b) \implies Invariance under unitaries: $S(U\rho U^{\dagger}) = S(\rho)$

CAMBRIDGE Properties of quantum entropies contd.

• Strong subadditivity: ρ_{ABC} tripartite state $S(\rho_{ABC}) + S(\rho_B) \le S(\rho_{AB}) + S(\rho_{BC})$

Lieb & Ruskai '73

Consequences of strong subadditivity:

Α

В

- Conditioning reduces entropy $S(A \mid BC)_{o} \leq S(A \mid B)_{o}$
- Discarding quantum systems never increases mutual information

 $I(A:B)_{\rho} \leq I(A:BC)_{\rho}$

Description of the info-processing tasks in more detail

-- in the "asymptotic, memoryless setting"

Quantum Data Compression

Ouantum Info source

signals (pure states) $|\psi_1\rangle, |\psi_2\rangle, ..., |\psi_r\rangle \in \mathcal{H}$ $\langle \psi_i | \psi_j \rangle \neq \delta_{ij}$

with probabilities $p_1, p_2, ..., p_r$

Then source characterized by:

$$\{
ho, \mathcal{H}\}$$

density matrix $\rho = \sum_{i=1}^{n} p_i |\psi_i\rangle \langle \psi_i |$

Memoryless quantum information source

State of *n* copies of the source: $\rho_n = \rho$ no correlation

UNIVERSITY OF CAMBRIDGE

Quantum data compression

• Evaluated in the asymptotic limit $n \rightarrow \infty$

n = number of copies/uses of the source

- emits signals $|\psi_1^{(n)}\rangle, |\psi_2^{(n)}\rangle, \dots, |\psi_m^{(n)}\rangle \in \mathcal{H}^{\otimes n}$
- with probs. $p_1^{(n)}, p_2^{(n)}, ..., p_m^{(n)}$

Source State :
$$\rho_n = \sum_{i=1}^m p_i^{(n)} |\psi_i^{(n)}\rangle \langle \psi_i^{(n)} |$$

$$\left\langle \boldsymbol{\psi}_{i}^{(n)} \left| \boldsymbol{\psi}_{j}^{(n)} \right\rangle \neq \delta_{ij}$$

in general

Compression-Decompression Scheme

• Encoding:
$$\mathcal{E}_n$$
: $|\psi_i^{(n)}\rangle\langle\psi_i^{(n)}| \rightarrow \sigma_i^{(n)} \in \mathcal{D}(\mathcal{H}_c^n)$
signal compressed state Hilbert space

• Decoding:
$$\mathcal{D}_n$$
: $\sigma_i^{(n)} \to \omega_i^{(n)} \in \mathcal{D}(\mathcal{H}^{\otimes n})$

recovered signal

Quantum Data Compression or Fixed length quantum source coding

• Ensemble average fidelity: figure of merit used for determining reliability

$$\overline{F}_{n} = \sum p_{i}^{(n)} \left\langle \psi_{i}^{(n)} \middle| \mathcal{D}_{n} \circ \mathcal{E}_{n} \left(\left| \psi_{i}^{(n)} \right\rangle \left\langle \psi_{i}^{(n)} \middle| \right) \right| \psi_{i}^{(n)} \right\rangle$$

 The compression-decompression scheme is reliable if

$$\overline{F}_n \to 1$$
 as $n \to \infty$

UNIVERSITY OF CAMBRIDGE

Quantum Data Compression

• Optimal rate of data compression: Data compression limit $R_{opt} \coloneqq \inf \left\{ R \mid \exists a \text{ seq. of codes } C_n \coloneqq (\mathcal{E}_n, \mathcal{D}_n, 2^{nR}) \text{ s.t. } \overline{F_n} \to 1 \text{ as } n \to \infty \right\}$

