W E L C O M E | learn more |
Research Center for Quantum Information
Institute of Physics, Slovak Academy of Sciences
Dúbravská cesta 9, 84511 Bratislava, Slovakia
Tel: (+421 +2) 20910701
Fax: (+421 +2) 5477-6085
| map |
N E W S | old news |
  01.05.2020 Competition
Euroepan Quantum Future Academy 2020
Open physics competition for Slovak university bachelor and master students in quantum physics. The winners will be offered a summer internship and a participation at the final conference in Berlin. The participation is going to be covered from the resources of the QUTE.sk consortium and by the main organizer in Germany. More information available on the dedicated website http://qute.sk/eqfa2020/.
  18.4.2020 Publication
Popescu-Rohrlich box implementation in general probabilistic theory of processes
It is shown that Popescu-Rohrlich nonlocal boxes (beating the Tsirelson bound for Bell inequality) do exist in the existing structures of both quantum and classical theory. In particular, we design an explicit example of measure-and-prepare nonlocal (but no-signaling) channel being the realization of nonlocal and no-signaling Popescu-Rohrlich box within the generalized probabilistic theory of processes. Further we present a post-selection-based spatially non-local implementation and show it does not require truly quantum resources, hence, improving the previously known results. Interpretation and potential (spatially non-local) simulation of this form of process nonlocality and the protocol is discussed.
by Martin Plávala and Mário Ziman
Physics Letters A 384, 126323 (2020) | +++ |
APVV-18-0518 (OPTIQUTE), COST Action CA15220, VEGA 2/0173/17 (MAXAP),
  16.03.2020 Conference
CEQIP 2020
We regret to inform you that due to COVID-19 spread and frozen mobility
we were forced to CANCEL
the workshop. Thank you for your understanding and looking forward to see you at CEQIP 202+.
  12.03.2020 Publication
Area-law-like systems with entangled states can preserve ergodicity
We study the ground entangled state of the one-dimensional spin-1/2 Ising ferromagnet at its transverse-field critical point. When this problem is expressed in terms of independent fermions, we show that the usual thermostatistical sums emerging within Fermi-Dirac statistics can, for an L-sized subsystem, be indistinctively taken up to L terms or up to lnL terms, providing a neat understanding of the origin of the logarithmic scaling of the entanglement entropy in the system. This is interpreted as a compact occupancy of the phase-space of the L-subsystem, hence standard Boltzmann-Gibbs thermodynamics quantities with an effective system size V ≈ ln(L) are appropriate and are explicitly calculated. The calculations are then to be done in a Hilbert space whose effective dimension is 2ln(L) instead of 2L. In this we can assume ergodicity. Our analysis suggests a scenario where the physical systems are essentially grouped into three classes, in terms of their phase-space occupancy, ergodicity and Lebesgue measure.
by Andre M. C. Souza, Peter Rapčan and Constantino Tsallis
The European Physical Journal Special Topics 229, 759–772 (2020) | +++ |
S E M I N A R S | more |
28/01 11:00

V I S I T O R S | history |

Today is 28.05.2020, You are visitor number 5523