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“Quantum communication is the art of transferring a
guantum state from one place to another.” [Gisin]

guantum states encode information - classical or quantum;

guantum communication allows transmission of information

The main hurdle in the path of quantum communication:

Presence of noise in the quantum channel

Disturbs the quantum state sent through the gquantum channel

Distorts the information encoded In the state

yo,

input

>

Quantum channel

yo,

4

(noisy)

output

>
/

p'#p
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use quantum error-correcting codes

e.g. consider the case of classical information transmission;

Alice Bob

-e
T

me M noisy
M — guantum channel —
set of classical N
classical message

messages

= Alice encodes her messages into suitable quantum states
(codewords)

= She sends these codewords through (multiple uses of)
the channel
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me M p O m’ e M
> encoding |— D I AR N | decoding |—>
Alice’s Input output Bob’s
message S N uses of \V D,  inference

= Ifm'"#m then an error occurs!
= Reliability: e.qg. if Probability of error —0 as N— oo

= Rate of info number of bits of message

transmission transmitted per use of the channel

= Aim: achieve reliable transmission whilst maximizing the rate

s There is a fundamental limit on the
rate of reliable info transmission (depends on the channel)

(a property of the channel) _ o
Classical capacity of . max. rate of reliable transmission

the quantum channel N of classical info through N/
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o An important class of problems in QIT concerning the
transmission of information through quantum channels:

evaluating th a guantum channel

Another essential task in QIT :

= Efficient storage of information emitted by a
guantum info source:
This involves reliable compression of quantum info

I.e. Quantum Data Compression
= Why do we need to compress | mation?

le’?

= What is meant by

What is ntum info source?

It can also be viewed as a quantum communication task



I UNIVERSITY OF

<P CAMBRIDGE
= Quantum info source: characterized by an ensemble
5:{pi,‘wi>} of pure states ‘Wi>€7/
source ensemble & a priori probs ]

‘l//i>: signal emitted with prob. P,

In general <Wi ‘Wj> # 0;

source state X~ Z P; "7”i><’//i ‘

= Equivalently the source Is characterized by {P’ﬂ}



5 CAMBRIDGE Quantum Data Compression

= Storage setting:

: F (lﬂ- ) recovered
ql_Jantum . Vi | .
Info signal CZ:? compressed signal : signals
source encoding decoding

WiE‘Wi><Wi‘E‘/g(7{); E(y;) e D7)

set of density matrices
acting on 7/

i i : _ number of qubits needed
dim A <dim# log(dim 7)) © to compress the signals

Quantity o _ _
of interest:  Minimum number of qubits needed to compress the signals
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minimum number of qubits Alice
needs to compress the signals

guantum compressed g recovered
iInformation . signal) O signal _ S|gna5|s
source encoding decoding

= Storage setting:

An Equivalent Scenario for Quantum Data Compression

= Communication setting:

minimum number of qubits that Alice needs to
send to Bob through the noiseless channel

compressed )l recovered
. signal L — ’< > signals
signal  encoding noiseless quantum decoding

channel
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Usually one uses the source a multiple number (n) of times

= Communication setting:

rate

minimumpurrfbe/rat which Alice needs to

send qubits to Bob through the noiseless channel

compressed )l recovered
. signal L — ’< > signals
signal  encoding noiseless quantum decoding

channel
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optimal rates of info-processing tasks
= Info transmission: maximum rate of reliable

Info transmission[t{hr/ough a noisy quantum channel
capacity (of the channel)
= Storage of information (data compression) :
minimum rate of reliable info transmission through a
noiseless quantum channel

data compression limit
(of the source)

= Aim: to evaluate these optimal rates :
I.e. find mathematical expressions for them in terms of

entropic quantities
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These optimal rates were initially evaluated under the

assumption of an:
“asymptotic, memoryless setting”

= Info sources & channels are assumed to be memoryless
= they are used an infinite number of times:
(asymptotic limit) N — o©

= one requires that the error incurred vanishes in this limit

e.g. Memoryless channel

. N ®n
N successive uses : N = N

= action of each use of the channel : identical & independent
for different uses

-- the noise affecting successive input states uncorrelated.
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“asymptotic, memoryless setting”