Schumacher's Theorem : Quantum Data Compression

Suppose $\{\rho, \mathcal{H}\}$ is an *memoryless, quantum information* source $\rho_n = \rho^{\otimes n}; S(\rho):$ von Neumann entropy • Suppose $R > S(\rho)$: then there exists a reliable compression scheme of rate *R* for the source. • If $R < S(\rho)$ then any compression scheme of rate R will not be reliable. $R_{opt} = S(\rho)$:

Proof follows from the Typical Subspace theorem

DIGRESSION

The notion of "typicality"

Typical sequences and Typical Subspace Theorem

UNIVERSITY OF CAMBRIDGE

• Defn: Consider a sequence of i.i.d. random variables: $U_1, U_2, ...U_n; p(u); u \in J$ For any $\varepsilon > 0$, sequences $\underline{u} := (u_1, u_2, ...u_n) \in J^n$ for which $2^{-n(H(U)+\varepsilon)} \leq p(u_1, u_2, ...u_n) \leq 2^{-n(H(U)-\varepsilon)},$ where $H(U) = -\sum p(u) \log p(u);$ shannon entropy are called ε – typical sequences

$$T_{\varepsilon}^{(n)} := \varepsilon - \text{typical set} = \text{set of} \quad \varepsilon - \text{typical sequences}$$

Note: Typical sequences are almost equiprobable

$$\forall \underline{u} \in T_{\varepsilon}^{(n)}, p(\underline{u}) \approx 2^{-nH(U)}$$

$$\forall \underline{u} \in T_{\varepsilon}^{(n)}, p(\underline{u}) \approx 2^{-nH(U)}$$

 $U_1, U_2, \dots U_n;$ $p(u) ; u \in J$

(Q) Does this agree with our intuitive notion of typical sequences?

(A) Yes! For an i.i.d. sequence $: U_1, U_2, ..., U_n; U_i \sim p(u); u \in J$

A typical sequence $\underline{u} := (u_1, u_2, ..., u_n)$ of length n,

is one which contains approx. np(u) copies of $\mathcal{U}, \forall u \in J$

• Probability of such a sequence is approximately given by $\approx \prod_{u \in J} p(u)^{np(u)} = \prod_{u \in J} 2^{np(u)\log p(u)} = 2^{\sum_{u \in J} p(u)\log p(u)}$ $= 2^{-nH(U)}$

CAMBRIDGE Properties of the Typical Set $T_{\varepsilon}^{(n)}$

• Let
$$\left| \frac{T_{\varepsilon}^{(n)}}{\varepsilon} \right|$$
 : number of typical sequences $P\left(\frac{T_{\varepsilon}^{(n)}}{\varepsilon} \right)$: probability of the typical set

• Typical Sequence Theorem: Fix $\varepsilon > 0$, then $\forall \delta > 0$, and n large enough,

•
$$P(T_{\varepsilon}^{(n)}) > 1 - \delta$$

$$(1-\delta)2^{n(H(U)-\varepsilon)} \le \left|T_{\varepsilon}^{(n)}\right| \le 2^{n(H(U)+\varepsilon)}$$

$$\Rightarrow J^{n} = T_{\varepsilon}^{(n)} \bigcup A_{\varepsilon}^{(n)}$$
atypical set

sequences in the atypical set rarely occur $P(A_{\varepsilon}^{(n)}) \leq \delta$

typical sequences are almost equiprobable

(disjoint union)

UNIVERSITY OF Memoryless quantum information source
state of *n* copies
$$\rho_n = \sum_{i=1}^m p_i^{(n)} |\psi_i^{(n)}\rangle \langle \psi_i^{(n)}| = \rho^{\otimes n};$$

if the source $\psi_i^{(n)}\rangle$: signal emitted with prob. $p_i^{(n)}; \quad \langle \psi_i^{(n)}|\psi_j^{(n)}\rangle \neq \delta_{ij}$
 $\rho \in \mathcal{H}, \dim \mathcal{H} = d \quad \therefore \rho_n = \rho^{\otimes n} \in \mathcal{H}^{\otimes n}$
Spectral decompositions:

