W E L C O M E | learn more |
Research Center for Quantum Information
Institute of Physics, Slovak Academy of Sciences
Dúbravská cesta 9, 84511 Bratislava, Slovakia
Tel: (+421 +2) 20910701
Fax: (+421 +2) 5477-6085
| map |
N E W S | old news |
  16.03.2020 Conference
CEQIP 2020
We regret to inform you that due to COVID-19 spread and frozen mobility
we were forced to CANCEL
the workshop. Thank you for your understanding and looking forward to see you at CEQIP 202+.
  12.03.2020 Publication
Area-law-like systems with entangled states can preserve ergodicity
We study the ground entangled state of the one-dimensional spin-1/2 Ising ferromagnet at its transverse-field critical point. When this problem is expressed in terms of independent fermions, we show that the usual thermostatistical sums emerging within Fermi-Dirac statistics can, for an L-sized subsystem, be indistinctively taken up to L terms or up to lnL terms, providing a neat understanding of the origin of the logarithmic scaling of the entanglement entropy in the system. This is interpreted as a compact occupancy of the phase-space of the L-subsystem, hence standard Boltzmann-Gibbs thermodynamics quantities with an effective system size V ≈ ln(L) are appropriate and are explicitly calculated. The calculations are then to be done in a Hilbert space whose effective dimension is 2ln(L) instead of 2L. In this we can assume ergodicity. Our analysis suggests a scenario where the physical systems are essentially grouped into three classes, in terms of their phase-space occupancy, ergodicity and Lebesgue measure.
by Andre M. C. Souza, Peter Rapčan and Constantino Tsallis
The European Physical Journal Special Topics 229, 759–772 (2020) | +++ |
NONE
S E M I N A R S | more |
img/visitors/haapasalo.png
japan.gif
28/01 11:00




V I S I T O R S | history |







Today is 07.04.2020, You are visitor number 5523