= e.g. Toevaluate C(N): classical capacity
of a noisy quantum channel N/

Yij classical
info

N@n

Nl uses

2

X P

Input

encoding

>

N@n

®n (n)
‘/v (px X'
—
channel
output  decoding
measurement

n
= One requires : prob. of error pé )—> O as N—
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Outline of the rest of the lecture

= Recall some standard definitions
= Define the relevant entropic quantities
= Description of the info-processing tasks in more detail
= Statement of results expressing
optimal rates in terms of entropic quantities

= Sketch of some proofs
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s Standard Definitions
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A < > 7{A

guantum system Hilbert space

L (A7) . algebra of linear operators acting on H

P (#) :set of positive operators......

set of density matrices (states)

DH ) ={pe L(H):p 20, Trp =1
N
A 20, Z 4; =1

= Spectral decomposition:

d probability
eigenvalues  €lgenvectors {ﬂfl }i—l . distribution
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= Any allowed physical process that a quantum system can undergo is
described by a :

linear completely-positive, trace preserving (CPTP) map

P, p =N(p)
> A/ :CPTP map >
input output

= Trace-preserving (TP): Trp'=Trp=1

= Positive: p'= A (p) >0

environment
= Completely positive (CP): Phre

N D7) > D(71)

(/\/ ) idE)(pAE ): an allowed state of c p(y{B ®7{E)

the composite system

(N ®1de ) (o) 20
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Generalized measurements - POVM:

A gquantum measurement is described by a POVM

E:{Ei};(finiteset) Ei >0, ZEi = |
If the system is in a state 0 beforle the measurement,

Then, probability of getting the i outcome is:

Pi = Tr(Eip)
= €.0. measurement
xel { Py { noiseless | P« { {E } N
encoding uantum
quantum | dh2nnol —=1 " outcome
state POVM

p(y[x)=Tr(E,p,)
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Any mixed state A pure state

Pr€Th = - ‘WAR>€7'4®7‘/'?""’;

.
.
., K
0 R
---------

Pa=Tr ‘LPAR > <LPAR ‘ " purifying reference system

Schmidt decomposition: Any pure bipartite state

‘l//AR>67{A®7{R;

d d
W)= 2 AlIWe) 420, 4 =1
— _

Consequences: Reduced states,

L ::TrR‘WAR><WAR" LR ::TrA‘WAR><WAR‘

have identical non-zero eigenvalues
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= Entropic Quantities
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of a state P - S(p)=—Tr (p log ,O)

log =log,

o

Spectral decomposition: £ = Zﬂf. ‘§0i><§0i ‘;

i=1 g Shannon entropy

S(p)==Tr (plog p)=- Alogs =H ({4})

i=1

'S(p) =0 ifandonlyif p isa pure state: P:‘\P><\P‘
' S(p)20; S(p)<logd; where d=dim 7

S ®p,)=5(p)+S(p,)

" f P, P are reduced states of a pure state ¥as  then,

S(pa) =S(pg)
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Other Entropies

For a bipartite system in a state Oag -

= Joint entropy:

S(Pag) =—Tr(pps 109 py)

= Conditional entropy:

S(A[B), =S(0)—S(ps)

Ps =TI Pus

reduced state

= Quantum mutual information:

1(A:B), =35(pa)+S(0s) —S(0as);
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= Quantum Relative Entropy

of p wr.t.o, p=0, Trp=1 oc=>0:

D(pl|loc)=Trplog p—Tr plog o

well-defined if SUpp p < supp o

= It acts as a parent quantity for the von Neumann entropy:

S(p)=—Trplogp=-D(p|l1) | (o=1)
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= It also acts as a parent quantity for other entropies:

e.g. for a bipartite state O,z '

= Conditional entropy

S(A[B)=5(0n) —S(05) =—D(0ps || 11 ® o)

= Mutual information Ps =TI\ Pag

1 (A:B)=5(p,) +3(05) —S(Pne) = D0 Il P ® p5)
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D(pl|lo)=0 0,0 states (1)

“distance”

_0if&onlyifp=c |

symmem’ic
triangfeninequality

Data-processing inequality:

I.e. monotonicity under a guantum operation (CPTP map)