$$\rho = \sum_{j=1}^{a} q_{j} |\varphi_{j}\rangle \langle \varphi_{j} |; \qquad \rho_{n} = \sum_{\underline{k}} \lambda_{\underline{k}}^{(n)} |\Psi_{\underline{k}}^{(n)}\rangle \langle \Psi_{\underline{k}}^{(n)}|$$

eigenstates
$$\therefore \rho_{n} = \rho^{\otimes n} \Rightarrow \qquad |\Psi_{\underline{k}}^{(n)}\rangle = |\varphi_{k_{1}}\rangle \otimes |\varphi_{k_{2}}\rangle \otimes \dots |\varphi_{k_{n}}\rangle$$

$$\lambda_{\underline{k}}^{(n)} = q_{k_{1}}q_{k_{2}}\dots q_{k_{n}}$$

Identification of the label k as a sequence of classical indices $\underline{k} \equiv k = (k_1, k_2, ..., k_n)$

- sum over all possible sequences

$$\forall \varepsilon > 0, \quad \text{a sequence} \quad \underline{k} \equiv (k_1, k_2, \dots, k_n) \quad \text{is} \quad \mathcal{E} - \text{typical if:}$$
$$2^{-n(H(\{q_k\}) + \varepsilon)} \leq p(\underline{k}) \leq 2^{-n(H(\{q_k\}) - \varepsilon)},$$

$$2^{-n(\mathcal{S}(\rho)+\varepsilon)} \le p(\underline{k}) \le 2^{-n(\mathcal{S}(\rho)-\varepsilon)}, \qquad T_{\varepsilon}^{(n)} \coloneqq \varepsilon - typical set$$

eigenvalues $\lambda_{\underline{k}}^{(n)}$ sequences \underline{k} eigenvectors $|\Psi_{\underline{k}}^{(n)}\rangle$ $\mathcal{T}_{\varepsilon}^{(n)} \coloneqq \mathcal{E} - typical subspace$ UNIVERSITY OF CAMBRIDGE \mathcal{E} – typical subspace $\mathcal{T}_{\varepsilon}^{(n)} \subset \mathcal{H}^{\otimes n}$

- Subspace spanned by those eigenvectors $\left|\Psi_{\underline{k}}^{(n)}\right\rangle = \left|\varphi_{k_{1}}\right\rangle \otimes \left|\varphi_{k_{2}}\right\rangle \otimes \dots \left|\varphi_{k_{n}}\right\rangle \quad \text{for which} \quad \underline{k} \in T_{\varepsilon}^{(n)}$
- Let $P_{\varepsilon}^{(n)}$: orthogonal projection on to the typical subspace

Typical Sequence Theorem \longrightarrow Typical Subspace Theorem Fix $\varepsilon > 0$, then $\forall \delta > 0$, and *n* large enough:

$$P(T_{\varepsilon}^{(n)}) > 1 - \delta$$

$$Tr(P_{\varepsilon}^{(n)}\rho_{n}) > 1 - \delta$$

$$(1 - \delta)2^{n(H(\{q_{k}\}) - \varepsilon)} \leq |T_{\varepsilon}^{(n)}|$$

$$\leq 2^{n(H(\{q_{k}\}) + \varepsilon)}$$

$$Tr(P_{\varepsilon}^{(n)}\rho_{n}) > 1 - \delta$$

$$(1 - \delta)2^{n(S(\rho) - \varepsilon)} \leq \dim \mathcal{T}_{\varepsilon}^{(n)}$$

$$\leq 2^{n(S(\rho) + \varepsilon)}$$

Schumacher's Theorem : Quantum Data Compression

• Suppose $R > S(\rho)$: then there exists a reliable compression scheme of rate R for the source.