D(A(P) | A(G) <D(p[|G)  wonl@

This 1s a fundamental property ;

guantum operations never increase mutual information

Many properties of other entropies can be proved using (1) & (2)

o e.9.If o, Z(idA®AB_>B,),0AB then |(A B')G < |(A B)p
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= Joint convexity:

For two mixtures of states © = Z Pio, & 97 Z Pio

=1

D(Z pk’Ok H Z kak S Z ka(IOk H Gk)(a)

Invariance under DU oU T |UoU T) — D(p | J)....(b

joint unitaries

)

Implications for the von Neumann entropy:

v S(p)=-D(p|l1)

(@ = Concavity: S (Z Pi o j 2 Z p.S(o;)
(b) = Invariance under unitaries: S (U /OU T) =G (p)
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= Strong subadditivity: pOagc  tripartite state B
S(Ppsc) TS(5) < S(Pps) +S(05c)

Lieb & Ruskai ‘73

Conseguences of strong subadditivity:

= Conditioning reduces entropy

S(A|BC), <S(A|B),

= Discarding quantum systems never increases mutual
Information

I(A:B), <I1(A:BC),
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= Description of the info-processing tasks in more detail

-- In the “asymptotic, memoryless setting”
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‘—) signals

Quantum Info source

signals (pure states) ‘W1>,‘W2>----,‘l//r>€ H
with probabilities ~ Pis Posey Py <V/i‘%”j>¢5u

= Then source characterized by: {,0, 7'/}
4

PR
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

_ y Ny | density matrix
p ;p.\w.ﬂw.\

= Memoryless quantum information source

XN

State of N copies of the source: Pn = £
no correlation
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= Evaluated in the asymptotic limit N — o0
N = number of copies/uses of the source

= emits signals ‘l//(n)> ‘W(n)> ‘W(n)>€7‘/®n
™ p™ . p™ ("

= with probs. Py 7,
Wi(n) > <Wi(n)

m
_ (n)
= Source State : Pn = Z P;
i=1
Compression-Decompression Scheme

= Encoding: E_ . ‘wl(n)><wl(n) —> O'(n) < ﬂ(ﬁ )

compressed

v )5,

In general

compressed

signal state Hilbert space

o Decoding:Q)n ( ) —> Cf) E g(ﬂ@)n)

recovered signal
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Fixed length guantum source coding

‘V/(n)>< (n) oM AN
n Copies Of‘%-_"l _____ él
a quantum signal recovered
) : mpr
information o, - g(ﬂ@‘) comp _essed n state
source state in H

¢ ®n
with prob. pi(n)< dim 77" c D(H )

Ensemble average fidelity: figure of merit used for determining reliability
(n) (n) (n) (n) (n)
= 2P0 |0, (jwi® ) )i

= The compression-decompression = n — oo
scheme is reliable if Fn —1as
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‘V/(n)>< (n) oM oM
N copies of‘_l—@___n _____ U
a quantum signal recovered
information p_ on Compressedn
source € B(H ) state in . state o
with prob. pi(n)< dim 3" =B
. E @ I\/I . Iog M n
C, = ( D, n) defines a code of rate : -
«E ,D, isa compression decompressiﬂh"sfé‘h‘eme of rate R

=dim }[ Z”R

Optimal rate of data compression: Data compressmn limit

Ry = inf {R | Ja seq. of codes C, = (E,,D,2™)st.F, >1asn— oo}
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Schumacher’s Theorem : Quantum Data Compression

Suppose {p, %/} is an memoryless, quantum information

. source
L, =P i S(p) . von Neumann entropy

= Suppose R > S(p) : then there exists a reliable compression
scheme of rate R for the source.

= If R<S(p) then any compression scheme of rate R

will not be reliable.

Ropt = S(p):

Proof follows from the Typical Subspace theorem
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DIGRESSION
The notion of ““typicality”

Typical sequences and Typical Subspace Theorem
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= Defn: Consider a sequence of i1.1.d. random variables:
Uu,u,,.U.; pu);uel

Forany &>0, sequences U= (U,U,,...u )€ J" for which

2—n(H(U)+8) < p(Ul,Uz’---Un) < 2-”(H(U)—8)’

where HU) = —Z p(u)log p(u); shannon entropy

are called g — typical sequences

Tg(n) = & —typical set =set of & — typical sequences

s| Note: Typical sequences are almost equiprobable

vueT™, pu)=2""
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b .
u,u,,..U,;

VueT"”, p(u p(u) ; ue

(Q) Does this agree with our intuitive notion of typical sequences?

(A) Yes! For ani.i.d. sequence :U,,U,,.U ; U ~p(u);ueld

A typical sequence U= (U;,U,,...u.) of length N,

is one which contains approx. NP(U) copies of U, VUueJ

= Probability of such a sequence Is approximately given by

|
np(u) — np(u)log p(u) __ Ep(u)ogp(u)
~]] p(u) = 11 2 =2

ueld ueld
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(n) :
Tgn ‘ : humber of typical sequences

P(Tg(n)) . probability of the typical set

s Let

= Typical Sequence Theorem: Fix £>0, then v§>0,

and I large enough,
. P(T\”)>1-6

< 2n(H(U)+5)

O (1_5)2n(H(U)—8) < Tg(n)

— J" = Tg(“) U Aé”) = sequences in the atypical set rarely occur
P(A")<s

atypical set _ .
= typical sequences are almost equiprobable

(disjoint union)
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state of N copies (n) (n) >< ml _  ®n,
of the source Pn = Z P - ’
‘()yi(n)> :signal emitted with prob. pi ; <Wi(n) an)> # 0;

i _ . . .®n Xn
peH dm#A =d - .p =p eH
Spectral decompositions:

p:iqj‘¢j><¢j ‘; pn:;ﬁk(n) qj(Kn)><T(Kn)

1= eigenstates

¥")=|0.) 80, )|,

ﬂk(n) =0 Ui, - Ok

®n

Identification of the label K asa sequence of classical indices

k= k=(K,Ky,ooo K )
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K =(K,, Ky, k) 2
ki {1,2,..d}; d=dim#

von Neumann entropy S(,On) S(,O®n) =NnS (,0) = nH ({qk})
probability: P(K) = /Ig(n) =0 Oy, -0

Ve >0, asequence K = (kl, kz, ..... , kn) is & —typical if:

2—n(H({qk})+8) < p(k) < 2—n(H({qk})—6)

Hilgie) = p(K) < 2—n(8(p)—8), Tg(”) '— & — typical set

. n
eigenvalues ;LK() — - Sequences K

eigenvectors ‘\P(K”)>

7;(”) '— & — typical subspace
-
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£ — typical subspace 7;(”) — K"

= Subspace spanned by those eigenvectors
‘\I’(Kn)> = ‘gpkl>®‘(ﬂk2 > ®...‘§0kn > for which K € Tg(n)
= Let Pg(n) . orthogonal projection on to the typical subspace

Typical Sequence Theorem === Typical Subspace Theorem
Fix £ >0, then VO >0, and N large enough:

P(TO)>1-6 Tr(P"p,)>1-6
(1_5)2n(H({qk})—e) < Tg(n)

(1-5)2"¢9 < dim 7™

S 2n(H({qk})+‘9) S 2n(S(,0)+3)
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Schumacher’s Theorem : Quantum Data Compression

= Suppose R> S(P) . then there exists a reliable compression
scheme of rate R for the source.

s Proof:

Compressed
Hilbert space

}[n.

c?

dim ] = 2™ R>S(p)

= Choose ¢ >0,suchthat R > S (p) + &
Fix o >0, choose I large enough such that:

Tr(PVp,)>1-6;  dim7 " <00 pR=(fim g/

(n) n
= 7, CH,
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ldea behind the compression scheme

(n) (n) l/lfn)> " 5”

‘l)yi(n)> signal emitted with prob. P, <‘//i

‘Wi(n)>: Pg(”) Wi(n)>+(| _ Pg(”))‘%(”)>

= 7;(”) z 7~(W  map this onto
keep this part a fixed pure state

unchanged (n) (n)
; 45" ) < 7.
Compression

scheme L (‘Wi(n)><wi(n)

) ,5.(”)

~/

Yo,

Vi

~(n)>OC p ("