Proof:

Compressed Hilbert space \mathcal{H}_{c}^{n} ; dim $\mathcal{H}_{c}^{n} = 2^{nR}$ $R > S(\rho)$

• Choose $\varepsilon > 0$, such that $R > S(\rho) + \varepsilon$

Fix $\delta > 0$, choose *n* large enough such that:

 $\operatorname{Tr}\left(P_{\varepsilon}^{(n)}\rho_{n}\right) > 1 - \delta; \quad \dim \mathcal{T}_{\varepsilon}^{(n)} \leq 2^{n(S(\rho) + \varepsilon)} < 2^{nR} = \dim \mathcal{H}_{c}^{n}$ $\Rightarrow \quad \mathcal{T}_{\varepsilon}^{(n)} \subset \mathcal{H}_{c}^{n}$

$$\tilde{\rho}_{i}^{(n)} = \alpha_{i}^{2} \left| \psi_{i}^{(n)} \right\rangle \left\langle \psi_{i}^{(n)} \right| + \beta_{i}^{2} \left| \phi_{0}^{(n)} \right\rangle \left\langle \phi_{0}^{(n)} \right| \in \mathcal{D}\left(\mathcal{T}_{\varepsilon}^{(n)}\right)$$
$$\alpha_{i}^{2} = \left\| P_{\varepsilon}^{(n)} \left| \psi_{i}^{(n)} \right\rangle \right\|^{2} = \left\langle \psi_{i}^{(n)} \left| P_{\varepsilon}^{(n)} \right| \psi_{i}^{(n)} \right\rangle$$

Ensemble average
$$\overline{F}_n = \sum_i p_i^{(n)} \left\langle \psi_i^{(n)} \middle| \tilde{\rho}_i^{(n)} \middle| \psi_i^{(n)} \right\rangle \ge 2 \sum_i p_i^{(n)} \alpha_i^2 - 1$$

 $> 1 - 2\delta$

$$\sum_{i} p_{i}^{(n)} \alpha_{i}^{2} = \sum_{i} p_{i}^{(n)} \left\langle \psi_{i}^{(n)} \middle| P_{\varepsilon}^{(n)} \middle| \psi_{i}^{(n)} \right\rangle$$
$$= \operatorname{Tr} \left(P_{\varepsilon}^{(n)} \rho_{n} \right) > 1 - \delta; \quad \text{(by the Typical Subspace Theorem)}$$
$$\implies \quad \overline{F_{n}} \to 1 \quad \text{as} \quad n \to \infty$$

Schumacher's Theorem : Quantum Data Compression

Suppose $\{\rho, \mathcal{H}\}$ is an *memoryless, quantum information* source $\rho_n = \rho^{\otimes n}; S(\rho):$ von Neumann entropy • Suppose $R > S(\rho)$: then there exists a reliable compression scheme of rate R for the source. • If $R < S(\rho)$ then any compression scheme of rate R will not be reliable. (See Cambridge lecture notes)

Schumacher proved (1995): for a memoryless source $\{\rho, \mathcal{H}\}$

Data compression limit = $S(\rho)$:

von Neumann entropy of the source

Transmission of information

Transmission of classical info through a noiseless quantum channel

Bob receives the ensemble: $\mathcal{E} = \{ p(x), \rho_x \}$

The maximum amount of info Bob can extract by doing any measurement

Accessible Information:

$$I_{acc}(\mathcal{E}) = \max_{\mathcal{M}} I(X:Y)$$
(classical)
mutual info

Holevo Bound

$$I_{acc}(\mathcal{E}) \leq \chi(\{p(x), \rho_x\})$$

The maximum amount of info Alice can send to Bob using the ensemble $\mathcal{E} = \{p(x), \rho_x\}$

• Holevo χ – quantity of an ensemble of states $\{p_i, \sigma_i\}$

$$\chi\big(\{p(x),\rho_x\}\big) \coloneqq S\big(\sum_x p(x)\rho_x\big) - \sum_x p(x)S\big(\rho_x\big)$$

If the ρ_x are pure : $\chi(\{p(x), \rho_x\}) = S(\rho); \text{ where } \rho \coloneqq \sum_x p(x)\rho_x$

Idea: Use strong subadditivity: need a tripartite system

Embed the classical r.v. X in a dummy quantum system A; \mathcal{H}_A

 $\{ |x\rangle : x \in J \}$: orthonormal basis in \mathcal{H}_A

- A: a quantum register; keeps a record of the classical symbol X which
 Alice wants to send to Bob
- Q: the quantum system in whose states ρ_x Alice encodes her messages
- **B**: a quantum system representing Bob's measuring device; originally in some pure state $|0\rangle\langle 0|_{B}$
 - Initial state:

$$\rho_{AQB} = \left(\sum_{x} p(x) \left| x \right\rangle \left\langle x \right|_{A} \otimes \rho_{x}\right) \otimes \left| 0 \right\rangle \left\langle 0 \right|_{A}$$

Holevo Bound: sketch of proof

Initial state: $\rho_{AQB} = \left(\sum_{x} p(x) |x\rangle \langle x|_{A} \otimes \rho_{x}\right) \otimes |0\rangle \langle 0|_{B}$ Bob's measurement \mathcal{M} : POVM $E = \left\{E_{x}\right\}_{x \in I}$;

• State after measurement $\rho_{A'Q'B'} = \sum_{x,y} p(x) |x\rangle \langle x|_{A'} \otimes \sqrt{E_y} \rho_x \sqrt{E_y} \otimes |y\rangle \langle y|_{B'}$

- I(A:Q) = I(A:QB)
- $I(A:QB) \ge I(A':Q'B')$
- $I(A':Q'B') \ge I(A':B')$

$$I(A':B') \le I(A:Q)$$
$$I(X:Y) \le \chi(\{p(x), \rho_x\}) \quad \forall \mathcal{M}$$

$$I_{acc}(\mathcal{E}) = \max_{\mathcal{M}} I(X:Y) \le \chi(\{p(x), \rho_x\}) \quad \text{Holevo Bound}$$

Transmission of classical info through noisy quantum channels

Bob receives the ensemble: $\mathcal{E} = \{p(x), \mathcal{N}(\rho_x)\}$ Holevo bound $I_{acc}(\mathcal{E}) \leq \chi(\{p(x), \mathcal{N}(\rho_x)\})$ (Q) Is the Holevo bound achievable? Yes, in the asymptotic, memoryless

setting

"asymptotic, memoryless setting"

 $\lfloor 1 - \operatorname{Tr}(E_x^{(n)}\sigma_x^{(n)}) \rfloor$

classical info transmission through a noisy quantum channel \mathcal{N}

 $p_{av}^{(n)}$

 Average probability of error:

UNIVERSITY OF CAMBRIDGE

If
$$p_{av}^{(n)} \to 0$$
 as $n \to \infty$: information transmission is
.....(1) reliable
If number of bits
of message sent: $\log M_n \approx 2^{nR}$ & (1) holds, then
 $R:$ an achievable rate $R = \liminf_{n \to \infty} \frac{\log |M_n|}{n}$

Classical capacity of the quantum channel

 $C(\mathcal{N}) = \sup R$

-- the supremum taken over all achievable rates

CAMBRIDGE A quantum channel has many capacities

- The different capacities depend on:
 - the nature of the transmitted information

(classical or quantum)

the nature of the input states

(entangled or product states)

- the nature of the measurements done on the outputs (collective or individual)
- the presence or absence of any additional resource (e.g. prior shared entanglement between Alice & Bob)
- whether Alice & Bob are allowed to communicate classically with each other

• <u>Capacities evaluated in the "asymptotic memoryless setting"</u> $\Phi^{(n)} = \Phi^{\otimes n}; \quad n \to \infty$

UNIVERSITY OF CAMBRIDGE

If Alice restricts the inputs to product states, i.e., if

$$x \to \rho_x^{(n)} = \rho_{x_1} \otimes \rho_{x_2} \otimes \dots \otimes \rho_{x_n}$$

And Bob does a collective measurement (POVM) on

 $\sigma_{x}^{(n)} := \mathcal{N}^{\otimes n} \left(\rho_{x}^{(n)} \right) : \text{the output of } \mathcal{N} \text{ uses of the channel}$ $= \mathcal{N}(\rho_{x_{1}}) \otimes \mathcal{N}(\rho_{x_{2}}) \otimes \dots \otimes \mathcal{N}(\rho_{x_{n}})$