™ — g ‘ ~(n)><

") af

Decompressi
scheme

~ (n)
Vi

on

‘¢(n)>< (n)

o) 8

D, ("

2 - ‘

)=p"®0

c D(7;™)

(-
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15|(n)_a ‘ ~(n)><~(n) ﬁ ‘¢(n)>< (n) Eg(y"(n))
=[Py i = (y® [Py
Ensemfk::jeeﬁ\srage = Z p(n)< (n) (n) Wl(n)> > 22 p(n) 2_q

>1-20
p(n)

Z P 2 Zp(n)< (n) (n)>

T (P(n)Pn) >1-0; (by the Typical Subspace Theorem)

— Ifn—)l as N — oo B
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Schumacher’s Theorem : Quantum Data Compression

Suppose {,0, 7/} IS an memoryless, quantum information

. source
L, =P i S(p) . von Neumann entropy

= Suppose R > S(P) . then there exists a reliable compression
scheme of rate R for the source.

= If R<S(p) then any compression scheme of rate R
will not be reliable. ™

N
(See Cambridge lecture notes)
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Schumacher proved (1995): for a memoryless source

o H |

von Neumann entropy

Data compression limit = S (,0) : of the source
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Transmission of information

Transmission of classical info through a noiseless quantum

channel
X ~ p(x);
XelJ X noiseless
‘-——) guantum channel —
. classical
classical message
iInfo

source



I UNIVERSITY OF
OGP CAMRRIDGE

Accessible Information

X ~ p(x);

measurement
XeJd _ Y
X | Px  [noiseless | Fx
‘ > encoding > qguantum > M >
- channel .

classical guantum Bob’s

Info state Inference
source

= Bob receives the ensemble: & = { p(x), ,OX}

The maximum amount of info Bob can extract by doing any measurement

(&) =max (X :Y)
M \

(classical)
mutual info

Accessible Information: | e
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Holevo Bound

|..(&) <x({p(x),})

The maximum amount of info Alice can send to Bob
using the ensemble & = { p(x), px}

= Holevo ¥ —quantity of an ensemble of states { P ; Gi}

2{p), 2. =5 p¥e,) =3 p(0s(p,)

If the O, are pure :
2({P(X), £,}) = S(p); where p= D p(X)p,
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Idea: Use strong subadditivity: need a tripartite system

Embed the classical r.v. X ina dummy gquantum system A; ¢/A

{‘ x> ‘X e J } - orthonormal basis in 7/A

= Al a quantum register; keeps a record of the classical symbol X which

Alice wants to send to Bob

¥ Q . the quantum system in whose states JoN Alice encodes her messages

= B : aquantum system representing Bob’s measuring device;

originally in some pure state ‘O> <O‘B

= Initial state:  POpop = (Z p(X)‘X><X‘A ®px) ®‘O> <O‘B
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= Initial state:  Opop = (Z p(X)‘X><X‘A ®px) ®‘O> <O‘B

= Bob’s measurement M : povm E = {EX}XEJ ,

e A g = 2, POO|X) (x|, ® E, , [E, ®[Y)(Y,
- I(A:Q)=1(A:QB)
. 1(A:QB)>1(A:Q'B) == I(A":B)<I(A:Q)
* 1(A:Q'B)>1(A:B)  I(X:Y)<x({p(x),p}) YM

I accC

(&) = m/a_x (X :Y) = ;(({p(x), px}) Holevo Bound
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Transmission of classical info through
noisy quantum channels

N(p) #
P v (p)# p
input Output
Linear, CPTP map

X ~ p(x);

Jp() measurement Y
Xed Py N(p,)
‘ > encoding N M >
cla_lsswal quantum =G Bob’s

info state  channel Inference
source

= Bob receives the ensemble: & = { p(x), JV(,OX)}
Holevo bound Iacc (5) < Z({ p(X), JV(,OX)})

Yes, in the asymptotic, memoryless

(Q) Is the Holevo bound achievable? _
setting
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classical info transmission through a noisy quantum channel N/

= . XN R
?’ classical ./V %
info N uses
(n) (n) :
w2 D[ yon |— X
—

o input

|\/|n _“/Mh‘ channel

. output  decodin
encoding P measure?nent

(n) _ Ar®ng (N)
= Measurement: POVM {E)En)} Oy =N (px )

= Probability (Bob infers Xcorrectly)= Tr ( E(n)g(”))

X

= Average probability (n) _ |:1 Tr E(n) (n) :|
av "/Mh‘ Z ( )

of error:
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If g)) —>0 35 N — oo :information transmission is
------ (1) reliable

If number of bits

NR
of message sent: logM , = 2™ & (1) holds, then

~ _log|M
R: an achievable rate R =Iliminf ‘ “‘

N—o0 n

Classical capacity of the quantum channel

C(N)=supR

--the supremum taken over all achievable rates
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= The different capacities depend on:
= the nature of the transmitted information

(classical or quantum)
the nature of the input states
(entangled or product states)

= the nature of the measurements done on the outputs
(collective or individual)
the presence or absence of any additional resource
(e.g. prior shared entanglement between Alice & Bob)

whether Alice & Bob are allowed to communicate
classically with each other

= Capacities evaluated in the “asymptotic memoryless setting”

(I)(n) :CD®n; N — oo
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= If Alice restricts the inputs to product states, I.e., if

X—)p(n) = Py, © Py, ®® Py

= And Bob does a collective measurement (POVM) on
(n) = N®" ( (n)) : the output of 1 uses of the channel

Capacity - product state capacity Cp (N)

= Holevo-Schumacher-Westmoreland (HSW) Theorem

Co(M) = max 7 ({p N(2)}) = 2" (W) | capaciy

|/7}

= Can be expressed as a relative entropy
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Classical info transmission through
noisy quantum channels

X ~ p(x);
< e - measurement Y
X fob N(p,)
‘ > encoding N > M >
classical : Bob’s
source

= Bob receives the ensemble: & = { p(x), JV(,OX)}
oo (&) < 2 ({P(X), ¥ (p,)})
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HSW Theorem

C,o (M) =max 7 ({p, N (2)}) = 1 (V)

Holevo
Capacity

Holevo bound can be achieved in the “asymptotic memoryless setting”

IF Alice uses product state inputs & Bob does a collective measurement

o 0 sy 50

as N — o ;(*I(./V) as N — oo

>

R (rate)
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= Classical capacity of a memoryless channel N

(without the restriction of inputs being product states):

C(®) = lim L

—0 N

()

regularised Holevo
capacity

*
7 (W®") Holevo Capacity of the block N®" of N channels

(This generalization is obtained by considering inputs which are

product states over blocks of n channels but which may be entangled

within each block)

(Q) Can the classical capacity of a memoryless quantum channel

be increased by using entangled states as inputs ?
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C(®) = lim 1;(*(Jv®”)

nN—o0 N

(Q) Can the classical capacity of a memoryless quantum channel

be increased by using entangled states as inputs ?

= This is related to the additivity conjecture of the Holevo capacity :

1 WON) =7 (M)+x V) B 7 (Vo) =ny (¥

(o= lim 7 (47) =i (4) =7 (4
n n _c.

= |F the Holevo capacity is additive then using entangled inputs would
not increase Its classical capacity!
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= Additivity conjecture disproved by Matt Hastings 2008

Using entangled inputs might help in transmittin
‘ g g P 0 P 0

classical information through a quantum channel
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guantum
Info

Transmission of Quantum Information

N

A

-—==>

noisy

guantum channel

= Quantum capacity : max. rate at which qubits can be

Q(N)

transmitted reliably

= Evaluated in the “asymptotic memoryless setting”

(LSD theorem)

1

n—>0 N

Q(N)=lim—max |

p(n)

- (p(n),N®n)

\

coherent information
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= Given in terms of the coherent information: Icoh (,0, JV)

g?ri;i)cation org = (10, ® A/)‘{’p

coherent information

Icoh (/01‘/‘/) — _S(GRB)_I_S(GB) :_S(R‘ B)a
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= For a memoryless channel

(LSD theorem)
Q(N) = lim = max loon (2™, V")

n—w© N p(”)

Regularised

Coherent information

In next lecture and example session:
= Discussion of degradable channels

= Proof of the fact that the coherent info is additive
for degradable channels