Capacity : product state capacity $C_p(\mathcal{N})$

Holevo-Schumacher-Westmoreland (HSW) Theorem

$$C_{p}(\mathcal{N}) = \max_{\{p_{i},\rho_{i}\}} \chi(\{p_{i},\mathcal{N}(\rho_{i})\}) = \chi^{*}(\mathcal{N})$$

Holevo Capacity

• Can be expressed as a relative entropy

Classical info transmission through noisy quantum channels

Bob receives the ensemble: $\mathcal{E} = \{ p(x), \mathcal{N}(\rho_x) \}$

$$I_{acc}(\mathcal{E}) \leq \chi \big(\{ p(x), \mathcal{N}(\rho_x) \} \big)$$

HSW Theorem

$$C_{p}(\mathcal{N}) = \max_{\{p_{i},\rho_{i}\}} \chi(\{p_{i},\mathcal{N}(\rho_{i})\}) = \chi^{*}(\mathcal{N}) \quad \text{Holevo} \\ \text{Capacity}$$

Holevo bound can be achieved in the "asymptotic memoryless setting" IF Alice uses product state inputs & Bob does a collective measurement

UNIVERSITY OF CAMBRIDGE

• Classical capacity of a memoryless channel ${\cal N}$:

(without the restriction of inputs being product states):

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi^* \left(\mathcal{N}^{\otimes n} \right)$$

regularised Holevo capacity

 $\chi^*(\mathcal{N}^{\otimes n})$ Holevo Capacity of the block $\mathcal{N}^{\otimes n}$ of n channels

(This generalization is obtained by considering inputs which are product states over blocks of n channels but which may be entangled within each block)

> (Q) Can the classical capacity of a memoryless quantum channel be increased by using entangled states as inputs ?

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi^* \left(\mathcal{N}^{\otimes n} \right)$$

(Q) Can the classical capacity of a memoryless quantum channel be increased by using entangled states as inputs ?

• This is related to the additivity conjecture of the Holevo capacity :

$$\chi^{*}(\mathcal{N}_{1}\otimes\mathcal{N}_{2}) = \chi^{*}(\mathcal{N}_{1}) + \chi^{*}(\mathcal{N}_{2}) \Longrightarrow \chi^{*}(\mathcal{N}^{\otimes n}) = n\chi^{*}(\mathcal{N})$$
$$\Rightarrow C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi^{*}(\mathcal{N}^{\otimes n}) = \lim_{n \to \infty} \frac{1}{n} \chi^{*}(\mathcal{N}) = \chi^{*}(\mathcal{N})$$
$$= C_{p}(\mathcal{N})$$

IF the Holevo capacity is additive then using entangled inputs would not increase its classical capacity!

Additivity conjecture disproved by Matt Hastings 2008

Using entangled inputs might help in transmitting classical information through a quantum channel

- Quantum capacity : max. rate at which qubits can be $Q(\mathcal{N})$ transmitted reliably
- Evaluated in the "asymptotic memoryless setting"

(LSD theorem)

$$Q(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^{(n)}} I_{coh} \left(\rho^{(n)}, \mathcal{N}^{\otimes n} \right)$$
coherent information

coherent information

$$I_{coh}(\rho, \mathcal{N}) = -S(\sigma_{RB}) + S(\sigma_{B}) = -S(R | B)_{\sigma}$$

Quantum Capacity

For a memoryless channel

(LSD theorem) $Q(\mathcal{N}) = \lim_{n \to \infty} \frac{1}{n} \max_{\rho^{(n)}} I_{coh} \left(\rho^{(n)}, \mathcal{N}^{\otimes n} \right)$

Regularised Coherent information

In next lecture and example session:

- Discussion of degradable channels
- Proof of the fact that the coherent info is additive for degradable channels